Technical Appendix for "Robust Non-Parametric Tests of Extremal Dependence"

Technical Appendix for "Robust Non-Parametric Tests of Extremal Dependence" Jonathan B. Hill¤ Dept. of Economics University of North Carolina - Chapel...
Author: Rose Merritt
0 downloads 2 Views 2MB Size
Technical Appendix for "Robust Non-Parametric Tests of Extremal Dependence" Jonathan B. Hill¤ Dept. of Economics University of North Carolina - Chapel Hill June 4, 2008 In the following appendix omitted proofs of Lemmas A.5-A.7 are given, and Lemma A.8 proves population NED implies Extremal-NED (Section A.1). Tail array properties are detailed (Section A.2) and omitted tables and all …gures are also presented in the end. Recall  1) with probability one,  and  take values on [0 denotes either or  and ¡ ( ) = ( ) as ! 1, slowly varying  

and

 (   ) ! 1  The tail arrays used throughout are     := (ln    )+ ¡

(A.1) (A.2)

 ¡1  and  (   :=    ) ¡ (   )  

A.1 SUPPORTING LEMMAS A.5-A.7 We present an expanded version of Lemma A.5. The proof of Lemma A.3 uses claim (  ) which is proved by the following claims ( )-(   ). De…ne    ) = (   (   ) ¡ (   ), 2 R+ 

LEMMA A.5 Let Assumption A hold. p p  f () g and f  g are 4 -NED on fzg with con    stants ½ Z ¾ ¡14 ¡1  ( )  ( )  = (1  )        ¤ Dept . of Eco no mics, Univers ity of N orth Car olina -Chapel H ill, w ww.unc.edu/»jbhill, [email protected].

1

¡12 and common coe¢cients  = (( )14¡1 ).    p p   For any ¸ 1, f ) ) g and f    ¡(   (  ¡    g are 2-NED on fzg with constants ½ ¾ Z 1 ( ) ( ) ¡12 ¡1   )   )  = (1  )  (  (  0

¡12 and common coe¢cients  = (( )12¡1 ).   P p    For any 2 R, 0 = 1, f   () ) g and     ¡   (  =1  P p f =1  g with constants  ¡    g are  2 -NED on fz ½ n o n o Z 1 n o ¾ () ( ) ( ) ( )  ( )  ( ) = max   ( )  max   ( )           1· ·

=

0

 ¡12 ¡1 (1  ) 

1· ·

¡12 and common coe¢cients () =  (( )12¡1 )  P p   . Under the conditions of (   ), f   () ()  zg     ¡    =1  P p and f =1     zg form 2-mixingale sequences with   ¡   ¤ g, where sup f ¤ g = ( ¡12). size 1 2 and constants f                

LEMMA A.6 Under Assumptions A, B and D, j~   ) ¡   )j = ( (     (1) for each = 1 P ^ LEMMA A.7 Under Assumptions A, B and D 1   )  2) ( 1 )   =1 ((¡  = (1) for all  = 1      .   LEMMA A.8 Consider a univariate stochastic process   that takes vales on [0 1), and has tail (A.1), with threshold sequence f  g as la (A.2). Let f g be  -NED on fz g with constants f g, sup       ¸1 1, and coe¢cients fg of size 0. Then for some displacement sequence f g,   ! 1, f g is  -E-NED for any  ¸ 2 with constants  ( ) Lebesgue     integrable on R +, and coe¢cients  of size £ minf  1g (4 ).  Proof of Lemma A.5.  See Lemma A.1 of Hill (2005). p   Lemma 5.3 of Hill (2007) implies f ) () g is 2 -E-NED    ¡(    on fzg with constants () ¡12   ) = maxf (1 )  ( )1)       ¡( 2)g = (  (

and coe¢cients ¡12  = maxf   g=  (( )12¡1£  )      

2

An argument identical to Lemma A.1 of Hill (2005) therefore implies p () f g with constants s01(  ) and   ¡    g is 2-E-NED on fz  ( coe¢cients .    From Theorem 17.8 of Davidson (1994) and (  ) it follows that P P p p  () )  and    are 2 -NED     ¡   (    ¡     =1   =1  P p on fzg. In particular,   ( ) :=   () ()  satis…es       ¡    =1  ° h i° X ° ( ( ) +  ° ) ¡    (  )jz ·   () £  °  °       ¡   =1 2 n o ¡ ¢ ( ) · max   ( ) £ £    1· · ()

()

=  ) £    ( 

() 2 ) ¡12 where  ) = (¡1 ( )1) and ( = (( )12¡1 ) under    (   Claim (  ). An argument identical to Lemma A.1 of Hill (2005) applies to P p   .    ¡     =1 

  The …nal claim follows from Claim (   ) and arguments in Davidson (1994: P p p. 264-265). Consider   (   ) :=   () ) , the proof      ¡   (  =1  P p for =1     being similar.   ¡   If the base f then Davidson (1994: g is strong mixing with coe¢cients    eq. (17.18)) ´ © ª ³ 12¡1 () k[   )jz¡ ]k2 · max k  (  )k  () £  +     (          The Minkowski and the Cauchy-Schwartz inequalities, 0 = 1, and jj )jj   ( = (( )1) by Lemma C.1, below, imply for any ¸ 2 ³ ´ 2 2 k  ( )k· £ ¡1 k k2k k2=  ¡1 ( )1           

() 2 ) ¡12 12¡1 Since  ) = (¡1 ( )1), ( = (( )12¡1 ), and     (     ¡(12¡1)£(¡2)

= (( )12¡1£  

¡12

)=  (( )12¡1£  

) it follows

k[   )jz¡  (  ]k2

³ ´ 1 12¡1 () 2 · ¡1 (   )  +         ³ ´ 1  2 ¡12 ¡12 = ¡1 ( )  (( )12¡1 )+ (( )12¡1 )    ³ ´ ¡12 12¡1 ¡12 = ¡12 ( )1¡12  (( )12¡1 ) +  ((   )  )    ¡12 = ¡12 £  ( ) 

A similar argument applies to the remaining mixingale inequality jj  ( )   ¡12 ¡1 2 ¡ [   )jz+  ]jj2 ·  £ ( ), and in the uniform mixing case,   (  cf. Davidson (1994: eqs. (17.19)-(17.20)). 3

Proof of Lemma A.6. Write  ) :=   (   ¡   . We will prove ¯ à !2¯¯ ¯  X ¯ ¯ 1 ¯~ ) ¡  p  ) ¯¯ ! 0  ( ¯  (  =1 ¯ ¯

by verifying Assumptions 1-3 of de Jong and Davidson’s (2000) [JD] Theorem 2.1 hold. JD’s Assumption 1 holds by the statement of the lemma. Moreover, p  zg forms an 2-mixingale array with size 1 2 and constants   ()  ¡12   =  ( ) by Lemma A.5. Thus JD’s Assumption 2 is satis…ed. Finally,   2 JD’s Assumption 3 is satis…ed by  max   =  (1) given  =  (). 1· ·     Proof of Lemma A.7. Write ^  ^  ¡ ) ) and ¢    := ((    :=   ¡     and (A.3) ^       ( 1 2) ^ ^ ^ ^¡  =    ¡1     ¡2   ¡1        ¡2     ^  ^  ^  =    ¡1 £ ¢   £ ¢  ¡2 £ ¢ ^ ^  ^  + ¢ ¡1 £    £ ¢   ¡2 £ ¢  ^ ^  ^  + ¢ ¡1 £ ¢  £     ¡2 £ ¢  ^ ^ ^ + ¢ ¡1 £ ¢   £ ¢    ¡2 £     ^ ^ + £  £ ¢   £ ¢      ¡1       ¡2   

+ ¢¢ ¢ ^ ^  ^  ^  + ¢ ¡1 £ ¢  £ ¢   ¡2 £ ¢    We will prove  ¯ ¯ 1 X ¯ ¯ = (1) ^    ¢   ¯ ¯      ¡1       ¡2        =1

Nearly identical arguments su¢ce to show (1). p all remaining terms in (A.3) are  ¡1 Exploiting  ^ ¡1 =  +  (1  ), cf. Theorem, 5 of Hill (2005), As     sumption B (Hsing 1991: p. 1554) ¡ ¢ ^     ¡    = ln   ( +1) + ¡ (ln    )+ ¡ ¡1 ¢ ¡ ( )  ¡ ( )(ln      )+ ¡ ¡1 ¢ ¡ ( )  ^  ) ¡ ¡1   (  ¡ ¢ p = ln     (  )  ( +1) + ¡ (ln    )+ +  4

By cases it is straightforward to show ¯¡ ¯ ¯ ¯ ¢ ¯ ¯ ¯ ¯ ¯ ln        (+1) + ¡ (ln    )+ ¯ · ln  (+1)     Note

 ³ ´ 1 X ^      ¡1        ¡2   ¡      =1

=

 1 X       ¡1        ¡2    =1 ³¡ ´ ¢ £ ln       )+ (+1) + ¡ (ln 

+

=

 1 X  (( )12) £ ¡12    ¡1        ¡2 £     =1

 1 X       ¡1        ¡2    =1 ³¡ ´ ¢ £ ln   ¡ (ln    ) +      + (1) (+1) +

The last line follows from from applications of the Minkowski’sPthe CauchySchwartz inequalities, and Lemma C.1, below: exploiting 1     j   =1 j 1 2 = ( ) under Assumption D, ° °  ° 1 X ° ° °  °    ¡1        ¡2 ° °  =1 ° 1

 1 X 4 · j j k   k2 k   k2    =1 µ ³ ´2 ¶ ³ ´ =  12( )12 ( )14 =   12

and  ( 12 ( )12 ¡12 ) =  (( )12) =  (1).

5

Therefore ° °  ° 1 X ³¡ ´° ¢ ° ° °  ln          ¡1        ¡2  (+1) + ¡ (ln    )+ ° °   °  =1

1

 ° ° 1 X ° (+1)  ° · j    j k   ¡1        ¡2 k2 ln    2    =1

 1 1 X j (( )12 )   j k   ¡1        ¡2 k2 £  12    =1 °p ° ° · ° ln (+1)     2  1 1 X £ 12 j k4   j £ k   k8 £ k   k8 k        =1

+

+ (( )12)  1 1 X = (1) £ 12 j j +  (( )12) =  (1)   =1 

p Similarly, because ln   (+1)   = (1 ) by Lemma 4 of Hill (2005), ¡1 

 X

  =1

³ ´³ ´ ^ ^         ¡1 ¡    ¡1  ¡    

³ ´³ ´ ^ ^ £     ¡2 ¡     ¡2  ¡    

 ¯ ¯2 ¯ ¯2 ¡1 X ¯ ¯ln  ¯ · ¯ln (+1)      j      j (+1)     =1

  1 XX = (1 ) £ j j  =1 =1 

= (12  ) £ = (1)

  1 1 XX £ j j 12  =1 =1 

6

 ¹ Proo of Lemma A.8. Write  ) :=  ( (   ). For some 0 to be +  ¹ ¹ chosen below and any ¸ 2, since j () ¡ [ )jz ]j · 1        (  ¡ 

¯ h i¯ +  ¯ ¹() ¡   ¹ ¯¯ ()jz ¯   ¡  ³ h i´2 +  ¹ ¹ ·  )¡  )jz ( (  ¡  ³ ³ h i ´´2 ³¯ h i¯ ´ +  +   ¯ ¹ ¹ ·  )¡   )jz   ¯¯ ¯· ( (   ¡   jz  ¡ ¡   ³ ³ h i ´´2 ³¯ h i¯ ´ +  +   ¯ ¹ ¹ +  )¡   ()jz   ¯¯ ¯  (    ¡   jz  ¡ ¡   ³¯ h i¯ ´   +  ¯ · [( )] +  ¯¯ jz  ¯   ¡     +  ¡     ¡  ³¯¯ h i¯¯ ´ £¹ ¤    + ¹(  = ( )¡ ) +  ¯ ¯    ¡    +  ¡   jz ¡  ³¯ h i¯ ´ £ ¤    +   ¯ ¹( ¹( ·  )¡ ) +  ¯¯  ¯    ¡    +  ¡   jz ¡  £ ¤     ¹( ¹( ·  )¡ ) +      ¡    +   

The second inequality is due to the conditional expectations minimizing the mean-squared-error, and a trivial identity. The third follows from basic logic, and a trivial inequality involving the indicator function. The fourth is Markov’s inequality, and the …fth follows from the -NED property. 12   De…ne  ¹ := sup ¸1  2 [0 1). Put =  , use (A.1) and the     mean-value-theorem to deduce ³ ³ ´ ´ 12   ¹( ¹   §  ) =   1 §          ³ ´¡ 12 ¡ ¡ ¡ 12 ¡ = 1 §   =   £ (1)        Therefore for any 

³ h i´2 ¹ ¹()jz+   )¡  (  ¡  h ³ ³ ´ ´ ³ ³ ´ ´i 1 2 12   ¡ ¡  2 ¹  ¹  ·   ¡  +    1¡   1 +          h ³ ³ ´ ´ ³ ³ ´ ´i 12  12  ¡ ¡  2 ¹  ¹  =   ¡  +   1 ¡   1 +         ³ ´ 12 ¡ ¡  2 ·   £  (1) +       1g2 ¡ ¡  minf ·       

hence as ! 1 ° h i° ° +  ° ¹ )¡  )jz ° ¹ ° ( (  ¡ 



· =

³ ´ nf 1g(2) ¡  ¡  £ mi         () £     7

where for arbitrary ¸  

¡  () = ( )1    ( "µ #) ¶ n o  1 ¡ ¡mi nf1g(4) 1g(2) 1¡1 minf 1g(4) minf  = (( ) )  £        

Clearly sup 2N  ) = (( )1) if  )  ( is uniformly bounded, and   ( is Lebesgue integrable on R +. The size is minf  1g (4 ) su¢ciently if ( )  minf 1g4    

A.2

= (1)

TAIL ARRAY PROPERTIES

LEMMA B.1 Under (A.1)-(A.2), jj jj= (( )1) and jj jj=      1  (( ) ) for any ¸ 1. Proof. Use Minkowski’s and Liaponov’s inequalities and arguments in Hsing (1991: p. 1548), cf. (A.1)-(A.2), to deduce for all ¸ 1 k k ·   »

¡ ¢  1 2 (ln      )+ ¡ ¢ 1 2 ( ) £  ! £ ¡1 = (( )1) 

Similarly, the construction of     implies for any ¸ 1

1 k k · ( + (      )   )

» ( )1+ ( ) = (( )1)

8

Appendix 1: Omitted Tables and Figures

(1)

h 1 2 3 4

TABLE 1 - EVAR (n = 500) Two-Tailed med{ ^ §   } (weak)

i. 9   ^§   %rej KS -.006 §.06 .47  .01  .022 -.002§.07 .52 .01 .000 .007 §.07 .63 .02 .000 .002 §.07 .67 .03 .000

ii.  !  §   %rej ^ .285§.22 .01 .94 .281§.21 .04 .67 .240§.20 .06 .55 .193§.19 .07 .31

(strong)

iii.  ! §   ^ .336 § 20 .00 .300§.19 .02 .235§.17 .03 .178§.15 .05

 %rej .98 .83 .76 .65

TABLE 1 - SAV (n = 500) Two-Tailed med{ ^ §   }

(h)

(1)

h 1 2 3 4

h 1 2 3 4 h

i.  9  ^§   %rej .002§.07 .46 .01 .002§.07 .59 .01 -.004 §.06 .66 .02 -.006 §.06 .73 .02

( 1)

KS .008 .000 .000 .000

ii. !   ^ §   %rej .126 §.10 .04 .51 .102 §.09 .08 .33 .083 §.08 .11 .26 .065 §.08 .18 .17

TABLE 1 - E-VAR (n = 1000) Two-Tailed med{^   §   }

i.  9   ^§   rej % KS -.005§.056 .424 .06  .223 .001 §.053 .543 .04 .152 .000 §.049 .631 .05 .119 -.002 §.052 .708 .03 .071 Two-Tailed

(weak)

ii.  !   ^§   rej % .303§.166 .003 .97 .289§.163 .024 .88 .234§.152 .038 .67 .183§.140 .057 .51 med{^  §  }   (weak)

(1)

i. 9  1 ^§   rej % -.021 §.039 .406 .01 -.002 §.039 .539 .01 .000 §.039 .640 .02 .001 §.039 .691 .02

iii.   ^§  .382§.182 .327§.167 .248§.148 .187§.132

(strong)

! 

.001 .008 .010 .022 (strong)

 rej % 1.0 .97 .96 .89

ii.  !  iii.  !  KS  ^§   rej %  ^§   rej % 1 .094 .191§.055 .001 1.0 .270§.058 .000 1.0 2 .023 .176§.053 .000 1.0 .213§.055 .000 1.0 3 .006 .128§.051 .000 .96 .149§.052 .000 1.0 4 .000 .089§.050 .001 .94 .105§.050 .000 1.0 Note s: a. Me dian 95% con…dence bands over  2 . b. Median Wald statistic p -value (under the null ( ) ) 20 ()). c. Rejection frequenc y at the 5%-level. d. The Kolmogorov-Smirnov p-value for a test W(h) » 2(h).

9

TABLE 1 - SV (n = 1000) Two-Tailed med{ ^ §   } (1)

h 1 2 3 4

i. 9   ^§   %re j .005 §.051 ..445 .000 .008 §.053 .552 .000 -.008§.043 .564 .000 .001 §.046 .617 .000 Two-Tailed

h 1 2 3 4

i. 9  1  ^§   %re j -.002§.04 .556 .000 -.000§.04 .628 .000 -.001§.04 .713 .000 .003 §.04 .756 .000

(1)

()

ii. !  KS §  ^  .046 .123 §.078 .016 .012 .102 §.072 .029 .007 .083 §.069 .053 .000 .054 §.057 .092 med{^   §   }

%rej .975 .754 .612 .322

()

KS .025 .011 .004 .000

ii. !  §  ^  .119§.06 .002 .105§.06 .002 .082§.05 .003 .064§.05 .005

%rej .978 .978 .921 .843

Table 2: Bivariate Extremal Spillover Two-Tailed med{^   §   } h 1 2 3 4 h 1 2 3 4 h 1 2 3 4

Yen ! BP

.001§.036 -.001 §.039 -.006 §.040 -.007 §.038

.771 .669 .805 .866

.011§.036 -.019 §.037 .009§.039 .001§.038

.678 .716 .853 .910

.007§.040 -.004 §.037 .016§.040 .013§.037

.76 .84 .91 .90

BP ! Yen

NAS ! Yen

Yen ! NAS

Yen ! SP

Yen ! LSE

.009 §.041 -.002§.039 .010 §.040 .008 §.040

.68 .84 .88 .85

.012 §.038 .010 §.038 -.000 §.039 .016 §.042

.69 .83 .89 .91

.021§.040 .013§.037 - .008 §.037 - .008 §.039

.524 .737 .740 .806

-.010§.039 -.005§.040 -.007§.036 -.008§§.038

.719 .784 .895 .947

-.016 §.042 -.005 §.041 -.024 §.036 -.004 §.038

.577 .783 .801 .902

.004§.039 - .005 §.038 - .008 §.040 - .022 §.036

.783 .855 .909 .889

-.023§.039 -.010§.038 -.007§.040 -.015§.039

.366 .449 .633 .720

.140 §.044 .058 §.043 .057 §.042 .084 §.042

.00 .00 .01 .01

.117 §.05 .052 §.04 .070 §.04 .081 §.04

.004 .013 .018 .015

BP! NAS

NAS ! BP

BP ! SP

NAS ! SP

Notes: a. Wald statistic W(h) p-value .

10

BP ! LSE

NAS ! LSE

Yen ! NIK

.043§.036 .006§.037 .023§.041 -.002 §.039

.229 .459 .525 .651

-.009 §.037 -.003 §.041 .008§.040 -.014 §.041

.674 .832 .899 .907

.074 §.04 .001 §.04 .012 §.04 .040 §.04

.022 .058 .123 .177

BP ! NIK

NAS ! NIK

Table 2 - Continued Two-Tailed med{ ^ §   } h 1 2 3 4 h 1 2 3 4 h 1 2 3 4

SP! Yen -.003 §.039 .000§.040 .001§.039 .015§.039

.76 .89 .92 .94

LSE ! Yen .000§.037 .838 .022§.038 .584 .028§.038 .567 .008§.039 .727 NIK! Yen -.012 §.039 .661 .007§.038 .745 -.007 §.041 .821 .002§.037 .896

SP ! BP

-.029 §.041 -.010 §.040 -.010 §.036 -.008 §.038

.271 .423 .509 .605

LSE ! BP -.021 §.035 .414 .019§.037 .527 .005§.038 .666 -.016 §.038 .679 NIK ! BP -.012 §.042 .660 -.004 §.041 .843 .005§.039 .906 -.023 §.041 .817

11

SP ! NAS

.049§.044 .059§.042 .078§.041 .066§.041

.15 .14 .09 .12

LSE ! NAS .087§.042 .022 .055§.039 .052 .075§.040 .043 .069§.041 .057 NIK ! NAS .013§.042 .679 .028§.043 .557 .016§.039 .635 .040§.043 .654

SP ! LSE

.137 §.047 .101 §.049 .093 §.051 .126 §.053

.001 .003 .004 .003

LSE ! SP .096 §.044 .011 .069 §.044 .032 .108 §.043 .014 .123 §.044 .011 NIK ! SP .012 §.040 .597 .014 §.039 .681 -.004§.038 .816 .034 §.043 .750

SP ! NIK

.076 §.038 -.004§.036 .001 §.036 .040 §.038

.024 .069 .144 .189

LSE ! NIK .052 §.041 .154 .027 §.039 .283 .041 §.039 .267 .048 §.042 .309 NIK ! LSE .019 §.041 .713 .015 §.040 .757 .026 §.041 .737 .020 §.039 .737

Figure 1: Rolling Fractile Two-Tailed  ^() : n = 500, h = 1...4 E-VAR: No S pil love r Two-Tai le d Tai l De pe n de nce C oe f. r(h) an d Robu s t C on fide n ce B an ds med r(1) = -.014 ± .050

E-VAR: S tron g S pi ll ove r Two-Tai le d Tail De pe n de n ce C oe f. r(h) an d Robu s t C on fi de n ce B ands med r(1) = .273 ± .073

0 .10

0 .50

0 .0 8

0 .4 0

0 .0 6

0 .3 0

0 .0 4

0 .2 0

0 .0 2

0 .10

0 .0 0

0 .0 0

-0 .0 2

-0 .10

-0 .0 4

-0 .2 0

-0 .0 6

-0 .3 0

-0 .0 8

-0 .4 0

-0 .10

-0 .50

1

21

41

61

81

10 1 12 1

14 1 16 1

18 1 2 0 1

2 21 24 1

26 1 2 81 3 01

32 1 3 41

3 61 38 1

m

25

45

65

85

10 5

12 5 14 5 16 5

18 5 2 0 5 2 2 5 2 4 5 2 6 5 2 8 5

30 5 3 25

3 45 3 65

38 5

-k(1)

m r(1)

k(1)

-k(2 )

r(2 )

k(2 )

-k(1)

m r(1)

k(1)

-k(2 )

r(2 )

k(2 )

-k(3 )

r(3 )

k(3 )

-k(4 )

r(4 )

k(4 )

-k(3 )

r(3 )

k(3 )

-k(4 )

r(4 )

k(4 )

S AV: S pi ll ove r

S AV: No S pill ove r Two-Tail e d Tail De pe n de n ce C oe f. r(h ) an d Robu st C on fi de n ce B an ds med r(1) = -.001 ± .063

Two-Tai le d Tai l De pe n de nce C oe f. r(h ) an d Robus t C on fide n ce B ands med r(1) = .115 ± .071

0 .10

0 .2 0

0 .0 8

0 .16

0 .0 6

0 .12

0 .0 4

0 .0 8

0 .0 2

0 .0 4

0 .0 0

0 .0 0

-0 .0 2

-0 .0 4

-0 .0 4

-0 .0 8

-0 .0 6

-0 .12

-0 .0 8

-0 .16

-0 .10

-0 .2 0

6

21

36

51

66

81

96

111

12 6

14 1

156

171

18 6 2 0 1

2 16 2 3 1 2 4 6

2 6 1 2 76

6

21

36

51

66

81

96

111

12 6

14 1 156

171

18 6 2 0 1

2 16

23 1 24 6

2 6 1 2 76

-k(1)

m r(1)

k(1)

-k(2 )

r(2 )

k(2 )

-k(1)

m r(1)

k(1)

-k(2 )

r(2 )

k(2 )

-k(3 )

r(3 )

k(3 )

-k(4 )

r(4 )

k(4 )

-k(3 )

r(3 )

k(3 )

-k(4 )

r(4 )

k(4 )

Figure 2: Rolling Fractile Two-Tailed  ^() : n = 500, h = 1...4 E-VAR: No S pi ll ove r Two-Tai l e d Exce e de n ce C orre l ation q(h ) an d Robu st C on fide n ce B an ds med q(1) = -.006 ± .064

E-VAR: S tron g S pi ll ove r Two-Tai le d Exce e de n ce C orre lati on q(h ) an d Robu s t C on fide n ce B an ds med q(1) = .336 ± .199 1.0 0

0 .10 0 .0 8

0 .75

0 .0 6 0 .50 0 .0 4 0 .2 5

0 .0 2

0 .0 0

0 .0 0 -0 .0 2

-0 .2 5

-0 .0 4 -0 .50 -0 .0 6 -0 .75

-0 .0 8 -0 .10

-1.0 0 6

26

46

66

86

10 6 12 6 14 6

16 6 18 6 2 0 6 2 2 6 2 4 6 2 6 6 2 8 6 3 0 6 3 2 6

34 6 3 6 6 3 86

6

26

46

66

86

10 6 12 6 14 6

16 6 18 6

m

2 06 22 6

2 46 2 6 6 28 6

3 0 6 32 6

3 4 6 36 6

386

-k(1)

q (1)

k(1)

-k(2 )

q (2 )

k(2 )

-k(1)

m q (1)

k(1)

-k(2 )

q (2 )

k(2 )

-k(3 )

q (3 )

k(3 )

-k(4 )

q (4 )

k(4 )

-k(3 )

q (3 )

k(3 )

-k(4 )

q (4 )

k(4 )

S AV: No Spi ll ove r

S AV: Spil love r Two-Tail e d Exce e de n ce C orre l ation q(h ) an d Robu s t C on fide n ce B an ds med q(1) = .126 ± .101

Two-Taile d Exce e de n ce C orre l ati on q(h ) an d Robu s t C on fide n ce B an ds med q(1) = -.002 ± .071 0 .10

0 .2 0

0 .0 5

0 .10

0 .0 0

0 .0 0

0 .15

0 .0 5

-0 .0 5

-0 .0 5

-0 .10 -0 .15

-0 .10

-0 .2 0

6

21

36

51

66

81

96

111

12 6

14 1 156

-k(1)

q (1)

-k(3 )

q (3 )

m

171

18 6

2 0 1 2 16

23 1 2 46

2 6 1 2 76

6

21

36

51

66

81

96

111

12 6

14 1 156

k(1)

-k(2 )

q (2 )

k(2 )

-k(1)

q (1)

k(3 )

-k(4 )

q (4 )

k(4 )

-k(3 )

q (3 )

12

m

171

18 6

2 0 1 2 16 2 3 1

246

2 6 1 2 76

k(1)

-k(2 )

q (2 )

k(2 )

k(3 )

-k(4 )

q (4 )

k(4 )

Figure 3: Two-Tailed med{ ^  §   } : n = 500, h = 1...20 E -VA R: N o Sp illo v er M edian T wo T ailed E x ceedan ce Co rrelat io n

E -VA R: St ro n g Sp illo v er M edian T wo T ailed E x ceedan ce Co rrelat io n

0 .10

0 .4 0

0 .0 8 0 .0 6 0 .0 4 0 .0 2

0 .3 0 0 .2 0 0 .10

0 .0 0 - 0 .0 2 - 0 .0 4 - 0 .0 6 - 0 .0 8 - 0 .10

0 .0 0 -0 .10 -0 .2 0 -0 .3 0

1

2

3

4

5

6

7

8

9 10 11 12 13 14

15 16 17 18 19 2 0

h

1 2

3

4

5

6

7

8

9 10

11 12 13 14

15 16

17 18

h

-k q ( h) k

SA V: N o Sp illo v er

19 2 0

-k q ( h) k

SA V: Sp illo v er M edian T wo T ailed E x ceedan ce Co rrelat io n

M edian T wo T ailed E x ceedan ce Co rrelat io n 0 .2 0

0 .10 0 .0 8 0 .0 6 0 .0 4 0 .0 2 0 .0 0 -0 .0 2 -0 .0 4

0 .15 0 .10 0 .0 5 0 .0 0 -0 .0 5

-0 .0 6 -0 .0 8 - 0 .10

- 0 .10 - 0 .15

h

1 2

3

4

5

6

7

8

9 10

11 12

13 14 15 16

h

1

17 18 19

2

3

4

5

6

7

8

9 10 11 12 13 14

15 16 17 18 19

h

-k

2

-k q ( h)

q ( h) k

k

Figure 4: Rolling Two-Tailed med{^   (1) §  } : n = 500 E - V A R , n o s p i ll o v e r , t w o - t a il e d r ( 1 )

E - V A R , st r o n g s p ill o v e r , t w o - t a i le d r ( 1 )

m = { 5 ,… ,2 5 } … { 5 ,… ,4 5 0 }

SA V , s p ill o v e r , t w o - t a i le d r ( 1 ) m = { 5 ,… ,2 5 } … { 5 ,… ,4 5 0 }

m = {5 ,… ,2 5 } … {5 ,… ,4 5 0 }

0 . 10

0 .8 0

0 .2 5 0 .2 0

0 .6 0

0 .0 5

0 .15

0 .4 0

0 .0 0

0 .10

0 .2 0

0 .0 5 0 .0 0

0 .0 0

- 0 .0 5

- 0 .0 5

- 0 .2 0

- 0 .10

- 0 . 10 - 0 .4 0

- 0 .15

- 0 .15

- 0 .6 0

25

65

10 5

14 5

18 5

225

265

305

m ax {m }

345

-k

385

425

r ( 1)

- 0 .2 0

25

65

10 5

14 5

18 5

225

265

305

m ax {m }

k

345

-k

385

425

r ( 1)

25

65

E - V A R , n o s p il lo v e r , t w o - t a ile d r ( 1 )

18 5

225

265

305

345

-k

385

425

r ( 1)

k

SA V , s p ill o v e r , t w o - t a il e d r ( 1 ) m = {3 2 5 ,… ,3 5 0 } … { 5 ,… ,3 5 0 }

m = {3 2 5 ,… ,3 5 0 } … { 5 ,… ,3 5 0 }

m = {3 2 5 ,… ,3 5 0 } … { 5 ,… ,3 5 0 }

14 5

m ax {m }

E - V A R , st r o n g s p il lo v e r , t w o - t a ile d r ( 1 ) 0 .3 0

0 .10

10 5

k

0 .2 0

0 .2 5 0 .15

0 .2 0

0 .0 5

0 .10

0 . 15 0 .10

0 .0 0

0 .0 5

0 .0 5 0 .0 0

0 .0 0

- 0 .0 5

- 0 .0 5

- 0 .0 5 - 0 .10

- 0 .10 325

295

265

235

205

17 5

m in { m }

14 5

115

85 -k

55 r ( 1)

- 0 .10

325

25

295

265

235

205

17 5

m in { m }

k

14 5

115

85 -k

55 r ( 1)

25

325

295

265

k

The median medf (1)g is computed over rolling fractile sets from low upper bound  = f5     25g to high upper bound  = f5     450g, and high lower bound  = f345     350g to low lower bound  = f5     350g. Clearly the median is robust to the choice of window for E-VAR processes with or without spillover, and more sharp for SAV processes when the window contains only intermediate to large tail observations (small to intermediate ). 13

235

205

17 5

m in { m }

14 5

115

85 -k

55 r ( 1)

25 k

Figure 5: Equity and FX Returns and Two-Tailed Tail Indices NAS DAQ Daily Returns

NAS DAQ B oots trapped Hill-Es timator and KS -Dis tance a(m* ) = 1 .9 2 ± .27 3 , m* =arg min{D(m)}=33 1

0 .12 0 .10 5

0 .3 5

0 .0 8 0 .3 0

0 .0 6

4

0 .0 4

0 .2 5

0 .0 2

3

0 .2 0

0 .0 0

0 .15

2

-0 .0 2 0 .10

-0 .0 4

1 0 .0 5

-0 .0 6 0

-0 .0 8

0 .0 0 15

65

115

16 5

2 15

265

3 15

365

-0 .10 J a n-01

Ma y- 0 1

Oc t - 01

Ma r - 0 2

Aug - 0 2

J a n -0 3

4 15

465

SP500 Daily Returns

56 5

a(m ) a(m )-k D(m )

m

Ma y - 03

515

6 15

665

m ean [a(j,m )] a(m )+k

SP500 B oots tr appe d Hill-Es timator an d KS -Dis tanc e a(m* ) = 1 .9 6 ± .2 9 7 , m* =ar g min{D(m)}= 3 3 6

0 .0 5 0 .0 4 5

0 .3 5

0 .0 3

0 .3 0 4

0 .0 2

0 .2 5

0 .0 1

3

0 .2 0

0 .0 0

0 .15

2

-0 .0 1

0 .10 1

-0 .0 2

0 .0 5

-0 .0 3

0

0 .0 0 15

65

115

16 5

2 15

265

3 15

-0 .0 4 J a n- 01

Ma y -01

Oc t - 01

Ma r-0 2

Aug -02

J a n- 03

365

4 15

m

Ma y- 03

465

5 15

56 5

a (m ) a (m )- k D(m )

6 15

665

m e a n [a ( j,m ) ] a( m )+k

LS E B oots tr appe d Hill-Es ti mator and KS -Dis tanc e a(m* ) = 1 .9 6 ± .3 3 8 , m* =ar g min{D (m)}=2 9 6

LSE Daily Returns 0 .0 6

5

0 .0 4

1.2 0 1.0 0

4 0 .0 2

0 .8 0 0 .0 0

0 .6 0

E DD

alpha

3

2 0 .4 0

-0 .0 2

1

-0 .0 4

0 .0 0 0 .0 1

0 .0 6

0 .11

0 .16

0 .2 1

0 .2 6

0 .3 1

0 .3 6

0 .4 1

m/ nth quantile

-0 .0 6 J a n- 01

0 .2 0

0

J u n- 01

Oc t - 01

Ma r- 02

Aug- 0 2

J a n- 0 3

J un -0 3

Oc t -0 3

Ma r -0 4

Aug -0 4

De c -0 4

0 .4 6

0 .51

0 .56

0 .6 1

0 .6 6

a(m)

m e a n[ a ( j,m ) ]

a(m)-k

a ( m ) +k

E DD (m)

The plots on the right are Hill-estimates  ^  based on a Minimum Empirical Distribution Distance bootstrap method. The bootstrap average is  ¹  P ¡1 ¡1 = (¹¡1 ) , where  ¹ = 1   ^ and  ^ is computed from a        =1   bootstrapped series f g with the same tail index as  (Hill, J.B. 2007,    =1 Empirical Distribution Distance Tail Index Inference for Dependent, Heterogeneous Data, working paper, University of North Carolina - Chapel Hill). The Kolmogorov-Smirnov distance () between the empirical distribution of  ¹ ¡1  and the asymptotic normal distribution is minimized over a window of fractiles .

14

Figure 6: Equity and FX Returns and Two-Tailed Tail Indices Continued NIKKEI Daily Returns

N IKKEI B oots tr appe d Hill-Es tim ator and KS -D is tanc e a(m * ) = 2 .2 3 ± .2 7 0 , m * =ar g m in {D (m )}= 3 9 2

0 .0 5 0 .0 4

6

1.0 0

0 .0 3

5

0 .0 2

0 .8 0

4

0 .0 1

0 .6 0 0 .0 0

3 0 .4 0

-0 .0 1

2 -0 .0 2

0 .2 0

1 -0 .0 3

0

-0 .0 4

0 .0 0 1

51

10 1

15 1

20

2 51

30

3 51

-0 .0 5 J a n-01

J u n- 0 1

Oc t - 0 1

Ma r - 0 2

Au g- 0 2

J a n-03

J un-03

No v- 0 3

Ap r - 0 4

40

4 51

YEN/USD Daily Returns

50 1

5 51

60

a(m )-k m e a n [ a ( j,m ) ] E D D (m )

m

S e p-04

6 51

a(m ) a(m )+k

YEN/US D Boots trapped Hill-Es timator and KS -Distance a(m*) = 2.23 ± .260, m*=argmin{D(m)}=348

0 .0 3

0 .0 2

5

0 .0 1

4

0 .0 0

3

0 .3 5 0 .3 0

0 .2 5 0 .2 0

-0 .0 1

0 .15

2

0 .10

-0 .0 2 1

0 .0 5

-0 .0 3 0

0 .0 0 15

65

115

16 5

2 15

265

3 15

-0 .0 4 J a n-01

Ma y - 0 1

Oc t - 0 1

Ma r - 0 2

Au g - 0 2

J a n- 03

Ma y - 0 3

Oc t - 0 3

Ma r - 0 4

Au g - 0 4

365

4 15

B P/US D Daily Returns

515

56 5

a(m) a(m)-k D(m )

m

De c - 0 4

465

6 15

665

mean[a(j,m)] a(m )+k

YEN/US D Bootstrapped Hill-Estimator and KS -Dis tance a(m*) = 2.3 1 ± .296 , m* =arg min{D(m)}=3 29

0 .0 3 0 .0 2 7

1.0 0

0 .0 2

0 .9 0 6 0 .8 0

0 .0 1

5

0 .0 1

0 .70 0 .6 0

4

0 .50

0 .0 0

3

-0 .0 1

2

-0 .0 1

1

-0 .0 2

0

0 .4 0 0 .3 0 0 .2 0 0 .10 0 .0 0 15

-0 .0 2 J a n-00

Ap r - 0 0

J u l- 0 0

Oc t - 0 0

Fe b - 0 1

Ma y - 0 1

Aug-01

De c - 0 1

Ma r - 0 2

J un -02

15

65

115

16 5

2 15

2 65

3 15

3 65

m

4 15

46 5

a(m ) a(m )-k D(m )

515

56 5

6 15

66 5

m ean [a(j,m )] a(m )+k

Figure 7.1: Rolling Fractile First-Order Two-Tailed Serial  ^ SP500 Two-Tailed First-Order Tail Dependence Coefficient Aver = .13 ± .09

NASDAQ Two-Tailed First-Order Tail Dependence Coefficient Median = .10 ± .08

0 .3 0

0 .3 0

0 .25

0 .2 5

0 .2 0

0 .2 0 0.15

0 .15 0.10

0 .10

0 .05

0 .0 5

0 .0 0

0 .0 0

-0 .05

-0 .0 5

-0.10

-0 .10

-0 .15

-0.15

-0 .2 0

-0 .2 0

-0 .25

-0 .2 5 -0 .3 0 0.01

-0 .3 0 0 .0 1

0 .06

0.11

0 .16

0 .2 1

0.2 6

0.31

0 .3 6

0 .4 1

0.4 6

0 .51

0 .56

-k

0 .6 1

0 .6 6

r(1,m)

0 .0 6

0 .11

0 .16

0.21

0 .2 6

k

LSE Two-Tailed First-Order Tail Dependence Coefficient Median = .18 ± .05

0 .4 0

0.3 1

0 .3 6

0.4 1

0 .4 6

0 .51

0 .56

0 .6 1

-k

mnth quantile

m/nth quantile

0 .6 6

r(1,m)

k

NIKKEI Two-Tailed First-Order Tail Dependence Coefficient Median = .02 ± .04 0 .15

0 .3 5 0 .3 0

0 .10

0 .2 5 0 .2 0 0 .0 5

0 .15 0 .10 0 .0 5

0 .0 0

0 .0 0 -0 .0 5 -0 .10

-0 .0 5

-0 .15 -0 .2 0

-0 .10

-0 .2 5 -0 .3 0 0 .0 1

0 .0 5

0 .0 9

0.13

0 .17

0 .2 1

0 .2 5

0 .2 9

0.33

0 .3 7

0 .4 1

0 .4 5

-k

0 .4 9

-0 .15 0 .0 1

0.53

r(1,m)

0 .0 5

0 .0 8

0 .12

0 .16

0 .19

0 .2 6

0 .3 0

0 .3 3

0 .3 7

0 .4 1

-k

0 .4 4

0 .4 8

r(1,m)

k

m/nth quantile

EURO/US D Two-Tailed Firs t-Order Tail Dependence Coefficient Median = -.020 ± .04

0 .10

0 .2 3

k

m/nth quantile

Pound Two-Tailed First-Order Tail Dependence Coefficient Median = .01 ± .04

0 .10

0 .0 8

0 .0 8

0 .0 6

0 .0 5 0 .0 4

0 .0 3

0 .0 2 0 .0 0

0 .0 0

-0 .0 2

-0 .0 3

-0 .0 4

-0 .0 5 -0 .0 6

-0 .0 8

-0 .0 8

-0 .10

-0 .10 0 .0 1

0 .0 4

0 .0 7

0 .10

0 .14

0 .17

0 .2 0

0 .2 3

0 .2 6

m/nth quantile

0 .3 0

0 .3 3

0 .3 6

0 .3 9

0 .0 1

0 .4 2

0 .0 5

0 .0 8

0 .12

0 .15

0 .19

0 .2 2

0 .2 6

0 .2 9

0 .3 3

0 .3 6

-k -k

r(1,m)

k

16

m/nth quantile

0 .4 0

0 .4 3

r(1,m)

0 .4 7

k

1 Figure 7.2: Two-Tailed Serial med{^   §  } SP 5 0 0 M e d i a n T w o T a ile d Se r ia l

N A SD A Q M e d i a n T w o T a ile d Se r i a l

T a il D e p e n d e n c e C o e f f ic ie n t a n d 9 5 % B a n d

T a il D e p e n d e n c e C o e f f ic i e n t a n d 9 5 % B a n d

0 .1 5

0 .2 0 0 .1 5

0 .1 0

0 .1 0

0 .0 5

0 .0 5 0 .0 0

0 .0 0

- 0 .0 5

- 0 .0 5

- 0 .1 0 1

11

21

31

41

51

61

71

81

1

91

11

21

31

41

-k r ( h ,0 ,0 ) k

h

51

61

71

81

91

-k r( h ,0 ,0 ) k

h

N I K K I E M e d i a n T w o T a i le d Se r i a l

L SE M e d ia n T w o T a i le d Se r i a l

T a il D e p e n d e n c e C o e f f ic ie n t a n d 9 5 % B a n d

T a il D e p e n d e n c e C o e f f ic ie n t a n d 9 5 % B a n d 0 .2 0

0 .0 8

0 .1 5

0 .0 6 0 .0 4 0 .0 2

0 .1 0 0 .0 5

0 .0 0

0 .0 0

- 0 .0 2 - 0 .0 4 - 0 .0 6

- 0 .0 5 - 0 .1 0 1

11

21

31

41

51

61

71

81

1

91

11

21

31

41

-k r ( h ,0 ,0 ) k

h

51

61

71

81

91

-k r( h ,0 ,0 ) k

h

E U R O M e dia n T wo T a ile d Se r ia l

Y E N M e d i a n T w o T a il e d Se r i a l

T a il D e p e n de n c e C o e f f ic ie n t a n d 9 5 % B a n d

T a il D e p e n d e n c e C o e f f i c ie n t a n d 9 5 % B a n d 0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 0

0 .0 0

- 0 .0 2

- 0 .0 2 - 0 .0 4

- 0 .0 4

- 0 .0 6

- 0 .0 6 1

11

21

31

41

51

61

71

81

1

91

11

21

31

h

41

51 h

-k r(h ,0 ,0 ) k

61

71

81

91

-k r ( h ,0 , 0 ) k

B P M e d i a n T w o T a il e d Se r ia l T a il D e p e n d e n c e C o e f f ic ie n t a n d 9 5 % B a n d 0 .0 6 0 .0 4 0 .0 2 0 .0 0 - 0 .0 2 - 0 .0 4 - 0 .0 6 1

11

21

31

41

51 h

61

71

81

91

-k r ( h ,0 ,0 ) k

1 Note:  (    ) denotes t he tail event bas ed coe¢cient fo r tail-o f ¡ and tail-o f  ,  2 f0 1 2g, where 0 denot es two -t ails, 1 deno tes left tail, and 2 denotes r ight tail.

17

Figure 8: Equity-to-Equity Rolling Fractile Plots Two-Tailed  ^(1) §   NASDAQ(t-1) --> SP500(t) Firs t Order Two-Tailed Extremal r (1,m) Spillover Median = .17 ± .08

0 .3 0

NASDAQ(t-1) --> LSE(t) First Order Two-Tailed Extremal r (1,m) Spillover Median = .12 ± .05

0 .3 0

0 .2 5

0 .2 5

0 .2 0

0 .2 0

0 .15

0 .15

0 .10

0 .10

0 .0 5

0 .0 5

0 .2 5 0 .2 0 0 .15 0 .10

0 .0 0

0 .0 0

-0 .0 5

-0 .0 5

-0 .10

-0 .10

0 .0 5 0 .0 0 -0 .0 5 -0 .10

-0 .15

-0 .15

-0 .15

-0 .2 0

-0 .2 0

-0 .2 0

-0 .2 5

-0 .2 5

-0 .3 0

-0 .2 5

-0 .3 0

0 .0 1 0 .0 6

0 .11

0 .16

0 .2 1 0 .2 6

0 .3 1

0 .3 6

0 .4 1

0 .4 6

m/nth quantile

0 .51

0 .56

-k

0 .6 1 0 .6 6

r(1,m)

NASDAQ(t-1) --> Nikkei(t) First Order Two-Tailed Extremal r(1,m) Spillover Median = .05± .04

0 .3 0

-0 .3 0

0 .0 1

0 .0 6

0 .11

0 .16

0 .2 2

0 .2 7

0 .3 2

0 .3 7

0 .4 2

0 .4 7

0 .52

m/nth quantile

k

SP500(t-1) --> NASDAQ(t) First Order Two-Tailed Extremal Volatility r(1,m) Spillover Median = .093 ± .08

0 .57

-k

0 .6 2

0 .6 7

0 .0 1

r(1,m)

0.30

0 .25

0.12

0.25

0.2 0

0.20

0.05

0 .05

0.00

0.0 0

-0.05

-0 .05

-0.10

-0.08

0 .2 8

0 .3 3

0 .3 8

0 .4 4

0 .4 9

0 .54

0 .6 0

-k

0 .6 5

0 .70

r(1 ,m)

k

0.10

0.10

-0.04

0 .2 2

0.15

0.15

0.00

0 .17

SP500(t-1) --> Nikkei(t) First Order Two-Tailed Extremal Volatility r(1,m) Spillover Median = .08± .054

0.16

0.04

0 .12

m/nth quantile

SP500(t-1) --> LSE(t) First Order Two-Tailed Extremal Volatility r(1,m) Spillover Median = .14± .05

0.08

0 .0 7

k

-0.10

-0.15 -0.15

-0.20

-0.12 -0.16 0.01

0.06

0.11

0.16

0 .21

0 .26

0.31

0 .36

0.4 1

0.46

m/nth quantile

0 .2 5

0.51

0.56

-k

0.61

0.66

r(1,m)

-0.25

-0.2 0

-0.30

-0 .25 0.01

0 .06

0.11

0.16

0 .22

0.27

0.32

0 .37

0 .42

0.47

m/nth quantile

k

LS E(t-1) --> NASDAQ(t) First Order Two-Tailed Extremal r(1,m) Spillover Median = .09 ± .04

0.52

0.57

-k

0.62

0.6 7

r(1,m)

0 .01

0.12

0.17

0 .22

0.2 8

0.33

0.3 8

0.44

0 .49

0 .54

m/nth quantile

LSE(t-1) --> SP500(t) First Order Two-Tailed Extremal r(1,m) Spillover Median = .10 ± .04

0 .3 5

0.07

k

-k

0.6 0

0.6 5

r(1,m)

0.70

k

LS E(t-1) --> Nik k ei(t) First Order Two-Tailed Extremal r (1,m) Spillover Median = .10 ± .04

0 .15

0 .3 0

0 .2 0

0 .2 5

0 .10

0 .2 0

0 .15

0 .15

0 .10

0 .0 5

0 .10 0 .0 5

0 .0 5 0 .0 0

0 .0 0

0 .0 0

-0 .0 5 -0 .0 5

-0 .10

-0 .10

-0 .15

-0 .15

-0 .2 0

-0 .0 5

-0 .10

-0 .2 5 -0 .2 0 -0 .2 5 0 .0 1

-0 .3 0 0 .0 6

0 .11

0 .16

0 .2 2

0 .2 7

0 .3 2

0 .3 7

0 .4 2

m/nth quantile

0 .15

0 .4 7

0 .52

-k

0 .57

0 .6 2

r(1,m)

0 .6 7

-0 .3 5 0 .0 1

-0 .15

0 .0 6

0 .11

0 .16

0 .2 2

Nik kei(t-1) --> NAS DAQ(t) Firs t Order Two-Tailed Extremal r(1,m) S pillover Median = .01 ± .04

0 .2 7

0 .3 2

0 .3 7

0 .4 2

m/nth quantile

k

0 .4 7

0 .52

-k

0 .57

0 .6 2

0 .6 7

r(1,m)

0 .0 1

Nik kei(t-1) --> S P500(t) First Order Two-Tailed Extremal r (1,m) S pillover Median = .01 ± .04

0 .10

0 .0 6

0 .12

0 .17

0 .2 2

0 .2 7

0 .3 3

0 .3 8

0 .4 3

m/nth quantile

k

0 .2 0

0 .4 8

0 .54

-k

0 .59

0 .6 4

r(1 ,m )

0 .6 9

k

Nik k ei(t-1) --> NLS E(t) Firs t Order Two-Tailed Extremal r (1 ,m) S pillover Median = .01 ± .0 4

0 .13 0 .0 8

0 .10 0 .0 8

0 .15

0 .0 5

0 .0 5

0 .10

0 .0 3

0 .0 5

0 .0 3 0 .0 0 -0 .0 3

0 .0 0

0 .0 0

-0 .0 3

-0 .0 5

-0 .0 5

-0 .10

-0 .0 5 -0 .0 8 -0 .10 -0 .0 8

-0 .13 -0 .15 0 .0 1

-0 .15

-0 .10

0 .0 7

0 .12

0 .17

0 .2 2

0 .2 8

0 .3 3

0 .3 8

0 .4 4

m/nth quantile

0 .4 9

-k

0 .54

0 .6 0

0 .6 5

r(1,m)

0 .70

-0 .2 0

0 .0 1

0 .0 7

0 .12

0 .17

0 .2 2

0 .2 8

0 .3 3

0 .3 8

0 .4 4

m/nth quantile

k

18

0 .4 9

-k

0 .54

0 .6 0

0 .6 5

r(1,m)

0 .70

k

0 .0 1

0 .0 7

0 .12

0 .17

0 .2 2

0 .2 8

0 .3 3

0 .3 8

0 .4 4

m/nth quantile

0 .4 9

-k

0 .54

0 .6 0

0 .6 5

r(1 ,m )

0 .70

k

Figure 9: Equity-to-Equity Two-Tailed med{^   §  } NASDAQ --> SP500 Median Two Tailed Extremal Volatility r(h,0,0) Spillover

NASDAQ --> NIKKEI

NASDAQ --> LSE Median T wo T ailed Extremal

Median Two Tailed Extremal Volatility r(h,0,0) Spillover

Volatility r(h,0,0) Spillover

0 .15

0 .0 8

0 .14 0 .12

0.10

0 .0 6

0 .10 0 .0 4

0 .0 8

0 .05

0 .0 6

0 .0 2

0 .0 4

0.0 0

0 .0 0

0 .0 2 0 .0 0

-0 .05

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4

-0.10 1

6

11

16 2 1 26 31 3 6 41 4 6

51 56 6 1 66 71 76 h

81 8 6 91 9 6

-0 .0 6

-0 .0 6 1

6

11

16 2 1 2 6

31 3 6 4 1 4 6

51 56

6 1 6 6 71 76

h

-k r(h,0,0 ) k

81 86 91 96

1

6

11

81 86 91 96 -k r(h,0 ,0 ) k

SP500 --> NIKKEI Median Two Tailed Extremal Volatility r(h,0,0) Spillover

0.15

0 .10

51 56 6 1 6 6 71 76 h

SP500 --> LSE Median Two Tailed Extremal Volatility r(h,0,0) Spillover

SP500 --> NASDAQ Median Two T ailed Extremal Volatility r(h,0,0) Spillover

16 2 1 2 6 3 1 3 6 4 1 4 6

-k r(h,0 ,0 ) k

0 .10 0 .08

0 .0 8

0.10 0 .06

0 .0 6 0 .0 4

0 .04

0.05

0 .02

0 .0 2 0.00

0 .0 0 -0 .0 2

0 .00 -0 .02

-0.05

-0 .0 4

-0 .04

-0 .0 6

-0.10

1

6

11 16

21 26 31 36 41 46

51 56

-0 .06

61 66 71 76 8 1 8 6 9 1 9 6

h

1

6

11

16 21 26 31 36 41 46

51 56

6 1 66

71 76 81 86 91 9 6

h

-k r(h,0 ,0) k

LSE --> NASDAQ Median T wo T ailed Ext remal Volatility r(h,0,0) Spillover

6

11

0 .10

0 .14 0 .12

0 .0 6

0 .0 2

0 .0 4

0 .0 0

0 .0 2

-0 .0 4

-0 .0 6

-0 .0 6

1 6 11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,0 ,0 ) k

0 .0 0

c

-0 .0 2 -0 .0 4 -0 .0 6

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,0 ,0 )

1

6

k

NIKKEI --> LSE Median Two Tailed Extremal Volatility r(h,0,0) Spillover

NIKKEI --> SP500 Median Two Tailed Extremal Volatility r(h,0,0) Spillover 0.05 0.04 0.03 0.02 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05

0.04 0.02 0.00 -0.02 -0.04 -0.06 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,0 ,0 )

k

NIKKEI --> NASDAQ Median Two Tailed Extremal Volatility r(h,0,0) Spillover 0.06

91 96

-k r(h,0 ,0 ) k

0 .0 2

-0 .0 2

-0 .0 4

76 8 1 8 6

0 .0 4

0 .0 0

-0 .0 2

6 1 6 6 71

0 .0 6

0 .0 8

0 .0 4

51 56

LSE --> NIKKEI Median T wo T ailed Ext remal Volat ilit y r(h,0,0) Spillover

0 .10

0 .0 6

16 2 1 2 6 3 1 3 6 4 1 4 6

h

LSE --> SP 500 Median T wo T ailed Ext remal Volatility r(h,0,0) Spillover

0 .0 8

h

1

-k r(h,0,0) k

0.06 0.04 0.02 0.00 -0.02 -0.04 -0.06

1

6

11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 h

-k r(h,0,0) k

19

-k r(h,0,0) k

1

6

11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 h

-k r(h,0,0) k

Figure 10: Equity-to-Equity Cross-Tailed med{^   §  } NASDAQ

NASDAQ --> SP 500 Median Cross-T ailed Ext remal Volat ility r(h,1,2) Spillover

NASDAQ --> SP 500 Median Cross-T ailed Ext remal Volat ilit y r(h,2,1) Spillover

0 .15

0 .0 8 0 .0 6

0 .10

0 .0 4 0 .0 2

0 .0 5

0 .0 0 -0 .0 2

0 .0 0

-0 .0 4 -0 .0 6

-0 .0 5

-0 .0 8

-0 .10

-0 .10 -0 .12

-0 .15

-0 .14

1

6

11

16

21 26 31 36 41 46

51 56

61 66

71 76

81 86 91 96

h

1

6

11 16

2 1 2 6 3 1 3 6 4 1 4 6 51

56

61 66

71

76

81 86

h

-k

91 96

-k

r(h,1,2 )

r(h,2 ,1)

k

k

NASDAQ --> LSE Median Cross-T ailed Ext remal Volatilit y r(h,2,1) Spillover

NASDAQ --> LSE Median Cross-T ailed Extrem al Volatilit y r(h,1,2) Spillover 0 .10

0 .10

0 .0 5

0 .0 5

0 .0 0 0 .0 0 -0 .0 5 -0 .0 5 -0 .10 -0 .10

-0 .15 -0 .2 0

-0 .15 1

6

11 16

21 26 31 36 41 46

51 56

61 66

71

76

81 86

91 96

1

6

11 16

21

26

31 36

41

46

h

51 56

61 66

71

76

r(h,2 ,1) k

NASDAQ --> NIKKEI Median Cross-T ailed Ext remal Volat ilit y r(h,2,1) Spillover

0 .10

0 .10

0 .0 5

0 .0 5

0 .0 0

0 .0 0

-0 .0 5

-0 .0 5

-0 .10

-0 .10

-0 .15

-0 .15

-0 .2 0

-0 .2 0

11

16

21 26

31 36

41

46

51 h

91 96

r(h,1,2 )

NASDAQ --> NIKKEI Median Cross-T ailed Extremal Volatilit y r(h,1,2) Spillover

6

86 -k

k

1

81

h -k

56

61

66

71 76

81

86

91

96

1

6

11

16

21 26

31 36

41 46

51 h

-k

56 6 1

66

71

76

81 86 -k

r(h,1,2 )

r(h,2 ,1)

k

k

20

91 96

SP500 SP 500 --> NASDAQ Median Cross-T ailed Ext remal Volat ilit y r(h,1,2) Spillov er

SP 500 --> NASDAQ Median Cross-T ailed Ext remal Volatility r(h,1 ,2) Spillover

0 .12

0 .12

0 .10

0 .10

0 .0 8

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 0

0 .0 0

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4 -0 .0 6

-0 .0 6 -0 .0 8

-0 .0 8 1

6

11 16

21 26

31 36 41 46

51

56

61 66

71

76

h

81 86

91 96

1

6

11

16

21 26 31 36 41 46

51

56

6 1 6 6 71

76

h

-k

81 86 91 96 -k

r(h,1,2 )

r(h,1,2 )

k

k

SP 500 --> LSE Median Cross-T ailed Ext rem al Volatility r(h,1,2) Spillover

SP 500 --> LSE Median Cross-T ailed Extremal Volatilit y r(h,2,1) Spillover

0 .15

0 .10

0 .10

0 .0 5

0 .0 5

0 .0 0

0 .0 0

-0 .0 5

-0 .0 5

-0 .10

-0 .10

-0 .15

-0 .15

-0 .2 0

1

6

11

16

21 26

31 36

41 46

51 56

61 66

71

76

81 86

h

91 96

1

6

11

16

21 26

31 36

41

46

51

56

61

66

71 76

h

-k

81

86

91

96

-k

r(h,1,2 )

r(h,2 ,1)

k

k

SP 500 --> NIKKEI Median Cross-T ailed Extremal Volatility r(h,2,1) Spillover

SP 500 --> NIKKEI Median Cross-T ailed Ext remal Volat ilit y r(h,1,2) Spillover 0 .10

0 .10

0 .0 5

0 .0 5 0 .0 0

0 .0 0

-0 .0 5

-0 .0 5

-0 .10

-0 .10 -0 .15

-0 .15

-0 .2 0

-0 .2 0 1

6

11 16

21

26

31

36

41

46

51

56

61 66

71 76

81 86

1

91 96

6

11

16

21 26 31 36

41 46

51

56

61 66

71 76

81 86

h

h -k

-k

r(h,1,2 )

r(h,2 ,1) k

k

21

91 96

LSE L SE - -> N A SD A Q

L SE -- > N A SD A Q

M edian Cr o ss-T ailed E x t r em a l Vo lat ilit y r( h ,1 ,2 ) Sp illo v er

M edian Cro ss- T a iled E x t rem al Vo lat ilit y r (h ,2 ,1 ) Sp illo v er

0 .12

0 .0 8

0 .10

0 .0 6

0 .0 8 0 .0 4

0 .0 6

0 .0 2

0 .0 4 0 .0 2

0 .0 0

0 .0 0

- 0 .0 2

- 0 .0 2

- 0 .0 4

- 0 .0 4

- 0 .0 6

- 0 .0 6 - 0 .0 8

- 0 .0 8

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r ( h,1,2 )

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6

51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k

h

r ( h,2 ,1)

k

k

L SE --> SP 5 0 0 M edian Cr o ss-T ailed E x t rem al Vo lat ilit y r (h ,1 ,2 ) Sp illo v er

L SE -- > SP 5 0 0 M edian Cr o ss-T ailed E x t rem al Vo lat ilit y r (h ,2 ,1 ) Sp illo v er

0 .12

0 .0 8

0 .10

0 .0 6

0 .0 8

0 .0 4

0 .0 6

0 .0 2

0 .0 4

0 .0 0

0 .0 2

- 0 .0 2

0 .0 0 - 0 .0 4

- 0 .0 2

- 0 .0 6

- 0 .0 4 - 0 .0 6

- 0 .0 8

- 0 .0 8

- 0 .10

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r( h ,1,2 ) k

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 5 6 6 1 6 6 h

L SE --> N I K K E I

71 76 8 1 8 6 9 1 9 6 -k r ( h,2 ,1) k

L SE --> N IK K E I M e dia n Cro ss-T a ile d E x t re m al Vo la t ilit y r(h ,2 ,1 ) Sp illo v e r

M edian Cro ss-T ailed E x t r em al Vo lat ilit y r( h ,1 ,2 ) Sp illo v er 0 .0 8

0 .10

0 .0 6 0 .0 4 0 .0 2

0 .0 5

0 .0 0

0 .0 0

- 0 .0 2

c

- 0 .0 4

c -0 .0 5

- 0 .0 6 - 0 .0 8 - 0 .10

- 0 .10

- 0 .12 - 0 .14

- 0 .15

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r (h ,1,2 ) k

1

22

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r( h,2 ,1) k

Nikkei NIKKEI --> NASDAQ

NIKKEI --> NASDAQ Median Cross-T ailed Extremal

Median Cross-T ailed Extremal Volatility r(h,1,2) Spillover

Volatility r(h,1,2) Spillover 0 .0 8

0 .08

0 .0 6

0 .06

0 .0 4

0 .04

0 .0 2

0 .02

0 .0 0

0 .00

-0 .0 2

-0 .02

-0 .0 4

-0 .04 -0 .06

-0 .0 6

-0 .08

-0 .0 8 1

6

1

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 h

6

11 16 2 1 2 6 3 1 3 6 41 4 6 51 56 6 1 6 6 71 76 8 1 86 9 1 9 6 h

-k

-k

r(h,1,2 )

r(h,2 ,1)

k

k

NIKKEI --> SP500

NIKKEI --> SP500

Median Cross-T ailed Extremal Volatility r(h,1,2) Spillover

Median Cross-Tailed Extremal Volatility r(h,2,1) Spillover

0 .0 8

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 0

0 .0 0

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4 -0 .0 6

-0 .0 6

-0 .0 8

-0 .0 8 1

6

1

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 h

6

11 16 2 1 2 6 3 1 3 6 41 4 6 51 56 6 1 6 6 71 76 h

-k

81 86 91 96 -k

r(h,1,2 )

r(h,2 ,1)

k

k

NIKKEI --> LSE

NIKKEI --> LSE

Median Cross-T ailed Extremal Volatility r(h,1,2) Spillover

Median Cross-T ailed Ext remal Volat ilit y r(h,2,1) Spillover

0 .0 8

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4 0 .0 2

0 .0 2

0 .0 0

0 .0 0

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4

-0 .0 6

-0 .0 6

-0 .0 8

-0 .0 8

-0 .10

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 h

1

6

11

16

21 26

31 36 41 46

51 56 6 1 6 6 h

-k r(h,1,2 ) k

71 76 8 1 8 6 9 1 9 6 -k r(h,2 ,1) k

23

Figure 11: FX-to-FX BP --> YEN Median T wo T ailed Extremal Volatility r(h,0,0) Spillover

YEN --> BP Median Two Tailed Extremal Volatility r(h,0,0) Spillover

0 .0 5

0.05 0.04 0.03 0.02 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05

0 .0 4 0 .0 3 0 .0 2 0 .0 1 0 .0 0 -0 .0 1 -0 .0 2 -0 .0 3 -0 .0 4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 h

-0 .0 5 1

-k r(h,0,0) k

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,0 ,0 ) k

BP --> YEN Median Cross-T ailed Extremal Volatility r(h,1,2) Spillover

YEN --> BP Median Cross-Tailed Extremal Volatility r(h,1,2) Spillover

0 .0 8

0 .08 0 .06

0 .0 6

0 .04

0 .0 4

0 .02

0 .0 2

0 .00

0 .0 0

-0 .02 -0 .0 2

-0 .04

-0 .0 4

-0 .06

-0 .0 6

-0 .08 1

6 11 16 21 26 31 36 41 46 51 56 6 1 66 71 76 81 86 91 9 6 h

-0 .0 8 1

-k

6

r(h,1,2) k

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,1,2 ) k

YEN --> BP

BP --> YEN Median Cross-T ailed Ext remal Volat ilit y r(h,2,1) Spillover

Median Cross-Tailed Extremal Volatility r(h,2,1) Spillover 0.06

0 .0 6

0.04

0 .0 4

0.02

0 .0 2

0.00

0 .0 0

-0.02 -0 .0 2

-0.04 -0 .0 4

-0.06 1

6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 h

-0 .0 6 1

-k r(h,2,1) k

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,2 ,1) k

24

Figure 12: FX-to-Equity BP --> NA SDA Q M edian Cro ss-T ailed Ex t rem al

BP --> N A SD A Q M edian T wo T ailed E x t rem al Vo lat ilit y r(h ,0 ,0 ) Sp illo v er

BP --> NASDAQ M edian Cro ss-T ailed E x t rem al Vo lat ilit y r(h ,2 ,1 ) Sp illo v er

Vo lat ilit y r(h ,1 ,2 ) Sp illo v er

0 .0 6

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 2 0 .0 0

0 .0 0

0 .0 0

-0 .0 2

- 0 .0 2

- 0 .0 2 - 0 .0 4

-0 .0 4

- 0 .0 6

- 0 .0 4

-0 .0 6

- 0 .0 8 1

6

- 0 .0 6

1

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r ( h,0 ,0 )

6

11 16

2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6

1

6

-k

h

r(h,1,2 )

k

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r ( h,2 ,1) k

k

BP --> SP 5 0 0

BP --> SP 5 0 0 M edian Cro ss-T ailed E x t rem al Vo lat ilit y r(h ,1 ,2 ) Sp illo v er

M edian T wo T ailed E x t rem al Vo lat ilit y r(h ,0 ,0 ) Sp illo v er 0 .0 6 0 .0 4

BP --> SP 5 0 0 M edian Cro ss-T ailed E x t rem al Vo lat ilit y r(h,2 ,1 ) Sp illo v er

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 2 0 .0 0 0 .0 0

0 .0 0

- 0 .0 2

-0 .0 2

-0 .0 6

- 0 .0 4

-0 .0 4

-0 .0 8

- 0 .0 6

-0 .0 2 -0 .0 4

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 h

8186 9196 -k

-0 .0 6

1

6

r(h,0 ,0 )

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r (h,1,2 )

k

0 .0 6 0 .0 4 0 .0 2

BP --> L SE M edian Cro ss-T ailed E x t rem al Volat ilit y r(h ,2 ,1 ) Sp illo v er

M edian Cr o ss-T ailed E x t rem al Vo lat ilit y r (h ,1 ,2 ) Sp illo v er 0 .0 8

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 0

0 .0 0

-0 .0 2

-0 .0 2

0 .0 2 0 .0 0 -0 .0 2

-0 .0 4

-0 .0 4

-0 .0 6

-0 .0 6

-0 .0 6

-0 .0 8

-0 .0 8

-0 .10

-0 .0 8 1

6

11 16

21 26 31 36 41 46

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r (h,2 ,1) k

0 .0 2

-0 .0 4

6

BP --> L SE

BP - -> L SE M edian T wo T ailed E x t r em al Vo lat ilit y r( h ,0 ,0 ) Sp illo v er

1

k

1

51 5 6 6 1 6 6 71 7 6 8 1 8 6 9 1 9 6 -k h r (h ,0 ,0 ) k

6 11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 h

1

71 76 8 1 8 6 9 1 9 6 -k r( h,1,2 ) k

BP - -> N IK K E I

6 11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,2 ,1) k

BP --> N IK K E I M edian Cro ss-T ailed E x t re m al

M e dia n T wo T ailed E x t rem a l Vo la t ilit y r(h ,0 ,0 ) Sp illo v er

BP --> N IK K E I M edian Cro ss-T ailed E x t rem al Vo lat ilit y r(h ,2 ,1 ) Sp illo v er

Vo lat ilit y r( h ,1 ,2 ) Sp illo v er

0 .0 5

0 .0 8

0 .0 6

0 .0 4

0 .0 6

0 .0 4

0 .0 3 0 .0 2

0 .0 4

0 .0 2

0 .0 2

0 .0 1

0 .0 0

0 .0 0

0 .0 0 -0 .0 1

-0 .0 2

- 0 .0 2

-0 .0 2

-0 .0 4

- 0 .0 4

-0 .0 3 -0 .0 4

-0 .0 6

- 0 .0 6 - 0 .0 8

-0 .0 5 1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6

51 56 6 1 6 6 7 1 7 6 8 1 8 6 9 1 9 6 -k h r(h ,0 ,0 ) k

-0 .0 8

1

6 11 16

25

2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,1,2 ) k

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6

51 56 h

6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k r(h,2 ,1) k

Figure 12: FX-to-Equity - Continued YEN --> NASDAQ Median T wo T ailed Extremal Volatilit y r(h,0,0) Spillover

YEN --> NASDAQ Median Cross-T ailed Extremal Volatility r(h,1,2) Spillover

0 .0 6 0 .0 5 0 .0 4 0 .0 3 0 .0 2 0 .0 1 0 .0 0 -0 .0 1 -0 .0 2 -0 .0 3 -0 .0 4 -0 .0 5

YEN --> NASDAQ Median Cross-T ailed Extremal Volat ility r(h,2,1) Spillover

0 .0 8

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 0

0 .0 0

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4

-0 .0 6

-0 .0 6

-0 .0 8

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6

-0 .0 8

71 76 8 1 8 6 9 1 9 6

h

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 h

-k r(h,0 ,0 ) k

1

6 11 16

51 56 6 1 6 6

71 76 8 1 8 6 9 1 9 6

h

-k r(h,2 ,1)

k

YEN --> SP 500 Median T wo T ailed Ext remal Volat ilit y r(h,0,0) Spillover

k

YEN --> SP 500 Median Cross-T ailed Ext remal Volat ilit y r(h,1,2) Spillover

0 .0 5 0 .0 4 0 .0 3 0 .0 2 0 .0 1 0 .0 0 -0 .0 1 -0 .0 2 -0 .0 3 -0 .0 4 -0 .0 5

21 26 31 36 41 46

-k r(h,1,2 )

YEN --> SP 500 Median Cross-T ailed Ext remal Volat ilit y r(h,2,1) Spillover

0 .0 6

0 .0 8 0 .0 6

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 0

0 .0 0 -0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4

-0 .0 6

-0 .0 6

1

6

11 16

2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6

71 76 8 1 8 6 9 1 9 6

h

-0 .0 8

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 h

-k r(h,0 ,0 ) k

YEN --> LSE Median T wo T ailed Ext remal Volat ilit y r(h,0,0) Spillover

81 86 91 96

1

6

h

YEN --> LSE Median Cross-T ailed Ext remal Volat ilit y r(h,1,2) Spillover

0 .0 5 0 .0 4 0 .0 3 0 .0 2

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76

-k r(h,1,2 ) k

81 86 91 96 -k r(h,2 ,1) k

YEN --> LSE Median Cross-T ailed Ext remal Volat ilit y r(h,2,1) Spillover

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4 0 .0 2

0 .0 2

0 .0 1 0 .0 0 -0 .0 1 -0 .0 2 -0 .0 3 -0 .0 4 -0 .0 5

0 .0 0

0 .0 0 -0 .0 2

-0 .0 2

-0 .0 4 -0 .0 4

-0 .0 6 -0 .0 8

1

6

11 16

2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 h

-0 .0 6 1

6 11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56

61 66

71 76 8 1 8 6 9 1 9 6

h

-k r(h,0 ,0 ) k

YEN --> NIKKEI Median T wo Tailed Extremal Volatility r(h,0,0) Spillover

1

YEN --> NIKKEI

YEN --> NIKKEI Median Cross-T ailed Extremal Volatility r(h,2,1) Spillover

0 .0 8

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 0 -0 .0 1 -0 .0 2 -0 .0 3

0 .0 0

0 .0 0

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4

0 .0 2

0 .0 2

-0 .0 6

-0 .0 6

-0 .0 8

6

11 16

21 26 3 1 36

41 46

51 56 6 1 6 6 71 h

76 8 1 8 6 9 1 9 6

76 8 1 8 6 9 1 9 6 -k r(h,2 ,1) k

Median Cross-T ailed Extremal Volatility r(h,1,2) Spillover

0 .0 4 0 .0 3 0 .0 2 0 .0 1

1

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 h

0 .0 5

-0 .0 4 -0 .0 5

6

-k r(h,1,2 ) k

-0 .0 8

1

6

11 16 21 2 6 31 3 6 41 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 h

-k r(h,0 ,0 ) k

26

-k

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6

51 56 h

61 66

71 76

81 86 -k

r(h,1,2 )

r(h,2 ,1)

k

k

91 96

Figure 13: Equity-to-FX NASDAQ --> YEN Median T wo T ailed Extremal Volatility r(h,0,0) Spillover

NASDAQ --> YEN Median Cross-T ailed Extremal Volatility r(h,1,2) Spillover

0 .0 5

NASDAQ --> YEN Median Cross-T ailed Extremal Volatility r(h,2,1) Spillover

0 .0 8

0 .0 4

0 .0 6

0 .0 6 0 .0 4

0 .0 3 0 .0 4

0 .0 2

0 .0 2

0 .0 2

0 .0 1 0 .0 0

0 .0 0

-0 .0 1

0 .0 0

-0 .0 2

-0 .0 2

-0 .0 2 -0 .0 4

-0 .0 3

-0 .0 4

-0 .0 6

-0 .0 4 -0 .0 5

-0 .0 8

1

6

11

16

21 26 31 36 41 46

51 56 6 1 6 6 71 76 8 1 8 6 h

91 9 6

-0 .0 6

1

6

11 16

21 26 31 36

41 46

51 56 6 1 6 6

71 76 8 1 8 6

h

-k

91 96

r(h,0 ,0 )

-k r(h,1,2 )

k

k

1

6

11

16

21 2 6

41 4 6

51 56 6 1 6 6

71 76 8 1 8 6

h

91 96

-k r(h,2 ,1) k

NASDAQ --> BP Median Cross-T ailed Ext remal Volat ilit y r(h,1,2) Spillover

NASDAQ --> BP Median T wo T ailed Ext remal Volat ilit y r(h,0,0) Spillover

31 3 6

NASDAQ --> BP Median Cross-T ailed Ext rem al Volat ilit y r(h,2,1) Spillover

0 .0 6

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 0

0 .0 0

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4

0 .0 2 0 .0 0 -0 .0 2 -0 .0 4

-0 .0 6

-0 .0 6

-0 .0 6

1

6

11

16

21 26

31 36

41 46

51 56

61 66

71 76

81 86

91 96

-0 .0 8

1

6

11

16

21 26

31 36

41 46

h

51 56 6 1 6 6

71 76 8 1 8 6 9 1 9 6

1

6

11

16

21 26 31 36

41 46

51 56

h

-k r(h,0 ,0 )

-k r(h,1,2 )

k

k

0 .0 4 0 .0 3

76

81 86 91 96 -k r(h,2 ,1)

SP 500 --> YEN Median Cross-T ailed Extremal Volatility r(h,2,1) Spillover

Median Cross-T ailed Extremal Volatility r(h,1,2) Spillover

0 .0 5

71

k

SP 500 --> YEN

SP 500 --> YEN Median T wo T ailed Extremal Volatility r(h,0,0) Spillover

61 66

h

0 .0 8

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 2 0 .0 2

0 .0 1

0 .0 2

0 .0 0

0 .0 0

0 .0 0

-0 .0 1

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4

-0 .0 2 -0 .0 3

-0 .0 6

-0 .0 4 -0 .0 5

-0 .0 6

-0 .0 8

1

6

11

16

21 26

31 36 4 1 46

51 56

61 66

71 76

h

-0 .0 8

1

81 86 9 1 9 6

6

11

16

2 1 26

31 36 41 46

51 56 6 1 6 6

71 76 8 1 8 6

1

6

11

16

51 56 6 1 6 6

71 76

81 86

91 96

-k r(h,2 ,1)

k

SP 500 --> BP Median T wo T ailed Ext remal Volat ilit y r(h,0,0) Spillover

k

SP500 --> BP Median Cross-T ailed Ext remal Volatilit y r(h,2,1) Spillover

SP 500 --> BP Median Cross-T ailed Ext remal Volat ilit y r(h,1,2) Spillover

0 .0 4

41 46

-k r(h,1,2 )

r(h,0 ,0 ) k

0 .0 6

21 26 31 36

h

h

-k

9 1 96

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 2

0 .0 2 0 .0 2

0 .0 0

0 .0 0

0 .0 0 -0 .0 2

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4

-0 .0 4 -0 .0 6

-0 .0 6

-0 .0 6

-0 .0 8

1

6

11

16

21 2 6 3 1 3 6

41 46

51 56 h

6 1 66

71 76

81 86 91 96

1

6

11

16

2 1 26 3 1 3 6

4 1 46

51 56 h

-k r(h,0 ,0 ) k

27

6 1 66

71

76

81 86

91 96

1

6

11

16

21 26

31 36

41 46

51 56

61 66

71 76 8 1 8 6

h -k r(h,1,2 )

-k r(h,2 ,1)

k

k

91 96

Figure 13: Equity-to-FX - Continued LSE --> YEN M edian T wo T ailed E xt rem al Volat ilit y r(h,0,0 ) Sp illo ver

L SE --> YEN M edian Cross-T ailed Ex t rem al Vo lat ilit y r(h,1,2 ) Spillov er

0 .0 8

0 .0 5

0 .0 6

0 .0 6

0 .0 4 0 .0 3

0 .0 4

0 .0 4

0 .0 2

L SE --> YE N M edian Cro ss-T ailed Ex t rem al Vo lat ilit y r(h ,2 ,1 ) Sp illo v er

0 .0 2

0 .0 2

0 .0 1 0 .0 0

0 .0 0

0 .0 0

-0 .0 1

-0 .0 2

-0 .0 2 -0 .0 3

-0 .0 4

-0 .0 2 -0 .0 4

-0 .0 6

-0 .0 4

-0 .0 6

-0 .0 8

-0 .0 5 1

-0 .0 8

1

6 11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,0 ,0 ) k

6 11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r( h,1,2 )

1

LSE --> BP M edian T wo T ailed E x t rem al Vo lat ilit y r(h ,0 ,0 ) Sp illo v er 0 .0 6

0 .0 8

0 .0 6

0 .0 4

0 .0 6

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 0

51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k r(h,2 ,1) k

h

L SE --> BP M edian Cro ss-T ailed E x t rem al Vo lat ilit y r(h ,2 ,1 ) Sp illo v er

L SE - -> BP M edian Cro ss-T ailed E x t rem al Vo lat ilit y r(h ,1 ,2 ) Sp illo v er

0 .0 2

6 11 16 2 1 2 6 3 1 3 6 4 1 4 6

k

0 .0 0

0 .0 0

-0 .0 2

-0 .0 2

- 0 .0 2

-0 .0 4

-0 .0 4

- 0 .0 4

-0 .0 6

-0 .0 6

- 0 .0 6

-0 .0 8

-0 .0 8

- 0 .0 8

1

6 11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,0 ,0 ) k

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6

NIKKEI --> YEN Median T wo Tailed Extremal Volatility r(h,0,0) Spillover

-0.02 -0.03 -0.04 -0.05

Volatility r(h,2,1) Spillover

0 .0 8

0 .0 8

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 0

0 .0 0

-0 .0 2

-0 .0 2

-0 .0 4

-0 .0 4 -0 .0 6

-0 .0 8

21 26 31 36 41 46 51 56

61 66 71 76

h

81 86 91 96

71 76 8 1 8 6 9 1 9 6 -k r( h,2 ,1) k

NIKKEI --> YEN Median Cross-T ailed Extremal

-0 .0 6

11 16

h

NIKKEI --> YEN

0.03 0.02 0.01 0.00 -0.01

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6

Median T wo Tailed Extremal Volatility r(h,1,2) Spillover

0.05 0.04

1

1 6

51 56 6 1 6 6 71 76 8 1 8 6 9 1 9 6 -k h r(h,1,2 ) k

-0 .0 8

1

6

11 16 2 1 2 6 3 1 3 6 4 1 4 6 51 56 6 1 6 6

71 76

h

-k r(h,0,0) k

NASDAQ --> BP Median T wo T ailed Extremal Volatility r(h,0,0) Spillover

81 86 9 1 96

1

6

11 16

21 2 6

3 1 3 6 4 1 4 6 51 56

6 1 6 6 71 76 8 1 8 6 9 1 9 6

h

-k r(h,1,2 ) k

-k r(h,2 ,1) k

NASDAQ --> BP Median Cross-T ailed Extremal Volatility r(h,2,1) Spillover

NASDAQ --> BP Median Cross-T ailed Extremal Volatilit y r(h,1,2) Spillover

0 .0 6

0 .0 6

0 .0 6

0 .0 4

0 .0 4

0 .0 4

0 .0 2

0 .0 2

0 .0 2 0 .0 0

0 .0 0

0 .0 0 -0 .0 2

-0 .0 2

-0 .0 2 -0 .0 4

-0 .0 4

-0 .0 6

-0 .0 6

-0 .0 8

1

6

11

16

21 26

31 36

41 46

51 56 h

61 66

71 76 8 1 8 6 9 1 9 6

-0 .0 4 -0 .0 6 1

6

11

16

21 26

31 36

41 46

51 56 h

-k r(h,0 ,0 ) k

61 66

71 76

81 86 -k r(h,2 ,1) k

28

91 96

1

6

11

16

21

26 31 36

41 46

51 56 6 1 6 6 h

71

76 8 1 8 6 -k r(h,1,2 ) k

91 96

Figure 14: Rolling Windows : NASDAQ and LSE NASDAQ(t-1) --> LSE(t) Two Tailed Tail Dep endence r(1) In creas ing Rolling W in dows

LSE(t-1) --> NA SDA Q(t) Two Tailed Tail Dependence r(1) Increas ing Rolling W indows .06

.3 0

.04

.2 5

.0 5

.2 0 .0 0

.1 5

-.0 5 p-value

0 .3 5

0.45

0.55

0 .6 5

0.75

0.85

.60

.02

.40

-.04

.0 5

-.06

.0 0

-.08 0.25

.20 .10 end: Oct . 19, 04 0.35

0.45

0.65

0.75

0.85

.00 0.95

-k k

Sam ple Fract ion

r(1) p-value

LSE(t-1) --> NA SDA Q(t) Two T ailed T ail Dep en d en ce r(1) Fixed Ro lling W in d ows : .50n

.20

.25

.1 0

.8 0

.0 8

r(1) .20

r(1 )

.7 0

.0 6

.10

.6 0

.15 .05

st art : Oct . 12, 01 .10

end: Oct . 10, 03

r(1 ,0 ,0)

.0 4 p -va lu e

r(1 ,0 ,0 )

0.55

r(1) p-v alue

NASDA Q(t-1) --> LSE(t)

.00

st art : Nov. 26 , 01 end: No v. 21, 03

1

6

11

16

21

26

p - value

.1 0

-.0 8

.00 31

36

41 -k k

.0 0 1

46

6

11

21

26

31

W in do w

r(1 ) p- value

0 .9 0

r(1)

0 .50 0 .0 0

0 .4 0

-0 .0 2 0 .3 0

-0 .0 4 -0 .0 6

0 .2 0

-0 .0 8

0 .10

0 .70 0 .6 0

p-valu e

0 .6 0

r (1, 0,0)

0 .0 4

0 .8 0

r(1) 0 .10

0 .70

0 .0 5

0 .50 0 .4 0

0 .0 0

0 .3 0

s ta rt: F e b. 6, 02

p-value

-0 .0 5

0 .2 0

e nd: F e b. 20, 04

0 .10 -0 .10

0 .0 0

0 .0 0 1

0 .55 0 .6 0 0 .6 5 0 .70 0 .75 0 .8 0 0 .8 5 0 .9 0 0 .9 5

Sample Fract ion

46

-k k

0 .8 0

p-value

0 .4 5 0 .50

41

0 .15

0 .9 0

0 .0 8

0 .3 0 0 .3 5 0 .4 0

36

BP(t-1) --> YEN(t) Cross Tailed (negative to positive) Fixed Rolling W indows: .50n

0 .10

-0 .10 0 .2 5

16

r(1 ) p-value

BP(t-1) --> YEN(t) Cross Tailed (negative to positive) Increasing Rolling W indows

0 .0 2

.3 0 .2 0

-.0 6

W indow

0 .0 6

st art :Sep . 2 0 , 0 2 en d:Sep. 1 4 , 0 4

-.0 4

.05

end: Oct . 12, 04 start: June 8 , 01

.4 0 .0 0

st art : Oct. 19, 02

-.05 -.10 end: June 17 , 03

.5 0

.0 2

-.0 2

p-value

r (1,0 ,0)

.30

p-value

Two Tailed Tail Dependence r(1) Fixed Rolling W indows : .50n

.15

.50

.00 -.02

.1 0

0 .9 5

-k k

Sam ple Fraction

.70

r(1)

p- va lue

end: Nov. 19, 0 2

-.1 0 0.25

.80 end: Aug. 22, 03

p-va lue

.08

.3 5

p -value

r (1,0,0)

.4 0

p-value

r(1)

.1 0

r(1,0,0)

.1 5

6

11

16

21

26

Window

-k

r(1)

k

p -value

31

36

41

46 -k

r(1)

k

p -value

Notes: Fixed window "start" and "end" dates denote the window span. In creasing windows all start at Jan. 2, 2001.

A rolling window analysis provides strikingly di¤erent results given Sept. 11, 2001 and the U.S. economic slowdown over 2000-2002. We comment here only on NASDAQ and LSE dependence. Two-tailed tail dependence tests were performed over …xed windows of roughly 500 days ( 5 £ ), and increasing windows beginning with (roughly) 250 days. Once the increasing sample contains late 2002 (i.e. sample size 500, sample fraction .50) two-tailed extremal dependence NASDAQ ! LSE is signi…cant at the 5% level. Conversely, spillover is highly dependent during …xed windows containing Sept. 11, 2001 with a sharp decline as the window passes by the date. Signi…cance increases again over windows containing 2002. Finally, tail dependence from lagged LSE to contemporary NASDAQ becomes precipitously more signi…cant in increasing windows starting in the third quarter of 2003

29

Suggest Documents