The Fate of Axion Stars

Hong Zhang The Ohio State University In collabora*on with Eric Braaten and Abhishek Mohapatra PRL 117, 121801 (2016)! PRD 94, 076004 (2016)! arXiv:1609.05182!

Outline ²  Axions ²  (Dilute) Axion Star ²  Dense Axion Star

PRL 117, 121801 (2016)!

²  Observables

arXiv:1609.05182!

²  Axion EFT

PRD 94, 076004 (2016)!

²  Summary 1

Axions •  Peccei-Quinn U(1) symmetry solves strong CP problem! Peccei & Quinn (1977)

•  Introduces a Goldstone boson -- Axion! Weinberg (1978), Wilczek (1978)

•  Strongly motivated candidate for cold dark matter.! Lect. Notes Phys. 741 (2008) A recent review: Kim & Carosi (2010) 2

Relativistic Axions Real pseudoscalar field! µ 1 L = 2 @µ @

Energy scale below 1GeV!

V( )

Two models for potential ! •  Instanton!

V( ) = m2a fa2 [1

cos( /fa )]

ma : axion mass! fa : axion decay constant! •  Chiral!

V( ) =

m2⇡ f⇡2

1



1

z = mu /md ⇡ 0.48

4z 2 sin ( /2fa ) 2 (1 + z)

1/2

!

3

Relativistic Axion Potential Periodic potentials! 4

Ratio ~ 1.5!

Chiral!

3

V /ma fa

2 2

V m2a fa2

V( ) = V( + 2⇡fa )

Instanton! 2

1

0

-6

-4

-2

0

φ /fa

/fa

2

4

6 4

Parameters & Current Constraints •  Two parameters in relativistic axion Lagrangian: !

ma and fa •  Not independent, related by QCD!

m2a fa2

z 2 2 = m ⇡ f⇡ 2 (1 + z)

ma fa = (80 MeV )

2

z = mu /md ⇡ 0.48

•  Constraints from astrophysics & cosmology ! 6 8 13

10 GeV < fa < 10 GeV

10

In this talk, I choose !ma

= 10

2

eV

Tiny Mass !!

Very weak self-interaction ! 4

eV < ma < 10

eV

5

Loop Contribution is Small Each loop is suppressed by !

(ma /fa )2 ⇠ 10

48

•  Diagrams with loops can be safely ignored.!

6

Axion-Photon Coupling •  Very weak coupling!

cem ↵ µ⌫↵ Lem = ✏ Fµ⌫ F↵ 16⇡fa cem ⇠ 1 Model dependent! Suppressed by ! fa

.

⇠ 1011 GeV

•  Decay rate into two photons! a

=

c2em ↵2 m3a . 3 2 256⇡ fa

Photon energy:!

⇠ 1036 years 10 Age of Universe! ⇠ 10 years

Axion lifetime!

ma /2 ⇠ 10 GHz Radio frequency 7

Axion Cosmology •  Cold dark matter axions are produced abundantly 
 at QCD phase transition scale T ~ 1 GeV ! Non-relativistic axion production mechanism! For more details, see Lect. Notes Phys. 741 (2008)

Ø  Vacuum misalignment!

Coherent

Preskill, Wise & Wilczek (1983) Abbot & Sikivie (1983) Dine & Fischler (1983)

Ø  Cosmic string decay!

Incoherent

Davis (1986) Hararie & Sikivie (1987)

3

Occupation number! na dB |T =1GeV

⇡ 1058

Sikivie & Yang PRL (2009)

Form Bose-Einstein condensate if can be effectively thermalized! 8

Gravitational Thermalization •  Axion self-interaction may be too weak to thermalize axions! •  Gravitational interaction can thermalize axions! Sikivie & Yang PRL (2009)

Ø  Bring initially incoherent axions into coherence! Ø  Keep the axion field as a Bose-Einstein Condensate
 as the Universe evolves! •  Correlation length! Galactic scale?!

Sikivie & Yang PRL (2009)

Stellar scale due to attractive self-interaction?! Guth, Hertzberg & Prescod-Weinstein PRD (2015)

Is there a (meta)stable axion star solution?

9

Outline ²  Axions ²  (Dilute) Axion Star ²  Dense Axion Star

PRL 117, 121801 (2016)!

²  Observables

arXiv:1609.05182!

²  Axion EFT

PRD 94, 076004 (2016)!

²  Summary 10

Non-relativistic EFT (Part I) L=

1 2 @µ

@

µ

Real Scalar!

V( )

Chavanis PRD (2011) Chavanis & Delfini PRD (2011)

Instanton potential / Chiral potential!

Naïve non-relativistic reduction! Complex scalar!

1 ⇥ (r, t) = p (r, t)e 2ma

ima t

+



(r, t)e

+ima t

Ignore all terms with rapid oscillating phase !

Le↵ =

1 2i

Ve↵ = ma



⇤ ⇤

˙

˙⇤



1 r 2ma



·r



Ve↵

1 ( ⇤ )2 1 ( ⇤ )3 + + ... 2 4 16 fa 288 ma fa Expand by !



ma fa2

11

Non-relativistic EFT (Part I) L=

1 2 @µ

@

µ

Real Scalar!

V( )

Chavanis PRD (2011) Chavanis & Delfini PRD (2011)

Instanton potential / Chiral potential!

Naïve non-relativistic reduction! Complex scalar!

1 ⇥ (r, t) = p (r, t)e 2ma

ima t

+



(r, t)e

+ima t

Ignore all terms with rapid oscillating phase !

Le↵ =

1 2i

Ve↵ = ma



⇤ ⇤

˙

˙⇤



1 r 2ma



·r

Ve↵

1 ( ⇤ )2 1 ( ⇤ )3 + + ... 2 4 16 fa 288 ma fa

Attractive interaction!!

Expand by !



Dilute
 limit!



ma fa2

12

Dilute Axion Stars Assume:! •  Instanton potential, dilute axion limit! •  Newtonian gravity! •  Spherically symmetric! ⇥ 0 ⇤ r2 ⇤ KineZc + (Ve↵ ( ) + ma = (µ ma ) , pressure 2ma

r2 = 4⇡Gma



.

Self-interacZon

1.0

example

0.8

| (r)|2 | (0)|2

Gravity

0.6

Dilute!

0.4

0.2

0.0 1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

normalized radius

13

(First) Critical Point •  Heavier dilute axion stars have smaller radii.! •  Critical mass: beyond which the kinetic pressure
 cannot balance the attractive self-interaction and gravity!

stable!

critical pt!

unstable!

Critical point:!

p M⇤ = 10.2fa / Gm2a

= 6 ⇥ 10

R⇤ = 3 ⇥ 10

14 4

M

R

= 200 km 14

Formation of Dilute Axion Stars •  Dilute axion stars can be produced in early universe.! •  Vacuum misalignment mechanism produces coherent and
 non-relativistic axions.! •  Spatial fluctuations in the axion field evolve into gravitationally 
 bound “miniclusters” of axions.! •  Gravitational thermalization drives the axion minicluster to
 form a dilute axion star.! •  Dilute axion stars attract more axions and gradually reaches
 the critical mass. !

15

End of Dilute Axion Stars •  Dilute axion stars collapse when its mass exceeds 
 the critical mass,
 •  !What is the remnant?!

Less massive 
 dilute axion star?! by emitting 
 extra axions!

Black hole: Schwarzchild radius is ~20 orders of magnitude smaller!

Dense axion star?! Radius is 5 orders
 smaller!

Chavanis arXiv: 1604.05904 Helfer et al. arXiv: 1609.04724

Eby et al, arXiv: 1608.06911 16

Outline ²  Axions ²  (Dilute) Axion Star ²  Dense Axion Star

PRL 117, 121801 (2016)!

²  Observables

arXiv:1609.05182!

²  Axion EFT

PRD 94, 076004 (2016)!

²  Summary 17

Non-relativistic EFT (Part II) Le↵ =

1 2i





˙



˙⇤

•  Dilute axion field!

Ve↵ = ma



1 r 2ma



·r

Ve↵

1 ( ⇤ )2 1 ( ⇤ )3 + + ... 2 4 16 fa 288 ma fa

•  In dense axion field (



Dilute
 limit!

) ⇠ ma fa2 , must keep all orders !

Both instanton and chiral potential can be summed to all orders! Instanton potential:!

Ve↵ (



)=

⇤ 1 m 2 a

+ m2a fa2



1

J0 (2



/ma fa2 )

Eby, Suranyi, Vaz & Wijewardhana (2015)

18



Non-relativistic Instanton Potential ⇤

Ve↵ (

)=

⇤ 1 m 2 a

+ m2a fa2

[Vclass -

∗ 2 2 1 __ m aψ ψ] /m a f a 2

2.5



1

J0 (2



/ma fa2 )

Not periodic! Decreasing Amplitude!

2

1.5

1

0.5

0 0

Instanton 3

6

9 12 2 1/2 (2ψ ψ/ma fa )

15



18



Braaten, Mohapatra, HZ, PRD (2016)!

19

Dense Axion Stars Assume:! •  Instanton potential! •  Newtonian gravity! •  Spherically symmetric! Compare axion number density! •  Dilute axion star: Gaussian-like! •  Dense axion star: almost flat, with a fast-dropping edge! 1.0

example 0.8

0.6

| (r)|2 | (0)|2

0.4

0.2

0.0

example

1.0

0.8

0.6

0.4

Dilute! 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1

Normalized normalizedradius! radius

0.2

0.0 0.0

 = 6.58  0

Dense! 0.2

0.4

0.6

0.8

Braaten, Mohapatra, HZ, PRL (2016)!

1.0

20

Self-interaction Force r2 2ma

+



0 (Ve↵ ( ⇤

) + ma



ma ) , r2

= (µ

•  Self-interaction force
 F = int (mean-field pressure)!

00 Ve↵ ( ⇤

d ) ( dr

= 4⇡Gma ⇤



)

0.01

Smaller than 0!

Outwards! 0.005

More branches!



’’ 2 Veff (ψ ψ) f a

Fint 0

First dense axion
 star branch!

-0.005

Inwards! -0.01 0

10 15 ∗ 2 1/2 Normalized f ) (2ψ ψ/mdensity! a a

5

20

25

Braaten, Mohapatra, HZ, PRL (2016)!

21

.

Forces Balancing r2 2ma

+



0 (Ve↵ ( ⇤

) + ma



= (µ

ma ) , r2

= 4⇡Gma

•  Recall in dilute axion star, kinetic pressure balances gravity
 and self-interaction force! KineZc pressure

Self- interacZon Gravity KineZc pressure

Gravity

Dense!

Self- interacZon

•  In dense axion star!

Bulk: ! Ø  self-interaction force balances
 gravity, ! Ø  kinetic pressure ~ 0! Ø  wave-function is almost flat! Surface:! Ø  large kinetic pressure needed
 to balance the other two,! Ø  wave-function drop rapidly! Braaten, Mohapatra, HZ, PRL (2016)!

22



.

0.01

Forces Balancing 0 + (Ve↵ (



) + ma







Outwards!

0.005 ’’ 2 Veff (ψ ψ) f a

r2 2ma

Fint

= (µ

0

ma ) , r2

= 4⇡Gma Inwards!

•  In dense axion star! 2 1/2



a a

Self- interacZon Gravity KineZc pressure

Gravity

Dense!

Self- interacZon

.

-0.005

•  Recall in dilute axion star, kinetic pressure balances gravity
 -0.01 0 10 20 5 15 and self-interaction force! (2ψ ψ/m f ) KineZc pressure



Bulk: ! Ø  self-interaction force balances
 gravity, ! Ø  kinetic pressure ~ 0! Ø  wave-function is almost flat! Surface:! Ø  large kinetic pressure needed
 to balance the other two,! Ø  wave-function drops rapidly! Braaten, Mohapatra, HZ, PRL (2016)!

23

25

Thomas-Fermi Approximation •  When the surface thickness is small compare to the bulk, 
 Thomas-Fermi approximation can be applied.!

r2 2ma

+



0 (Ve↵ ( ⇤

r2 = 4⇡Gma



) + ma

.



= (µ

ma ) ,

Greatly simplifies!

•  Interaction force (mean-field pressure) exactly balances
 gravitational force! •  Not applicable to small dense axion star, in which the surface
 thickness is important! Braaten, Mohapatra, HZ, PRL (2016)!

24

Radius vs. Mass Sun!

1

dilute axion star! -2

10

Moon! Halley’s! comet!

10-4

R/R

Earth!

critical pt!

10-6

unstable! 10-8

! ? e l stab

10-10

critical pt! 10-12 10-21

10-18

10-15

10-12

10-9

10-6

10-3

1

M/M

•  2nd critical point! •  Newtonian gravity is justified! •  Heavier dense axion stars have larger radii! Braaten, Mohapatra, HZ, PRL (2016)!

25

Formation of Dense Axion Stars •  Possible remnants of dilute axion stars collapsing! 1

dilute axion star! 10-2

critical pt!

R/R

10-4

Bosenova?!

10-6 10-8 10-10 10-12 10-21

10-18

10-15

10-12

10-9

10-6

10-3

1

M/M

Braaten, Mohapatra, HZ, PRL (2016)!

26

Outline ²  Axions ²  (Dilute) Axion Star ²  Dense Axion Star

PRL 117, 121801 (2016)!

²  Observables

arXiv:1609.05182!

²  Axion EFT

PRD 94, 076004 (2016)!

²  Summary 27

Axion Detection •  Depends on the tiny axion-photon coupling! cem ↵ µ⌫↵ Lem = ✏ Fµ⌫ F↵ . 16⇡fa

cem ⇠ 1

Model dependent!

Suppressed by ! fa

a

=

c2em ↵2 m3a . 3 2 256⇡ fa

11

⇠ 10 GeV

⇠ 1036 years 10 Age of Universe! ⇠ 10 years

Axion lifetime!

•  Direct detection, indirect detection and laser experiment.! Lect. Notes Phys. 741 (2008) A recent review: Kim & Carosi (2010)

28

Indirect Detection •  Detect radio-frequency photons! •  Currently no experiment available!

(tiny

a

coupling)!

•  Two photon-production channels! Ø  One-step: NR axions !! Ø  Two-step: NR axions

!

relativistic axions ! !

29

1st Channel: NR Axions to Photons

ma ⌫0 = 2

ma ⌫=5 2

ma ⌫=3 2

...

•  Odd-integer harmonics of the fundamental radio frequency.! After broadening and red-shifting!

1 3 5

⌫/⌫0

Unique feature of axions !!

Braaten, Mohapatra, HZ, arXiv:1609.05182!

30

2nd Channel •  Two relativistic axions production! 2 2 suppressed by one power of !(ma /fa ) ⇠ 10

4a ! 2a

...

6a ! 2a

...

•  More relativistic axions!

48

suppressed by more powers!

•  Much weaker photon signal than 1st channel! Braaten, Mohapatra, HZ, arXiv:1609.05182!

31

Two Types of Sources •  Continuous photon emission! Ø  Stable axion stars! •  Catastrophic phenomenon: ! a lot of energy released in a short time! Ø  Collapse of dilute Axion stars! Ø  Collision of an axion star with a neutron star! Ø  …!

32

Emission From Dense Axion Star 10

6 6

10

Relative to!

a!

Axion to photon
 decay rate!

4a→2a

6a→2a

10

3

3

| dN/dt | / NΓa

10

1

10 10

a!2

60

eV

a→γγ

0

10

•  Solid: 
 Instanton potential!

3a→γγ 5a→γγ 3a→γγ

3 -3

•  Dashed: 
 Chiral potential
 TF approximation!

10

6

5a→γγ

-6

10 -21 10

= 10

-18

10

-15

10

-12

10

-9

10

M/MM/M

-6

10

4a ! 2a, 6a ! 2a, 8a ! 2a

10

-3

10

0

are all zero for instanton potential!

Braaten, Mohapatra, HZ, arXiv:1609.05182!

33

Emission From Dilute Axion Star Relative to!

110

a!2

10

10

-50 50

60

eV

•  Solid: 
 Instanton potential!

4a→2a 5a→γγ

-75 75

•  Dashed: 
 Chiral potential!

6a→2a

10

= 10

3a→γγ

10

10

Axion to photon
 decay rate!

a→γγ

-25 1025

| dN/dt | / NΓa

10

0

a!

-100 100

10

-14

10

M/M

-13

10

M/M

4a ! 2a, 6a ! 2a, 8a ! 2a

are all zero for instanton potential!

Braaten, Mohapatra, HZ, arXiv:1609.05182!

34

Photon Flux Estimate •  Single axion decay to two photons is independent of the 
 configuration. !

•  Solar system 3

DM density ~!0.3GeV/cm 1068 axions! Total DM in Solar system! ⇠ 0.01M radius ~ 125,000 AU,

22 Photon production rate! ⇠ 10 /sec

Energy released: ! ⇠ 109 GeV/sec ⇠ 0.4 Watt

•  Milky way:! Total

DM:!

⇠ 1012 M

1082 axions!

Largest 1st branch dense axion star has ~1070 axions!

⇠ 1011 GeV/sec ⇠ 40 Watt

35

Axion Stars are Not So Bright ! PRL 117, 121801 (2016)

Editors’ suggestion!

Picture chosen by PRL! 36

Hydrogen Axion Star ? •  Hydrogen gas is captured by the gravitational potential well
 of axion star, forming dense metallic fluid state.! •  Electron interacts with axion, generating heat, resulting in
 blackbody radiation with peak in the UV region.! •  Energy released: !

1013

⇣ m ⌘4 a W⇥ 5 meV

•  The signal should be readily visible to current high-resolution
 telescopes.! Bai, Barger and Berger, JHEP (2016)!

37

Catastrophic Phenomena Fast Radio Burst (FRB)! •  A ultra-fast (milli-sec) burst of photons in radio frequency.! •  Nothing similar observed in optical, X rays and ϒ rays! •  Since 2007, 17 events have been reported.! •  Estimated rate ~ 104 sky -1 day -1 ! •  Reported frequency is 1.4 GHz (telescope design)! •  Extra-galactic sources from dispersion measure! •  Energy released up to 1040 erg ~ 10 -14 M¤ (If isotropic)! •  Strong linear polarization observed.! Recent review: Katz, arXiv:1604.01799 Online database: hbp://www.astronomy.swin.edu.au/pulsar/frbcat

38

Fast Radio Burst

Figure from Nature 530, 453 (2016)

39

Are Axion Stars an Explanation? ü  Observed frequency: 1.4 GHz ! 10 6 eV < ma < 10 2 eV 0.2 GHz < ⌫ < 2400 GHz Also explains why such burst is not observed in other bands.! ü  Total energy released: up to!⇠ 10 14 M •  Dilute axion star critical mass ! 6 ⇥ 10 •  Dense axion star mass!

14

M 10 20 M to 2 M

ü  Time duration: ~ 1 ms! •  Dilute axion star critical radius: 200 km! •  Dense axion star radius: 1m to 10 km! ü  Polarized photons! Axions in axion stars are in coherence!

40

Scenarios with Axion Stars •  Collision of a dilute axion star with a neutron star! Coherent electric dipole radiation! Ø  From electrons in atmosphere!

Iwazaki, hep-ph/9908468!

Ø  From neutrons in outer core!

Raby, PRD (2016)!

•  Collapse of dilute axion stars above the critical mass! Tkachev, JETP Lett. (2014)!

•  Collision of two axion stars!

Eby et.al., arXiv:1701.01476!

•  Collision of a dense axion star with a neutron star! 41

Observe Odd-integer Harmonics •  One unique feature of axion stars:
 odd-integer harmonics of the fundamental radio frequency.! •  Can we observe the fast radio burst at other frequencies? ! 1.4 GHz,

3 × 1.4 GHz,

5 × 1.4 GHz …!

or! 1/3 × 1.4 GHz,

1.4 GHz,

5/3 × 1.4 GHz …!

Many possible combinations! •  Need more events in more frequency windows.!

42

Outline ²  Axions ²  (Dilute) Axion Star ²  Dense Axion Star

PRL 117, 121801 (2016)!

²  Observables

arXiv:1609.05182!

²  Axion EFT

PRD 94, 076004 (2016)!

²  Summary 43

Axion EFT •  Relativistic Axions: real scalar!

L=

1 2 @µ

@

µ

V( )

Instanton or chiral
 potential!

•  Non-relativistic axions: complex scalar!

He↵

1 = r 2ma



· r + Ve↵ (



)

Ø  Integrate out axion mass scale! Ø  Much simpler, but equally accurate in the NR limit! •  Need to find the NR potential !Ve↵ (



) 44

Naïve NR Reduction •  Zeroth order approximation!

⇤ 1 ⇥ ima t ⇤ +ima t (r, t) = p (r, t)e + (r, t)e 2ma ⇤ 2 ⇤ 3 1 ( ) 1 ( ) Ve↵ = ma ⇤ + + ... Dilute! 2 4 16 fa 288 ma fa ⇥ ⇤ ⇤ ⇤ 2 2 ⇤ 2 1 ) = 2 ma + ma fa 1 J0 (2 /ma fa ) Dense! Ve↵ ( •  Used to get dilute and dense axion star solutions! •  Not considering virtual axions!

(3ma , p) Braaten, Mohapatra, HZ, PRD (2016)!

45

Match the amplitude •  Matching low-energy scattering amplitudes.! •  Includes all virtual axion contributions! 2 (m /f ) •  Only tree diagram: loops are suppressed by ! a a ⇠ 10

48

•  Example: 3 to 3 scattering! Braaten, Mohapatra, HZ, 
 PRD (2016)!

RelaZvisZc coupling

Relativistic
 field theory!

=! Axion EFT! Match and obtain NR coupling

46

Match Low-power Couplings •  Expand the NR potential!

Ve↵ (



•  Check

) = ma



+

(v2 , v3 , v4 , v5 )

NR reduction:!

( -1,

With matching:! ( 1, Deviation:!

m2a fa2

1 X

vn 2 (n!) n=2





2ma fa2

◆n

for instanton potential 1,

-1,

1)

! !

1.125, 2.25, 1.76)

( 0, -189%, -56%, -43%)

!

Contribution of virtual axions is important !! Braaten, Mohapatra, HZ, PRD (2016)!

.

47

Dense Regime •  Cannot truncate the power expansion! •  Impossible to extract all couplings by matching (infinitely many) ! •  One scheme: include more and more virtual axion propagators
 in the matching! Naïve NR reduction!

p

Match diagrams with no virtual propagator!

n

n n−p

1st improvement! Match diagrams with 0 or 1 virtual propagator! p

n

q

n n−p

n−q

Braaten, Mohapatra, HZ, PRD (2016)!

48

Summary •  Gravity can thermalize axions toward Bose-Einstein
 condensates and form dilute axion stars.! •  A dilute axion star accumulates axions and collapses once its
 mass exceeds the critical mass!10 14 M •  Dense axion star is a possible remnant.! •  Catastrophic phenomena involving axion stars can release 
 a large amount of coherent radio-frequency photons in a 
 very short time, which may explain fast radio burst.! •  The photons in odd-integer harmonics of a fundamental 
 radio frequency are a unique signature of axions.! 49