TABLE OF CONTENTS. Acknowledgments

TABLE OF CONTENTS Preface xvii Acknowledgments xix Accreditation xxi Forewords xxii Metric Conversion of Some Common Units xxv Chapter ...
Author: Herbert Wright
10 downloads 0 Views 97KB Size
TABLE OF CONTENTS Preface

xvii

Acknowledgments

xix

Accreditation

xxi

Forewords

xxii

Metric Conversion of Some Common Units

xxv

Chapter 1 Introduction to Hydrocarbon Liquid Pipelines 1.1 Liquid Hydrocarbon Transportation System Scope 1.2 Hydrocarbon Liquid Pipelines 1.3 Liquid Pipeline Transportation System 1.4 Types of Transmission Pipelines 1.5 Liquid Petroleum Pipeline Networks 1.6 Single Versus Multiple Products Pipeline 1.6.1 Refined Petroleum Products 1.7 Liquid Pipeline Development History/Chronology 1.7.1 Historical Overview 1.7.2 Codes, Standards and Regulations (Addressing Liquid Pipeline Design, Construction and Operation) 1.7.3 Codes 1.7.4 Regulations 1.8 Major Pipeline Facilities Layout 1.8.1 Pump Station 1.8.2 Metering/Measurement 1.8.3 Valve and Manifolds 1.8.3.1 Valves 1.8.3.2  Manifolds 1.9 General Pipeline Operations References

1 1 1 3 5 5 11 11 12 12 15 15 16 22 22 22 26 26 27 28 29

v

vi    n    Table of Contents Chapter 2  Hydrocarbon Liquid Properties 2.1 Hydrocarbon Liquids 2.2 Hydrocarbon Liquids Phase Behavior 2.2.1 Phase Diagram Determination 2.3 Properties of Petroleum Liquids 2.3.1 Mass, Volume, and Density 2.3.2 Density and Thermal Expansion 2.3.3 Compressibility, Bulk Modulus, and Thermal Expansion 2.3.3.1  Compressibility 2.3.3.2 Bulk Modulus K 2.3.3.3 Thermal Expansion 2.3.3.4  Calculating Bulk Modulus for Various Fluids 2.3.3.5 Other Techniques for Calculating Bulk Modulus 2.4 Specific Gravity and API Gravity 2.4.1 Specific Gravities of Blended Products 2.5 Viscosity, Newtonian Versus Non-Newtonian 2.5.1 Viscosity and Density Relationship 2.5.2 Viscosity of Blended/Diluted Liquids 2.5.2.1 (A) New Volume from Current Volume, Current SG, and Target SG 2.5.2.2  (B) Viscosity Blending Calculation 2.5.3 Hydrocarbon Liquids Blending and Volume Shrinkage 2.5.4 Viscosity Determination 2.6 Pour Point and Viscosity Relationship 2.6.1 Reasons for Pour Point Determination 2.7 Vapor Pressure 2.7.1 True Vapor Pressure 2.8 Flash Point 2.9 Hydrocarbon Liquid Specific Heat Capacity 2.10 Thermal Conductivity 2.11 Effect of Hydrocarbon Liquid Properties on Measurement Systems 2.11.1  (a) Base Conditions 2.11.2  (b)  Impact of Phase Change 2.11.3  Properties Important to Measurement Systems 2.11.4 Factors Affecting Measurement Accuracy References

31 31 32 34 37 38 38 38 38 39 40 41 42 42 44 45 48 48

Chapter 3 System Hydraulics and Design 3.1 Fundamentals of Liquid Pipeline Hydraulics 3.1.1 Pipeline Flow Equations 3.1.1.1  Continuity or Mass Conservation Equation 3.1.1.2  Momentum Equation

63 63 63 64 64

48 48 49 50 50 51 52 52 55 55 56 57 57 57 57 58 59

Table of Contents    n    vii 3.1.2 3.1.3

3.1.1.3  Energy Equation 3.1.1.4  Equation of State Solution Methods 3.1.2.1  Method of Characteristics 3.1.2.2  Explicit Methods 3.1.2.3  Implicit Methods Steady-State Solutions and Design Equations 3.1.3.1 Solution of Continuity Equation and Volume Correction 3.1.3.2 Solution of Momentum Equation and Pressure Profile Calculation 3.1.3.3 Solution of Energy Equation and Temperature Profile Calculation 3.2 Design Process 3.2.1 Codes and Standards 3.2.2 Design Factors (9) 3.2.2.1  Supply and Demand 3.2.2.2  Pipeline Route and Environmental Issues 3.2.2.3 Operating Parameters 3.2.2.4  Pipe Parameters 3.2.2.5  Pumping Parameters 3.2.2.6  Economic Factors 3.2.3 Hydraulic Design Procedure 3.3 Liquid Pipeline Design 3.3.1 Crude Oil Pipeline System — Isothermal Flow 3.3.2 Pipeline Configurations 3.3.2.1  Side Stream Delivery 3.3.2.2  Side Stream Injection 3.3.2.3  Pipeline in Series 3.3.2.4  Pipelines in Parallel 3.3.3 Severe Elevation Change — Slack Flow 3.3.4 Severe Weather Conditions 3.3.4.1  Pipeline in a Hot Environment 3.3.4.2  Pipeline in a Cold Environment 3.3.5 Batch Pipeline Hydraulics Design 3.3.6 High Vapor Pressure (HVP) Pipeline Design 3.3.7 Heavy Crude Pipeline Hydraulic Design 3.3.7.1 Determine the Physical Properties Under Pipeline Conditions 3.3.7.2 Determine the Pressure and Temperature Throughout the Pipeline for the Anticipated Flow Rates 3.3.7.3 Review the Restart After Shutdown 3.3.7.4 Design Facilities 3.4 Locating Pump Stations

67 68 68 69 69 69 70 71 72 75 83 83 84 84 85 86 89 93 93 96 98 99 104 105 108 112 114 115 119 119 119 120 122 129 130 131 132 133 136

viii    n    Table of Contents Addenda to Chapter 3 A3.1 Temperature Calculation A3.2 Erosional Velocity of Fluid A3.3 Minor Pressure Losses A3.4 Effect of Pressure and Temperature on Pipe Volume References

144 144 148 149 154 157

Chapter 4  Pumps and Pump Stations 159 4.1 Introduction 159 4.2 Centrifugal Pumps 160 4.3 Centrifugal Pump Types 161 4.3.1 End Suction Single Stage Pumps 161 4.3.2 Vertical In-Line Single Stage Pumps 161 4.3.3 Horizontal Axially Split Between-Bearing Single-Stage Pumps 161 4.3.4 Horizontal Axially Split Between-Bearing Multi-Stage Pumps 161 4.3.5 Double–Case (Can) Vertically Suspended Volute Pumps 162 4.4 Pump Selection and Sizing 164 4.4.1 Pump Performance 164 4.4.1.1  Pump Performance Curves 165 4.4.2 Service Conditions 165 4.4.3 Net Positive Suction Head (NPSH) 167 4.4.3.1 Net Positive Suction Head Required (NPSHR) 167 4.4.3.2 Net Positive Suction Head Available (NPSHA) 168 4.4.4 Specific Speed 169 4.4.5 Suction Specific Speed 170 4.4.6 Pump Performance Curve Characteristics 171 4.4.7 Centrifugal Pump Power and Efficiency 172 4.4.8 Performance Modifications for Varying Pipeline Applications 172 4.4.9 Cavitation 176 4.4.10 Viscous Hydrocarbon Behavior in Pumps 180 4.4.11 Temperature Rise 181 4.4.12  Minimum Flow 182 4.5 Pump Specification and Purchase 182 4.5.1 Pump Data Sheets 182 4.6 Retrofitting Centrifugal Pumps for Changing Service Conditions 183 4.6.1 Reduced Pipeline Throughput 183 4.6.2 Increased Pipeline Throughput 183 4.6.3 Affinity Laws 184 4.7 Pipeline Hydraulic Requirements 185 4.7.1 System Head Curves and Pump Operating Points 185 4.7.2 Hydraulic Performance in Batched Pipeline Systems with Constant Speed Pumps 188

Table of Contents    n   ix

4.7.3 Hydraulic Performance in Batched Pipeline Systems with Variable Speed Pumps 4.7.4  Pump Configurations 4.7.4.1  Parallel Operation 4.7.4.2  Series Operation 4.8 Pump Drivers 4.9 Pump Station Design 4.9.1 Pump Station Diagram 4.9.2 Pump Station Piping 4.9.3 Control Valve and Sizing 4.9.4 Station Flow Recirculation 4.9.5 Pig Launcher and Receiver 4.9.6 Pump Station at a Tank Farm 4.9.7 Pump Station Heater 4.10 Pipeline System Control 4.10.1 Pump Station Operation 4.10.2 Pump Control Strategy 4.10.3 Station Control 4.10.3.1  Pump Station Valve Control 4.10.4 Injection/Delivery Station Control 4.10.5 Pump Unit Control 4.10.6 Throttling vs. Speed Controls 4.10.6.1 Throttling for Fixed Speed Pumps 4.10.6.2  Speed Control for Variable Speed Pumps 4.11 Station Electrical Control 4.11.1 Station Auxiliary Systems 4.11.2 Shutdown Modes 4.11.2.1  Emergency Shutdown System 4.12 Applicable Codes and Standards References

Chapter 5  Pipeline Operation and Batching 5.1 Pipeline Operation 5.1.1 Pipeline System Operation 5.1.2 Concepts of Pipeline Transient Flow 5.1.3 Surge Control 5.1.3.1  Control Devices 5.1.3.2  Pump Unit and Pump Station Operations 5.1.3.3  Special Surge Relief Devices 5.1.4 Example of Pipeline Operation and Surge Control 5.1.4.1  Scheduled Pipeline System Start-Up 5.1.4.2  Scheduled Pipeline System Shutdown 5.1.4.3  Emergency Shutdown of the Pipeline System

189 190 190 192 192 195 196 196 197 198 199 200 201 202 203 206 207 207 208 208 209 210 211 213 213 214 214 215 215

217 217 217 220 228 230 231 234 236 238 240 242

x    n    Table of Contents 5.1.4.4  Batch Operation 5.1.5 Transient or Surge Analysis 5.2 Liquid Batching Transportation 5.2.1 Types of Liquid Pipelines 5.2.2 Liquid Hydrocarbon Batching 5.2.3 Batched Product Pipeline Growth and Technique 5.2.4 Products Batching Definitions and Terms 5.2.4.1  Batch Sequencing 5.2.4.2  Batch Cycle/Slug 5.2.4.3  Buffers 5.2.4.4  Batching Travel Time 5.2.4.5  Batch Interface Marking and Detection 5.2.4.6  Batch Injection, Transportation and Delivery 5.2.4.7  Batch Reporting 5.2.5 Minimum Batch Size 5.2.6 Crude Oil Contamination 5.2.6.1  Natural Crude 5.2.6.2  Synthetic Crude 5.2.6.3  Contamination Level 5.2.7 Interface-Volume Estimations 5.2.7.1  Batch Calculation and Tracking Example 5.2.7.2  Results 5.2.8 Batched Products Pipeline Design and Operational Issues 5.2.8.1  Design and Operational Issues 5.2.8.2  Operation and Control 5.2.8.3  Pipeline System Operation/Control 5.2.9 Practical Batch Operation in Real-Time 5.2.9.1  Batch Launch and Delivery 5.2.9.2  Launching and Delivery Operation 5.2.9.3  Batch Tracking 5.2.10 Multiproduct Pipeline Batch Optimization Addendum to Chapter 5 Pipeline System Surge Mitigation Equipment A5.1 Flow Control Valves A5.2 Check Valves A5.3 Relief Valves A5.4 Bursting/Rupture Disc A5.5 Surge Diversion Valve A5.6 Increasing Pipeline Diameter and/or Wall Thickness A5.7 Variable Speed Drives and Soft Starters A5.8 Valve Opening and Closure Times A5.9 Surge Tanks A5.10 Pump Bypass Check Valves A5.11 Applications

242 243 245 245 245 247 248 249 250 250 251 251 252 253 253 254 254 254 255 256 258 259 259 260 262 267 274 275 276 276 278 278 278 279 282 286 287 287 288 288 289 289 290 290

Table of Contents    n    xi References

Chapter 6 Non-Conventional Hydrocarbon Liquids, Production, and Transportation 6.1 Heavy Oil Technology and Transportation 6.1.1 Background 6.2 Heavy Oil Types and Global Distribution 6.3 Heavy Oils Property and Type 6.3.1 Types/Grouping 6.3.2 Oil Viscosity Prediction 6.4 Heavy Oils Transportation Technologies 6.4.1 Dilution 6.4.2 Upgrading/Partial Upgrading 6.4.3 Heating/Thermal Upgrading 6.4.4 Water Emulsion 6.4.5 Core Annular Flow (CAF) 6.4.6 Surfactant/Flow Improvers 6.4.7 Slurry Transportation 6.4.8 Comparison of Transportation Techniques 6.5 Heavy Crudes Properties for Pipeline Transportation 6.5.1 Grouping of Crudes and Designations 6.5.2 Typical Properties 6.6 Heavy Oil Pipeline Transportation Example—Role of Design for Operational Control 6.6.1 Summary on Role of Design 6.6.2 Need for Transient Analysis 6.6.3 Surge Mitigation Methods 6.6.4 Code Requirement 6.6.5 Case Study—Application to a Heavy Oil Pipeline Projects 6.6.5.1 Fluid Properties 6.6.5.2  Simulation Model and Data 6.6.6 Batch Movement/Transient Simulation Time 6.6.7 Simulations Scenarios and Techniques 6.6.7.1 Time Steps and Pipe Segment “Knot Spacing” 6.6.7.2 Valve Closure and Station Shutdown Timing Sequence 6.6.8 Simulation Results 6.6.8.1  Effect of Valve Closures 6.6.8.2  Effects Due to Pump Stations Shutdown 6.6.8.3 Delivery Restriction (Zero Delivery) 6.6.8.4 Terminal PCV Closure 6.6.8.5 Effect of Minimum Flow Delivery at Maximum Pump Stations Discharge Pressure—Line Packing Conditions 6.6.9 Conclusion

292

295 295 295 297 299 300 301 302 303 304 305 307 308 309 312 312 315 315 316 317 317 318 320 321 322 323 324 327 328 328 329 329 329 330 332 332 332 333

xii    n    Table of Contents Addendum to Chapter 6 Heavy Oil Resources and Recovery Techniques A6.1 Heavy Oil Resource Base A6.2 Bitumen and Heavy Oils Recovery/Extraction Techniques A6.2.1 Extraction/Recovery Techniques A6.2.2 Production Techniques Scope A6.2.3 Recovery Techniques Summary A6.2.4 Oil Reservoir Classifications References

333 333 333 336 336 339 342 342 344

Chapter 7  Liquid Measurement 7.1 Introduction 7.2 Static Measurement 7.2.1 Tank Calibration 7.2.1.1  Manual Tank Strapping Method (MTSM) 7.2.1.2 Optical Reference Line Method (ORLM) 7.2.1.3 Optical Triangulation Method (OTM) 7.2.1.4  Electro-Optical Distance Ranging Method (EODRM) 7.2.2 Tank Capacity Tables 7.2.3 Liquid Calibration of Tanks 7.3 Tank Gauging 7.3.1 Manual Tank Gauging 7.3.2 Servo Tank Gauge 7.3.3 Radar Tank Gauge 7.3.4 Hybrid Tank Measurement Systems 7.3.5 Calculation of Tankage Volumes 7.4 Dynamic Measurement 7.4.1 Measurement Systems and Characteristics 7.4.2 Measurement Uncertainty 7.4.2.1  Quality of Liquids 7.4.2.2  Device Degradation 7.4.2.3  Operational Problems 7.4.2.4  Calibration 7.4.2.5  Transducer/Transmitter 7.4.3 Custody Transfer Requirements 7.4.4 Types of Meters 7.4.4.1  Positive Displacement Meters 7.4.4.2 Turbine Meters 7.4.4.3  Ultrasonic Meters 7.4.4.4  Coriolis Meters 7.4.5 Meter Selection 7.4.5.1  Meter Sizing 7.4.5.2  Instrumentation and Accessories

347 347 348 348 348 349 351 353 355 355 355 355 356 357 358 359 361 361 362 364 364 365 365 365 365 366 366 368 371 373 376 377 377

Table of Contents    n    xiii 7.4.5.3 Flow Computers 7.4.6 Meter Station Design 7.4.6.1  Meter Station Components 7.4.6.2  Meter Run 7.4.6.3  Meter Provers 7.4.7 Prover Types 7.4.7.1 Tank Provers 7.4.7.2  Conventional Pipe Provers 7.4.8 Prover Calibration 7.5 Volume Accounting System 7.5.1 Ticketing Functions 7.5.2 Meter Ticket 7.5.3 Tank Ticket 7.5.4 Volume Tracking 7.5.5 Volume Calculation and Balancing 7.5.5.1 Volume Calculations 7.5.5.2  Meter Factor and Calibration 7.5.6 Determination of Liquid Volume 7.5.7 General Equations for Determining Liquid Volumes at Base Conditions 7.5.8 Volume Balancing Addendum: Standards Relevant to Liquid Petroleum Measurement A7.1 American Petroleum Institute (API)—www.api.org A7.2 ASTM International (American Standard for Testing Materials)—http://www.astm.org A7.3 American National Standards Institute/ American Society of Mechanical Engineers A7.4 International Organization for Standardization (ISO)— www.iso.org References

Chapter 8  Hydrocarbon Petroleum Tankage and Terminal Design 8.1 Introduction and Overview 8.2 History and Reasons for Use 8.3 Products Stored and Properties 8.4 Types of Petroleum Storage Tanks 8.4.1 Definition and Classifications 8.4.2 Types 8.4.2.1 Fixed Roof Tanks 8.4.2.2 Floating Roof Tanks 8.4.3 Emission Control in Storage Tanks 8.4.3.1 Tank Rim Sealing Systems: Floating Roof Tanks 8.4.4 Tank Fittings and Appurtenances

379 380 381 382 384 386 386 386 390 392 393 394 395 396 396 396 396 396 397 399 400 400 403 403 403 405

407 407 410 412 415 415 416 416 419 428 428 435

xiv    n    Table of Contents 8.5 Petroleum Storage Tanks Standards (For Design, Operation and Protection) 8.6 Regulations Affecting Terminal and Storage Facilities 8.7 Petroleum Storage/Terminal Design and Construction 8.7.1 Typical Layout and Spacing 8.7.2 Tank Design (Including Sizing, Materials and Construction) 8.7.2.1 Design Data 8.7.2.2 Design Calculations 8.7.2.3 Tank Material 8.7.3 Civil Design 8.7.3.1  Tank Foundation 8.7.3.2 Types of Foundations 8.7.3.3 Bund Walls/Dykes 8.7.4 Fabrication and Welding 8.7.4.1 Tank Construction—Fabrication and Welding 8.7.4.2 Welding Techniques 8.7.4.3  Post Weld Heat Treatment of Welded Tanks Structures 8.7.4.4  Construction of Spheres 8.7.5 Mechanical/ Piping Components and Instrumentation 8.7.5.1  Mechanical Appurtenances 8.7.5.2  Instrumentation and Controls 8.7.6 Tank Venting Emission Calculations 8.7.6.1 Total Losses from Fixed Roof Storage Tanks 8.7.6.2 Total Losses from Floating Roof Tanks 8.7.7 Operational Issues 8.7.8 Cathodic Protection of Above Ground Hydrocarbon Storage Tanks 8.7.8.1 Definition of Corrosion 8.7.8.2  Corrosive Environment 8.7.8.3  Consequences of Corrosion 8.7.8.4 Types of Corrosion 8.7.8.5  Storage Tank Cathodic Protection 8.7.8.6  Above Ground Storage Tank CP System 8.7.8.7 Typical CP Installation for Above Ground Storage Tanks 8.7.8.8  Applicable CP Standards 8.8 Tank Failures and Emergency Response 8.8.1 Tank Failures 8.8.1.1  Past Accidents 8.8.1.2  Causes of Tank Failure Hazards 8.8.2 Designing Tankage Systems to Minimize Hazards 8.8.2.1  Effective Steps 8.8.3 Design of a Foam System for Fire Protection of Storage Tanks 8.8.3.1  Identifying Flammable Liquid

445 450 452 452 456 456 457 465 465 465 469 471 474 474 476 482 485 485 485 486 490 491 499 500 503 503 503 503 506 510 517 519 519 520 520 523 524 528 528 537 537

Table of Contents    n    xv 8.8.3.2 Types of Foam Discharge Outlets 8.8.3.3 Foam System for Fire Protection of Storage Tanks 8.8.3.4 Foam Dam Design for Tanks 8.9 Emergency Response Planning and Facilities 8.9.1 Planning for the Emergency 8.9.2 Responding to Oil Spill Emergencies 8.9.3 Tactical Priorities 8.9.4 Foam Application 8.9.4.1 Foam Supply 8.9.4.2 Water Supply 8.9.4.3  Exposure Protection References

Chapter 9  Liquid Pipeline Operation 9.1 Supervisory Control and Data Acquisition (SCADA) 9.1.1 Introduction 9.1.2 Pipeline System Monitoring and Control 9.1.3 Control Center and SCADA System 9.1.4 Data Communications 9.1.5 Data Management 9.1.6 Alarms 9.1.7 Human Machine Interface (HMI) and Reporting 9.1.8 Security 9.2 Overview of Pipeline Leak Detection System 9.2.1 Introduction 9.2.2 Overview of Leak Detection Techniques 9.2.2.1  Inspection Methods 9.2.2.2  Sensor Methods 9.2.2.3  Computational Pipeline Monitoring (CPM) Methods 9.2.3 Implementation and Operation 9.2.4 Leakage Response 9.2.5 Summary 9.3 Drag Reducing Agent (DRA) 9.3.1 Introduction 9.3.1.1  Drag Reduction Mechanism 9.3.1.2  Benefits of Using a DRA 9.3.2 DRA Characteristics and Performance 9.3.3 DRA Operations 9.3.3.1  DRA Facilities 9.3.3.2  DRA Injection 9.3.3.3  DRA Concentration Tracking 9.3.3.4  DRA Limitations on Operation and Design 9.3.4 DRA Correlations

538 538 543 543 544 544 545 545 546 547 547 548

551 551 551 554 554 559 562 564 566 571 572 572 576 576 577 579 584 587 587 587 587 588 589 590 590 590 590 593 593 594

xvi    n    Table of Contents 9.4 Tank Farm Operation and Volume Measurement 9.4.1 Tank Farm Operation 9.4.2 Tank Control 9.4.3 Tank Volume Measurement 9.4.4 Tank Inventory 9.5 Power Cost Control 9.5.1 Power Demand Control 9.5.2 Pump Unit Operating Statistics 9.5.3 Pump Station Monitoring 9.5.4 Power Optimization References

Appendix Glossary of Terms and Acronyms References

596 597 600 602 602 603 604 604 605 606 608

611 644