5/6/2016

ECE 5322  21st Century Electromagnetics Instructor: Office: Phone: E‐Mail:

Dr. Raymond C. Rumpf A‐337 (915) 747‐6958 [email protected]

Lecture #18b

Synthesizing Geometries for 21st Century Electromagnetics Synthesis of Spatially Variant Lattices Lecture 18b

1

Lecture Outline • • • • •

Review of spatially-variant planar gratings Decomposition of lattices into planar gratings Synthesis algorithm for spatially-variant lattices Improving efficiency Extras – Deformation control – Arrays of discrete elements – Spatial variance over curved surfaces

Lecture 18b

Slide 2

1

5/6/2016

Review of Spatially-Variant Planar Gratings

The Grating Vector in Two Dimensions



x

 K is very similar to a  • The grating vector   wave vector  k.  • The direction of     is perpendicular to  K the grating planes.  K • The magnitude of     is 2  divided by the  period of the grating .  2 K  

• Given the slant angle , it is calculated as  2 K  aˆx cos   aˆ y sin   

y

x Lecture 18b

• It allows a convenient calculation of the  analog grating.   cos K  r





Slide 4

2

5/6/2016

Analog Vs. Binary Gratings Binary Gratings

Analog Gratings



  r   0

    a  r   cos K  r





  r   0.8





a r    r    a r    r 

   b  r    1  2





  r   cos  f  r   Lecture 18b

5

Procedure for Generating Spatially-Variant Planar Gratings 1. Define the grating vector    function           , or K‐function.  K r 





  2   K r    aˆ x cos   r    aˆ y sin   r    r 

  r  2. Calculate the grating phase               K r  from           .

     r   K  r 

3. Calculate the analog grating  from the grating phase.

 a  r   cos   r  

4. Calculate the binary grating  from the analog grating.

   b  r    1  2

Lecture 18b









a r    r    a r    r 

6

3

5/6/2016

Decomposition of Lattices Into Planar Gratings

Lattices Can be Decomposed into a Set of Planar Gratings Using the concept of the complex Fourier series, we decompose the  unit cell into a set of planar gratings. Each planar grating is described   by a grating vector    K pq and a complex amplitude apq.



q

p Lecture 18b

8

4

5/6/2016

Recall Complex Fourier Series Periodic functions can be expanded into a Fourier series. For 1D periodic functions, this is f  x 



ae

j

p

p 

2 px 

 2

ap 

2 px j 1  f x e dx     2

For 2D periodic functions, this is f  x, y  







p  q 

a p ,q e

 2 px 2 qy    j  x  y  

a p ,q 

 2 px 2 qy    x  y 

 j  1 f  x, y  e   A A

dA

For 3D periodic functions, this is f  x, y , z  









 a p ,q ,r e

 2 px 2 qy 2 rz  j     y  z   x

p  q  r 

a p ,q ,r 

1 V



f  x, y , z  e

 2 px 2 qy 2 rz   j     y  z   x

dV

V

Lecture 18b

Slide 9

Two Parts to the Decomposition f  x, y  





  a  p, q   e

  jK  p , q  r

p  q 

q

y

x

q

p a  p, q   FFT2D  f  x, y  

Calculated using FFT. Lecture 18b

Grating  Vectors

Fourier  Coefficients

Input

p  2 p 2 q K  p, q   xˆ  yˆ x y

Calculated analytically. 10

5

5/6/2016

Visualize the Terms 

f  x, y  



  a  p, q   e

  jK  p , q  r

p  q 

q

q

p

p

Lecture 18b

Slide 11

Grating Vector Part of the Fourier Expansion f  x, y  





 a

p  q 

e

K x  p, q  

2 p x

K y  p, q  

2 q y

f  x, y  







p  q 

Lecture 18b

p ,q

 2 px 2 qy  j    y    x

a p ,q e

j  K x  p , q  x  K y  p , q  y 

 K  p, q 

q

p 











a  p, q   e jK  p ,q r

p  q 

Slide 12

6

5/6/2016

Complex Amplitude Part of the Fourier Expansion

a p ,q

2D‐FFT

q

p

Lecture 18b

13

Impact of Number of Planar Gratings

Lecture 18b

1×1

9×9

3×3

11×11

5×5

21×21

7×7

31×31

14

7

5/6/2016

3D Decomposition 3D Unit Cell

 K  K x xˆ  K y yˆ  K z zˆ Kx 

2 p x

p  integer

Ky 

2 q y

q  integer

Kz 

2 r z

r  integer 3D Spatial Harmonics

Lecture 18b

15

Algorithm for Synthesis of Spatially-Variant Lattices

8

5/6/2016

Step 1 – Generate Input to Algorithm Unit Cell

Lattice Size

Unit Cell  Orientation

Lattice  Spacing

Fill Fraction

A grayscale unit cell allows  easier adjustment of fill fraction.

Lecture 18b

17

Step 2 – Build a Grayscale Unit Cell A grayscale unit cell allows  for better control of fill  fraction for the final lattice.

Lecture 18b

18

9

5/6/2016

Step 3 – Decompose Unit Cell Into a Set of Planar Gratings

Lecture 18b

19

Step 4 – Truncate the Set of Planar Gratings We must retain only a minimum number of spatial harmonics. ER128×128

ERF128×128

before truncation

ERF7×7

after truncation (P=Q=7)

% COMPUTE 2D-FFT ERF = fftshift(fft2(ER))/(Nx*Ny); % TRUNCATE SPATIAL HARMONICS p0 = 1 + floor(Nx/2); %p position of zero-order harmonic q0 = 1 + floor(Ny/2); %q position of zero-order harmonic p1 = p0 - floor(P/2); %start of p range p2 = p0 + floor(P/2); %end of p range q1 = q0 - floor(Q/2); %start of q range q2 = q0 + floor(Q/2); %end of q range ERF = ERF(p1:p2,q1:q2); %truncate harmonics Lecture 18b

20

10

5/6/2016

Step 5 – Spatially Vary Each Planar Grating Individually and Sum the Results For each spatial harmonic… Construct spatially variant K‐function Compute grating phase on low resolution grid Interpolate grating phase into high resolution grid Compute spatially variant planar grating Add planar grating to overall lattice

Lecture 18b

21

Step 5 – For Each Grating a) Construct K-Function Grating Orientation uc(x,y)

Uniform Kpq Function

+

Intermediate Kpq

=

 K pq

 K uc  p, q   K uc  p, q 

Intermediate Kpq

Kpq-Function

Lattice Spacing a(x,y)

and  uc  p, q  a   K r   r       r     r    uc  p, q     K x  r   K   r  cos    r      K y  r   K   r  sin    r  

 Kr  

Lecture 18b

+

=

22

11

5/6/2016

Step 5 – For Each Grating b) Solve for the Grating Phase Construct Matrix Equation  Dx  A  D y 

k x , pq  b  k y , pq 

Solve Using Least Squares A  A T A

b  A T b

Φ pq   A  b 1

Reshape Back to a 2D Grid Φ pq   pq  x, y 

Interpolate to a Higher Resolution Grid Using interp2()  pq  x, y    2, pq  x2 , y2  Lecture 18b

23

Step 5 – For Each Grating

c) Add All of the Spatially-Variant Gratings Calculate the pqth spatially variant grating 



 pq  r   a pq exp  j 2, pq  r  

Add this complex planar grating to the overall analog lattice 





 analog  r    analog  r    pq  r 

 Lecture 18b

 24

12

5/6/2016

Step 6 – Incorporate SpatiallyVariant Fill Fraction At this point, we have the analog lattice.   Set any imaginary  components to zero.    analog  r   Re  analog  r   From the analog lattice, we calculate the binary lattice with a  spatially‐variant fill fraction. 



 analog  r     r     analog  r     r 

    binary  r    1  2

For analog lattices that have a smooth cosine looking profile, the  threshold can be estimated as 



  r   cos  f  r   



Lecture 18b

25

Summary of Spatially Variant Algorithm 1. Define the spatial variance: orientation, lattice spacing, fill  fraction,... 2. Build the baseline unit cell. 3. Decompose unit cell into a set of planar gratings. 4. Truncate the set of planar gratings to a minimal set. 5. Loop over each spatial harmonic a. Construct K‐function that is uniform across the grid  according to the grating vector of the spatial harmonic. b. Solve for grating phase  from the K‐function. c. Add the planar grating to the overall lattice. 6. Incorporate spatially‐variant fill fraction.

Lecture 18b

26

13

5/6/2016

Improving Efficiency of the Algorithm

Grid Strategy   pq  r 

  pq  r 

Lecture 18b

28

14

5/6/2016

Calculating the Grid Parameters • High Resolution Unit Cell Grid – Need enough points for the FFT to converge.

 FFT  a  N  P 

• Low Resolution Lattice Grid – Need enough resolution to resolve the spatial variance. Usually this is N>10 grid cells per unit cell.

 coarse  a N • High Resolution Lattice Grid – Need enough resolution to resolve the shortest period planar grating.

 fine 

amin N

amin 

2  max  K pq 

Lecture 18b

29

Collinear Spatial Harmonics If a spatial harmonic is collinear to another (i.e. their grating vectors  are parallel), we can calculate its grating phase by scaling the grating  phase of the other.  Therefore, we only have to solve for one of them.  K1

 1  K1 We solve this  numerically.

  K 3  aK1

  2  K 2  aK1

 

     2   K1 a

2  a1 Lecture 18b

  K3  bK1



We just scale  the solution   from      . K1

3  b1 2 a

 1

Again, we  simply scale  the solution   from      . K1

30

15

5/6/2016

Identifying Collinear Planar Gratings

121 spatial harmonics

40 “unique” spatial harmonics. The rest are collinear.

Lecture 18b

31

Performance Gain by Eliminating Collinear Gratings

69% for 2D

59% for 3D Lecture 18b

32

16

5/6/2016

Eliminating Gratings According to Their Amplitude

We neglect all planar gratings with  amplitude apq less than some threshold. a pq  athreshold

athreshold  0.02 max  a pq 

A threshold that works in many cases is one that is  around 2% of the maximum apq in the expansion. Lecture 18b

33

Overall Efficiency Improvement Truncation by  Grating  Amplitude

Lecture 18b

Truncation by  Coplanar K

34

17

5/6/2016

Extras

Deformation Control (1 of 2) To control deformations of a lattice, we simply control the  deformations of the constituent planar gratings in the desired  manner.

R. C. Rumpf, et al, “Spatially‐variant periodic structures in electromagnetics,” accepted for publication in Phil. Trans. A, Dec. 2014. Lecture 18b

36

18

5/6/2016

Deformation Control (2 of 2)

R. C. Rumpf, et al, “Spatially‐variant periodic structures in electromagnetics,” accepted for publication in Phil. Trans. A, Dec. 2014. Lecture 18b

37

Compensating for Deformations Lattice Spacing Deviation

Stretched unit cells

Compressed unit cells Lattice without any  compensation. Lecture 18b

Lattice with fill fraction  compensation 38

19

5/6/2016

Overall Algorithm

R. C. Rumpf, et al, “Spatially‐variant periodic structures in electromagnetics,” accepted for publication in Phil. Trans. A, Dec. 2014. Lecture 18b

39

Arrays of Discontinuous Metallic Elements (1 of 2)

+

=

Spatially vary two planar gratings. Lecture 18b

40

20

5/6/2016

Arrays of Discontinuous Metallic Elements (2 of 2)

Place metallic elements at the intersections. Lecture 18b

41

Arrays of Metallic Elements Over Curved Surfaces

Lecture 18b

42

21