Supply Market Analysis for Certification of Forest Ecosystem Services

REPORTS Supply Market Analysis for Certification of Forest Ecosystem Services Forest Certification Bodies’ Preferences and Audit Capacity Internation...
Author: Curtis Martin
5 downloads 0 Views 1MB Size
REPORTS

Supply Market Analysis for Certification of Forest Ecosystem Services Forest Certification Bodies’ Preferences and Audit Capacity International Market Assessment Part I

Center for International Forestry Research March 2013

R e p o r t s    

Supply  Market  Analysis  for  Certification   of  Forest  Ecosystem  Services   Forest  Certification  Bodies’  Preferences  and  Audit  Capacity    

International  Market  Assessment  Part  I              

Wanggi  Jaung     Louis  Putzel    

Reports     ©  2013  Center  for  International  Forestry  Research   All  rights  reserved     Jaung,  W.  and  Putzel,  L.  2013.  Supply  Market  Analysis  for  Certification  of  Forest  Ecosystem  Services:   Forest  Certification  Bodies’  Audit  Capacity  and  Preferences.  Report.  CIFOR,  Bogor,  Indonesia.     CIFOR   Jl.  CIFOR,  Situ  Gede   Bogor  Barat  16115   Indonesia     T   +62  (251)  8622-­‐622   F   +62  (251)  8622-­‐100   E   [email protected]      

cifor.org  

    This   report   and   work   is   part   of   the   Forest   Stewardship   Council’s   ForCES   project   (Forest   Certification   for   Ecosystem   Services)   coordinated  by  FSC  and  funded  by  UNEP  through  a  grant  of  the  GEF.  Co-­‐financing  of  the  work  is  provided  by  CIFOR.  The  views   expressed  herein  are  those  of  the  authors  and  can  in  no  way  be  taken  to  reflect  the  official  opinion  of  UNEP-­‐GEF.  

 

 

Table  of  contents      

Summary  

v  

Abbreviations  

vi  

Acknowledgements  

vi  

1.   Introduction  

1  

2.   Certification  bodies  and  certification  

3  

3.   Material  and  methods  

5  

3.1.  Data  collection  

5  

3.2.  Survey  design  

6  

3.3.  Factor  analysis  

10  

3.4.  Discrete  choice  models  

10  

3.5.  Three  types  of  supply  market  structures  

11  

4.   Results  

13  

4.1.  Capacity  to  audit  ecosystem  services  provision  

13  

4.2.  Capacity  to  audit  bundled  ecosystem  services  

14  

4.3.  Preferences  for  certification  attributes  

15  

4.4.  Supply  market  structures  analysis  

18  

5.   Discussion  

19  

5.1.  Three  enabling  conditions  for  certification  

19  

5.2.  Supply  market  structures  of  certification  

20  

6.   Conclusions  

22  

7.   References  

23  

Appendix  I:  ecosystem  services  selected  for  the  market  assessment  

26  

Appendix  II:  discrete  choice  models  

28  

   

Random  utility  models  

28  

Model  specifications  

29    

  iii  

List  of  figures  and  tables    

Figures   1.   Certification  bodies  in  a  certification  system  and  market  

3  

2.   Hypothetical  relationship  between  certification  costs  and  CBs’  profits  

9  

3.   A  framework  for  analyzing  certification’s  supply  markets  

11  

4.   Estimated  capacity  of  CBs  to  audit  ecosystem  services  

13  

5.   Scree  plot  of  the  factor  analysis  

14  

6.   Component  plot  of  the  factor  analysis  showing  the  three  significant  groupings  of  variables   corresponding  to  identified  ecosystem  services  and  the  relative  auditing  capacity  of  CBs  

15  

 

Tables   1.   2.   3.   4.   5.   6.   7.   8.   A1.      

iv    

Survey  participants   Selected  ecosystem  services  for  audit  capacity  analyses   Attributes  and  levels  used  for  discrete  choice  experiments   An  example  of  an  experimental  design  set   Result  of  factor  analysis   Descriptions  of  Factor  1,  2,  and  3   Results  of  the  logit  models   Result  of  the  supply  market  structure  analysis   A  result  of  the  analysis  of  ecosystem  services  projects    

5   6   7   10   14   14   16   17   27  

Summary     Certification  for  forest  ecosystem  services  has  the  potential  to  underpin  market-­‐based  mechanisms   governing  ecosystem  services,  such  as  PES  and  REDD+  schemes.  This  study  examines  this  potential   by  identifying  enabling  conditions  for  certification  and  analyzing  certification’s  current  supply  market   structures.  The  enabling  conditions  were  identified  by  discrete  choice  models.  The  supply  market   structures  were  defined  and  analyzed  by  a  framework  that  is  based  on  certification  bodies  (CBs)’   estimated  capacity  to  audit  ecosystem  services  and  the  result  of  discrete  choice  experiments.  The   study  surveyed  accredited  CBs  of  the  Forest  Stewardship  Council  (FSC)  and  Programme  for  the   Endorsement  of  Forest  Certification  (PEFC).       Findings  consist  of  three  components:  enabling  conditions,  CBs’  audit  capacity,  and  ecosystem   services  that  are  adopted  and  not  yet  adopted  into  CBs’  auditing  businesses.  First,  three  identified   enabling  conditions  for  certification  of  forest  ecosystem  services  include:  secured  ownership  of   ecosystem  services,  low  certification  cost,  and  high  credibility  of  certification.  Second,  watershed   protection  services  require  audit  capacity  building  of  CBs  in  order  to  develop  a  new  certification   scheme.  Third,  the  supply  market  structure  analysis  shows  which  ecosystem  services  have  been   more  or  less  adopted  into  CBs’  auditing  businesses.  On  the  one  hand,  ecosystem  services,  including   soil  conservation  and  ecotourism  for  scenic  beauty  and  cultural  experience,  have  been  less  adopted   into  auditing  services  of  CBs.  These  services  might  be  associated  with  lack  of  demand  from  forest   owners.  On  the  other  hand,  ecosystem  services  of  carbon  storage  and  ecotourism  for  biodiversity   have  already  well  integrated  into  CBs’  auditing  business.  To  secure  CBs  in  a  new  certification  scheme   that  target  these  ecosystem  services,  the  new  scheme  needs  to  provide  better  advantages  over  the   existing  schemes,  such  as  a  more  efficient  standard,  lower  certification  cost,  and  higher  credibility.   These  ecosystem  services  adopted  by  CB’s  auditing  business  also  signal  the  presence  of  forest   owners’  demand  for  certification  schemes  for  these  ecosystem  services.      

  v  

Abbreviations     CARs:  Corrective  action  requests   CB:  Certification  bodies   CCB:  Climate,  Community  and  Biodiversity   CDM:  Clean  Development  Mechanism   CIFOR:  Center  for  International  Forestry  Research   CSA:  Canadian  Standards  Association   ES:  Ecosystem  Service(s)   ForCES:  Forest  Certification  for  Ecosystem  Services   FSC:  Forest  Stewardship  Council   GEF-­‐UNEP:  Global  Environment  Facility-­‐  United  Nations  Environment  Programme   GIS:  Geographic  information  system   ICPs:  Integrated  Conservation  and  Development  Projects   ICRAF:  the  World  Agroforestry  Centre   IIA:  Independence  of  irrelevant  alternatives   InVEST:  the  Integrated  Valuation  of  Ecosystem  Services  and  Tradeoffs   MA:  Millennium  Ecosystem  Assessment   PAs:  Protected  Areas   PES:  Payment  for  Ecosystem  Services   PEFC:  Programme  for  the  Endorsement  of  Forest  Certification   PRESA:  Pro-­‐Poor  Rewards  for  Environmental  Services  in  Africa   REDD+:  Reducing  Emissions  from  Deforestation  and  Forest  Degradation   RUPES:  Rewarding  Upland  Poor  for  Environmental  Services  programme   VCS:  Voluntary  Carbon  Standard        

Acknowledgements     The  authors  thank  the  FSC  who  supported  this  market  study  and  GEF-­‐UNEP  for  its  financial  support.   We  also  appreciate  all  the  participants  of  the  survey.

vi    

 

1. Introduction     Since  its  emergence  in  the  early  1990s,  forest  certification  has  been  growing  globally.  It  was  initially   designed  as  a  market-­‐oriented  tool  that  governs  sustainable  forest  management  by  increasing   consumer  demand  for  products  obtained  from  better-­‐managed  forests  (Upton  and  Bass,  1995;   Overdevest  and  Rickenbach,  2006).  The  scope  of  a  certification  label  was  used  to  remain  mainly  in   timber.  In  addition  to  timber,  however,  forests  provide  other  diverse  services  of  great  benefit  to   society  and  human  well-­‐being,  such  as  watershed  protection,  climate  regulation,  maintenance  of   cultural  heritage,  improvement  of  soil  and  erosion  prevention  (Costanza  et  al.,  1997;  MA,  2005).  In   view  of  this  fact,  there  have  been  increasing  global  initiatives  to  protect  and  enhance  provision  of   ecosystem  services  through  regulatory  and  market-­‐based  schemes.  Some  major  initiatives   undertaken  include  payment  for  ecosystem  services  (PES),  voluntary  carbon  markets,  Clean   Development  Mechanism  (CDM),  and  Reducing  Emissions  from  Deforestation  and  Forest   Degradation  (REDD+).  However,  many  of  these  schemes  are  still  in  their  infancy  and  face  various   challenges.  Challenges  that  PES  and  REDD+  face  include  asymmetric  information  between  buyers   and  sellers  (Ferraro,  2008),  high  transaction  costs  (van  Noordwijk  et  al.,  2008;  Ghazoul  et  al.,  2009;   Vatn,  2010),  weak  institutional  capacity  (Corbera  and  Brown,  2008),  and  insufficient  safeguards  of   the  interests  of  local  communities  (Jagger  et  al.,  2012).  In  addition  adequate  systems  are  lacking  to   measure,  report,  and  verify  ecosystem  services  (or  MRV  systems,  Herold  and  Skutsch,  2009)  as  well   as  to  ensure  the  provision  of  the  promised  services  upon  which  the  condition  of  payment  or  reward   is  based  (or  conditionality,  Ghazoul  et  al.,  2009).     Theoretically  forest  certification  has  the  potential  to  alleviate  these  challenges  (Ghazoul  et  al.,  2009;   Entenmann,  2010;  Merger  et  al.,  2011;  Kanowski  et  al.,  2012;  Pettenella  and  Brotto,  2012).  First,   certification  can  reduce  asymmetric  information  between  ecosystem  services  sellers  and  buyers  if  its   credibility  (or  “credence”)  is  secured  (Rametsteiner,  2002;  Zorn  et  al.,  2009).  Once  certification  gains   a  trust  of  the  buyers  by  its  sound  performance,  the  buyers  can  readily  access  to  information  that   adequate  quality  (or  provision)  of  ecosystem  services  is  guaranteed  by  simply  checking  a  label  of   certification.  In  turn  certification  is  able  to  balance  information  on  the  quality  of  certified  services   between  the  buyers  and  sellers.     Second,  theoretically  certification  can  reduce  transaction  costs  through  several  of  its  inherent   qualities.  Service  buyers  can  reduce  the  costs  of  finding  or  sourcing  ecosystem  services  (termed  the   “search  qualities”  of  the  certification).  Buyers  can  also  reduce  the  cost  of  identifying  their  expected   experience  with  the  certified  product  or  services  (through  the  “experience  qualities”  of  certification)   and  validate  claimed  values  of  the  product  of  services  (through  the  “credence  qualities”  of  the   certification)  (Zorn  et  al.,  2009).  With  environmental  quality,  the  benefits  of  credence  qualities   associated  with  certification  are  especially  high  since  it  is  hard  for  consumers  to  directly  observe  the   generation  of  credibility  (Harbaugh  et  al.,  2011);  certification  can  save  a  high  amount  of  consumers’   transaction  costs  in  trading  ecosystem  services.  Through  certification,  ecosystem  services  sellers  also   can  reduce  their  costs  of  demonstrating  the  value  of  the  service  to  buyers.  Using  certification  can  be   an  effective  and  cost  efficient  way  of  promoting  their  ecosystem  services  since  certification  with   credibility  can  more  readily  convince  consumers  than  sellers’  own  demonstration  about  service   quality.  These  reduced  transaction  costs  can  benefit  the  development  of  PES  and  REDD+.     Third,  certification  has  the  potential  to  strengthen  the  management  capacity  of  forest  owners  when   they  go  through  basic  certification  procedures  such  as  applying  standards  and  fulfilling  corrective  

1  

actions  required  after  third-­‐party  assessments.  Improving  forest  management  capacity  is  one  of  the   main  motivations  of  forest  owners  to  seek  certification  (Overdevest  and  Rickenbach,  2006;  Araujo  et   al.,  2009;  Johnstone  and  Labonne,    2009).  Also  some  certification  bodies  provide  capacity  building   for  forest  owners  who  desire  to  obtain  a  certificate  of  forest  management  although  they  do  not   directly  train  those  audited  by  them  for  transparent  auditing.  This  type  of  capacity  building  can  be   potentially  expected  from  a  certification  scheme  of  ecosystem  services,  fostering  the  capacity  of   forest  ecosystem  owners.     Fourth,  forest  certification  has  the  potential  to  safeguard  the  interests  of  local  communities  and   indigenous  people  whose  livelihoods  are  vulnerable  to  emerging  ecosystem  services  markets.  In   addition  to  ecological  and  technical  forest  management,  many  forest  certification  schemes   incorporate  social  requirements  (Vogt  et  al.,  2000).  This  is  because  sustainability  is  a  key  concept   embedded  in  forest  certification  and  achieving  it  requires  an  interdisciplinary  approach  that  takes   into  accounts  of  social,  cultural,  and  political  interactions  in  forests  (Vogt  et  al.,  2000).  For  instance,   FSC  certification  requires  forest  managers  to  recognize  and  respect  indigenous  peoples’  rights   (Principle  3)  and  community  relations  and  worker’s  rights  (Principle  4)  (FSC,  2012),  so  that  forest   owners  are  required  to  go  through  stakeholder  consultation  during  certification  assessments   (Nussbaum  and  Simula,  2005).  Canadian  Standards  Association  (CSA)  explicitly  requires  incorporating   local  values  in  decision-­‐making  procedures  of  assessing  certification  and  asks  forest  owners  to   demonstrate  an  effort  to  seek  participation  of  local  stakeholders  (Vogt  et  al.,  2000).     Fifth,  certification  has  the  potential  to  strengthen  monitoring,  reporting,  and  verifying  provision  of   ecosystem  services.  Certification  assessments  consist  of  procedures  of  auditing,  reporting,  and   complying  to  corrective  action  requests  (CARs),  key  procedures  in  obtaining  and  maintain  forest   certification  (Upton  and  Bass,  1995;  Nussbaum  and  Simula,  2005).  For  this  reason  many  forest   certification  schemes  have  developed,  improved,  or  experienced  their  certification  procedures.   These  procedures  would  be  applied  to  ecosystem  services  management  and  benefit  management.   Also  once  certification  is  placed  in  managing  ecosystem  services,  these  procedures  will  be  no  longer   voluntary  but  become  mandatory  because  certificates  cannot  be  extended  without  regular   certification  assessments.     Last  but  not  least,  lessons  from  the  development  and  implementation  of  forest  certification  have  the   potential  to  inform  the  development  of  REDD+  and  other  similar  mechanisms  (Kanowski  et  al.,   2012).  Kanowski  et  al.  (2012)  address  lessons  from  forest  certification  that  can  be  applied  to   implementation  of  REDD+.  First,  certification  has  enhanced  engagement  of  policy  networks  and   shifted  power  relations  from  the  business  sector  to  pluralistic  stakeholders  including  environmental   NGOs  and  local  communities.  Second,  certification  standards  are  generally  inter-­‐dependent  on   governmental  policies  (McDermott  et  al.,  2008),  emphasizing  the  importance  of  government  policies   that  support  market-­‐based  mechanisms  including  both  certification  and  REDD+.  In  addition  to  these   lessons,  there  are  other  lessons  from  certification  that  can  benefit  the  development  of  REDD+  such   as  enabling  conditions  for  market-­‐based  mechanisms.     However,  are  these  theoretical  benefits  of  certification  achievable  in  practice  and  under  what   conditions?  Answering  this  question  requires  scrutinizing  the  various  elements  of  certification   schemes  for  ecosystem  services.  Assessing  the  potential  to  establish  and  sustain  a  certification   system  is  critical.  In  an  attempt  to  address  this  issue  this  study  analyzes  the  enabling  conditions  and   current  supply  market  structures  for  certification.  The  analysis  was  conducted  by  analyzing  forest   certification  bodies’  capacity  to  audit  ecosystem  services  and  their  preferences  for  specific   characteristics  of  certification  schemes.    

2    

 

2. Certification  bodies1  and  certification     In  certification  for  forest  ecosystem  services,  certification  bodies  (CBs)  are  expected  to  play  similar   roles  as  to  those  they  play  in  forest  certification.  In  forest  certification,  CBs  play  various  vital  roles.   First,  CBs  perform  third-­‐party  assessment  upon  which  the  functioning  and  credibility  of  certification   relies.  Although  some  certification  schemes  adopt  first  and  second  party  assessments  such  as   ISO  9000  and  ISO  14001,  schemes  with  third  party  assessment  are  considered  the  most  credible  due   to  independence  (Nussbaum  and  Simula,  2005;  Taylor,  2005).  Second,  CBs  are  in  charge  of  auditing   procedures  of  certification  such  as  interpreting  certification  standards.  Owing  to  this  role,  their   auditing  capacity  affects  the  consistency  of  certification  requirements  and  performance  at  national   and  global  levels.  In  addition,  CBs  are  empowered  to  determine  specified  regional  requirements  for   certification2  (Upton  and  Bass,  1995;  Auld  and  Bull,  2003;  Rametsteiner  and  Simula,  2003).  Third,  CBs   connect  a  certification  system  with  certificate  holders  and  external  agents  such  as  environmental   NGOs.  In  other  words,  in  a  certification  system,  it  is  CBs  that  directly  interact  with  forest  owners  and   certification  supporters  on  the  ground  (Kiker  and  Putz,  1997).  Fig.  1.  demonstrates  how  CBs  connect   a  system  of  certification  of  ecosystem  services  and  ecosystem  services  markets.  A  certification   system  represents  the  supply-­‐side  of  certification,  and  ecosystem  services  markets  represent  the   demand-­‐side  of  certification.  Even  though  both  sides  have  various  agents,  they  rarely  have  a  direct   interaction  with  agents  in  the  other  side  of  the  certification  market,  except  for  CBs.  Thus,  the  market   demand  for  certification  can  be  conditioned  by  CBs’  business  activities  and  performance.  For   instance,  a  case  study  of  forest  certification  in  British  Columbia  in  Canada  demonstrates  how  trust   and  distrust  of  local  supporters  in  CBs  result  in  certification  development  and  growth   (McDermott,  2011).      

  Figure  1.   Certification  bodies  in  a  certification  system  and  market  

 

                                                                                                                       

1   Depending  on  literature,  a  certification  body  is  also  referred  as  a  certifying  body  (Cashore  et  al.,  2006),  certifying   organization  (Kiker  and  Putz,  1997),  certifier,  registration  body,  or  registrar  (Nussbaum  and  Simula,  2005).   2   The  proper  interpretation  of  rules  of  CBs  is  critical  because  negative  consequences  are  expected  from  CBs  when  their   rules  are  not  adequately  played.  Some  literature,  for  example,  reports  cases  in  which  certification  requirements  were   leveraged  in  such  a  way  to  serve  the  self-­‐interests  of  CBs  (Camino  and  Alfaro,  1998;  Cerutti  et  al.,  2011;  Charles,  2001).  

3  

This  study  assumes  that  CBs’  audit  capacity  and  preferred  characteristics  of  a  certification  scheme   are  highly  likely  to  determine  the  feasibility  of  developing  a  certification  scheme  and  the  business   sustainability  of  that  scheme.  First,  if  the  capacity  of  CBs  to  audit  ecosystem  services  is  not  sufficient,   establishing  a  certification  system  with  a  sound  third-­‐party  assessment  mechanism  is  not  feasible;   the  capacity  of  CBs  determines  their  ability  to  perform  objective  third-­‐party  assessments,  interpret   certification  standards,  and  monitor  ecosystem  management.       Second,  understanding  CBs’  preferred  characteristics  of  certification  is  a  necessary  condition  for  the   success  of  certification  since  sustaining  a  certification  scheme  depends  in  large  part  on  their   demand.  In  addition,  there  should  be  demand  from  multiple  CBs  for  a  given  scheme  in  order  to   assure  competitive  service  provision  and  pricing.  If  the  number  of  CBs  for  a  scheme  is  too  limited,   their  bargaining  power  would  likely  result  in  higher  audit  costs.  This  would  end  up  restricting  the   market  for  a  certification  scheme  since  high  certification  costs  would  suppress  demand  from  forest   owners.  The  preferences  of  CBs  also  indicate  the  current  demand  for  certification  from  forest   owners  since  CBs  closely  work  with  forest  owners  and  in  turn  they  are  aware  of  the  demand  of   forest  owners.  The  more  demand  for  certification  is  detected  from  forest  owners  (or  demand  from   the  demand-­‐side  in  Fig.  1.),  the  higher  chance  for  CBs  to  joint  auditing  business  for  certification.  In   this  perspective,  their  audit  capacity  and  preferences  play  significant  roles  in  building  up  a   certification  system  and  affect  the  certification  market.  Certification’s  potential  to  support  PES  and   REDD+  is  also  subject  to  these  factors.      

4    

 

3. Material  and  methods    

3.1.

Data  collection  

We  surveyed  the  accredited  certification  bodies  (CBs)  of  Forest  Stewardship  Council  (FSC)  and   Programme  for  the  Endorsement  of  Forest  Certification  (PEFC)  as  well  as  a  certification  body  of   carbon  verification  which  audits  forest  management.  The  FSC  has  28  and  the  PEFC  has  48  accredited   CBs  for  serving  their  forest  management  schemes  as  of  2012.  These  CBs  were  identified  from  the   websites  of  the  FSC,  FSC  Network  Partners,  and  the  PEFC.  CBs  only  auditing  chain  of  custody   certification  were  excluded  from  the  survey  because  the  objectives  of  the  survey  were  to  analyze  the   current  capacity  of  CBs  to  audit  provision  of  forest  ecosystem  services  and  to  ascertain  their   preferences  for  different  hypothetical  characteristics  of  certification  schemes  for  forest  ecosystem   services.  Also  one  certification  body  auditing  carbon  verification  was  identified  from  CIFOR’s   database.  Based  on  this  information,  a  total  of  158  contact  email  addresses  were  obtained,  including   the  regional  offices  of  CBs  in  different  countries.  The  survey  was  conducted  from  March  12  to  26,   2012.  Of  the  158  contacts,  20  contacts  were  not  valid  and  44  contacts  participated  in  the  survey,   corresponding  to  a  response  rate  of  32%  (=44/138).  Of  the  44  participants,  41  currently  work  in   accredited  CBs  of  the  FSC  and  PEFC,  one  is  a  consultant  auditor  who  regularly  works  with  these  CBs,   and  two  work  in  CBs  for  carbon  verification.  Table  1  identifies  the  participants.  The  survey  covered   64.29%  of  accredited  CBs  of  the  FSC  and  28.26%  of  the  counterparts  of  the  PEFC.     Table  1.   Survey  participants     FSC   PEFC  

Accredited  CBs  for  forest   management  identified   28   48  

CBs  participating   in  the  survey     18  

Percentages  

13  

28.26%  

64.29%  

 

   

 

5  

3.2.

Survey  design  

3.2.1   Survey  design  for  audit  capacity  analysis   To  estimate  certification  bodies  (CBs)’  capacity  to  audit  ecosystem  services,  the  survey  asked  the   participants  to  rate  their  organizations’  capacity  to  audit  ecosystem  services  in  a  five-­‐point  Liker   scale  (“not  at  all”,  “low  capacity”,  “medium  capacity”,  “high  capacity”,  and  “already  in  business”).  In   addition  to  these  five  options,  an  option  of  “don’t  know”  was  also  provided.  In  the  survey  we   provided  descriptions  of  these  five  points  such  that:  “not  at  all”  indicated  inability  to  audit;  “low   capacity”  indicated  difficulty  in  auditing;  “medium  capacity”  indicated  the  possibility  of  auditing;   “high  capacity”  indicated  a  high  ability  to  audit;  and  “already  in  business”  indicated  that  services   were  already  being  provided  by  their  organizations.  The  ecosystem  services  included  in  the  survey   were  selected  by  reviewing  targeted  ecosystem  services  from  a  total  of  175  projects  that  protect  or   trade  in  ecosystem  services.  The  selection  procedure  is  demonstrated  in  Appendix  I.  The  selection   resulted  in  12  selected  ecosystem  services  shown  in  Table  2.  Although  the  result  includes  ecosystem   goods  such  as  timber  and  non-­‐timber  forest  products,  we  maintained  them  in  the  survey  not  only   because  we  planned  to  analyze  their  potential  to  be  bundled  with  ecosystem  services  in  terms  of   CBs’  auditing  capacity,  but  also  because  they  are  in  the  Millennium  Ecosystem  Assessment  (MA)   framework  which  was  used  to  enumerate  the  ecosystem  services  included  in  the  projects.     Table  2.   Selected  ecosystem  services  for  audit  capacity  analyses    

Variable  name   1   Water  quality   2   Water  quantity   3   Water  risk   4   Carbon   5   Biodiversity   6   Ecotourism:  scenic   7   Ecotourism:  culture   8   Ecotourism:  biodiversity   9   Soil  conservation   10   Agriculture  goods   11   NTFP   12   Timber  

Variable  description   Watershed  protection  in  forests  for  provision  of  high  water  quality   Watershed  protection  for  provision  of  certain  quantity  of  water     Watershed  protection  to  reduce  water-­‐related  risks,  such  as  floods   Sequestrating  and  storing  carbon  in  forests  to  alleviate  climate  change   Conserving  biodiversity   Providing  scenic  beauty  through  ecotourism   Providing  cultural  experiences  through  ecotourism   Providing  biodiversity  experiences  through  ecotourism   Conserving  soil   Providing  agricultural  goods  from  forest  ecosystems   Providing  non-­‐timber  forest  products  from  forest  ecosystems   Providing  timber  from  forest  ecosystems  

   

3.2.2   Scenario  design  for  discrete  choice  models   Discrete  choice  models  are  part  of  stated  preference  techniques  commonly  used  for  market   research,  transportation  studies,  and  non-­‐market  good  valuation  (Bateman  et  al.,  2002;  Hoyos,   2010).  Discrete  choice  models  elicit  individuals’  demand  for  goods  or  services  described  in  terms  of   their  attributes  or  characteristics.  This  approach  originates  from  the  traditional  microeconomic   theory  of  consumer  behavior  postulating  that  the  purpose  of  goods  are  to  produce  specific   attributes  (Louviere  et  al.,  2000).  These  attributes  are  expressed  in  terms  of  function,  design,  and   cost  efficiency.       A  choice  experiment  design  was  selected  for  this  analysis  among  survey  designs  of  discrete  choice   models.  Discrete  choice  experiments  have  advantages  over  other  discrete  choice  models  (Bateman   et  al.,  2002),  as  well  as  over  contingent  valuation  techniques  (Adamowicz  et  al.,  1998;  Hanley  et  al.,   1998).  This  is  because  discrete  choice  experiments  consistently  support  the  economic  welfare   theory,  while  other  survey  designs  do  not,  such  as  contingent  rating  and  paired  comparisons.   Discrete  choice  experiments  provide  a  choice  of  “none”  or  “status  quo”  to  survey  respondents,  so   6    

  that  when  they  do  not  face  any  welfare  changes  from  the  given  scenarios,  they  are  able  to  choose   the  status  quo  option.  Compared  to  contingent  valuation,  discrete  choice  experiments  provide  a   deeper  description  of  trade-­‐offs  among  attributes,  offer  advantages  for  transferring  benefits,  and   allow  additional  statistical  tests.     Five  attributes  of  certification  for  forest  ecosystem  services  were  established  to  build  scenarios  of  a   discrete  choice  experiment  by  examining  motivations  of  forest  certificate  holders  and  enabling   conditions  of  forest  certification:  economic  benefits,  administrative  service,  ownership  of  the   ecosystem  services,  credibility  of  certification,  and  total  certification  costs  (Table  3).  Each  attribute’s   level  was  designed  considering  a  required  factorial  design.  The  more  levels  the  attributes  have,  the   more  survey  questions  required  to  respondents,  which  in  turn  reduces  a  response  rate;  the  attribute   levels  are  limited  to  three  at  maximum.     Table  3.   Attributes  and  levels  used  for  discrete  choice  experiments     Attributes   1   Economic  benefit  

Level  1   unknown  

Level  2   extremely  high  

Level  3    

2   Administrative   service  

yes  

no  

 

3   Ownership  of  the   ecosystem  services  

secured  

not  secured  

 

4   Credibility  of   certification  

50%  or  less  

70%  

90%  or  more  

5   Total   certification  cost  

same  as  FSC  forest   management   certification  

50%  more  than  FSC  forest   management  certification  

100%  more  than  FSC   forest  management   certification  

    These  attributes  are  embedded  in  the  assumption  that  whether  choosing  a  certification  scheme  for   forest  management  or  for  ecosystem  services,  forest  owners  would  face  similar  motivations  because   both  schemes  take  place  in  forests  and  the  main  customers  of  the  schemes  are  forest  owners  or   managers.  Similar  business  enabling  conditions  are  also  expected  because  both  schemes  are  subject   to  forest  policies  and  regulations  as  well  as  the  opportunity  costs  of  developing  forests   commercially.  Therefore,  scenarios  were  constructed  based  on  the  attributes  of  certification   (Table  3)  to  analyze  CBs’  preferences  for  certification  of  ecosystem  services,  and  the  certification   attributes  were  derived  largely  from  forest  management  certification  but  also  analysis  of  ecosystem   service  projects.     The  first  attribute,  economic  benefit,  is  a  main  motivation  of  forest  owners  to  obtain  forest   certification  (Overdevest  and  Rickenbach,  2006).  Forest  certification  is  often  promoted  as  a  market-­‐ based  tool  and  forest  owners  are  expected  to  benefit  from  certification  by  price  premiums  or  new   market  access  (Cashore  et  al.,  2005;  Durst  et  al.,  2006).  For  those  getting  a  certificate  of  ecosystem   services  are  expected  to  have  the  same  motivation.  Koellner  et  al.  (2010)  demonstrate  that  for  firms   investing  in  ecosystem  services,  economic  benefits  are  one  of  the  main  motivations,  which  supports   that  our  identification  of  this  attribute  as  a  key  attribute  in  certification  of  ecosystem  services.       The  second  attribute,  the  administrative  service,  is  based  on  a  potential  business  value  of   certification  of  ecosystem  services.  This  business  value  implies  certification’s  potential  to  build   capacity  of  forest  ecosystem  owners  via  certifying  procedures  since  the  lack  of  institutional  capacity   is  considered  as  a  challenge  to  implementing  PES  and  REDD+  (Corbera  et  al.,  2009;  Romijn  et  

7  

al.,  2012).  Among  various  types  of  capacity  building  for  forest  owners,  registering  credits  in   international  registries  was  selected  and  tested  in  this  analysis.  Examples  of  these  registries  include   Markit  Environmental  Registry  and  NYSE  Blue/APX  where  credits  of  carbon  storage  and  the   improvement  of  water  temperature  are  traded.  When  forest  owners  aim  at  selling  the  provision  of   ecosystem  services  to  the  international  markets,  registering  credits  of  ecosystem  services  is  an   essential  prerequisite.  The  registration  generally  demands  administrative  procedures  such  as   demonstration  of  ecosystem  services  and  their  management  that  are  complicated  and  challenging   for  forest  ecosystem  owners.  Even  finding  information  of  the  registries  would  be  a  challenge  for   them.  For  this  reason,  the  registration  is  dominantly  a  task  of  PES  and  REDD+  developers  in   implementing  PES  or  REDD+  projects.  However,  this  support  is  only  available  to  a  few  forest  owners   in  the  world  who  participate  in  the  development  of  these  projects;  the  potential  demand  for  this   administrative  service  is  expected  from  many  other  forest  owners  interested  in  trading  in  ecosystem   services.       The  third  attribute,  secured  ownership  of  ecosystem  services,  is  not  only  an  enabling  condition  of   forest  certification,  but  also  an  essential  condition  for  resolving  any  tenure  conflicts  among   stakeholders  in  forest  ecosystems.  First,  security  about  tenure  and  resources  right  to  forests  is  an   essential  condition  for  achieving  good  forest  management,  determining  the  success  of  forest   certification  (Nussbaum  and  Simula,  2005).  Rights  include  not  only  the  rights  of  forest  owners  or   managers  but  also  customary  rights  of  local  communities  and  indigenous  people.  Second,  without   secured  tenure,  forest  owners  have  little  incentives  to  invest  in  their  forests  including  getting  a   certificate  of  forest  management  (Durst  et  al.,  2006).  This  lack  of  incentives  would  result  in   decreasing  demand  for  certification  and  preventing  the  growth  of  certification  schemes  of  both   forest  management  and  ecosystem  services.  Third,  secured  ownership  of  ecosystem  services  plays  a   vital  role  in  reducing  conflicts  among  stakeholders  of  ecosystem  services;  it  is  a  required  condition  in   developing  market-­‐based  mechanisms  associated  with  ecosystem  services  including  certification  of   ecosystem  services  (Durst  et  al.,  2006;  Meijaard  et  al.,  2011),  PES  (Wunder  et  al.,  2008),  and  REDD+   (Larson,  2010;  Yasmi  et  al,  2012).       The  fourth  attribute,  credibility  of  certification,  is  a  fundamental  requirement  for  certification  to   reduce  asymmetric  information  between  buyers  and  sellers  (Rametsteiner,  2002).  Without   credibility  there  will  be  no  demand  for  certification  and  consequently  no  benefit  for  certified   services;  this  attribute  greatly  matters  to  both  CBs  and  certificate  holders.       The  fifth  attribute,  cost,  is  a  main  attribute  in  the  discrete  choice  experiments  as  well  as  in   implementing  certification  schemes.  In  utilizing  the  discrete  choice  experiments,  analyzing  costs  of  a   good  or  service  is  the  main  interest  of  economists  so  that  this  attribute  was  also  applied  to  this   analysis.  In  addition,  high  certification  cost  is  often  addressed  as  one  of  the  main  challenges  in   implementing  certification  schemes  of  both  forest  certification  and  eco-­‐labelling  (Durst  et  al,  2006;   Simula  et  al.,  2004;  Tikina  et  al.,  2008;  Meijaard  et  al.,  2011).  Here,  total  certification  cost  is  a  sum  of   direct  and  indirect  costs  for  forest  owners  to  obtain  certification  of  ecosystem  services  (Simula  et  al.,   2004).  In  this  cost  analysis,  costs  to  forest  owners  were  analyzed  rather  than  costs  to  CBs  for  running   auditing  business  of  certification  because  estimating  a  cost  range  for  auditing  business  of  CBs  is   highly  challenging.     This  cost  setup  based  on  forest  owners  is  rooted  in  two  assumptions.  First,  increasing  total   certification  costs  results  in  a  decrease  in  the  demand  for  audits  and  in  profits  of  CBs  (Fig.  2).  When   certification  cost  decreases  from  a  high  cost  (or  ph)  to  a  low  cost  (or  pl),  the  demand  of  forest   owners  for  certification  is  expected  to  increase  since  more  forest  owners  can  afford  a  certificate.  

8    

  This  increasing  demand  for  certification  will  in  turn  increase  the  amount  of  CBs’  audits  from  ql  to  qh.   This  increasing  demand  for  CBs’  audits  will  increase  or  decrease  profits  of  CBs,  depending  on  a  profit   zone  of  CBs  related  to  the  second  assumption.       The  second  assumption  is  that  there  are  two  different  profit  zones  of  CBs:  increasing  and  decreasing   profit  (or  π)  zones,  and  CBs  are  in  the  increasing  π  zone.  On  the  one  hand,  when  CBs  are  in  the   “increasing  π  zone,”  the  certification  cost  (or  certification  price)  to  forest  owners  is  higher  than  the   operating  cost  of  CBs  per  one  audit.  In  this  case,  the  lower  certification  cost,  the  higher  demand  for   CBs’  audits,  and  the  more  profits  CBs  can  generate.  One  the  other  hand,  when  CBs  are  in  the   “decreasing  π  zone,”  the  certification  cost  to  forest  owners  is  lower  than  the  operating  cost  of  CBs.   Thus,  decreasing  certification  cost  results  in  decreasing  profits  of  CBs.  In  this  assumption,  CBs  were   expected  in  the  increasing  π  zone  and  the  assumption  is  verified  in  Section  4.3.      

  Figure  2.   Hypothetical  relationship  between  certification  costs  and  CBs’  profits  

    Based  on  these  five  attributes  of  certification  for  forest  ecosystem  services,  eight  scenario  sets  were   generated  (Table  4).  The  eight  scenarios  were  generated  by  a  fractional  factorial  design.  AlgDesign   package  of  R  was  utilized,  following  the  method  explained  by  Louviere  et  al.  (2000)  (Aizaki  and   Nishimura,  2008).          

9  

  Table  4.   An  example  of  an  experimental  design  set     Feature   1.   Economic  benefits   The  probability  that  certification  holders  will   receive  economic  benefits  such  as  price   premiums  or  access  to  markets  from  the   ecosystem  services  certification  scheme  is:   2.   Registration  of  transactions   Certifying  bodies  register  ecosystem  services   transactions  (e.g.  trades  or  swaps)  with  relevant   market  oversight  agencies.   3.   Ownership  of  the  ecosystem  services   Property  rights  over  ecosystem  services  that   might  be  targeted  for  certification  in  your  region   are:   4.   Credibility   Evidence  that  the  certified  ecosystem  service  is   actually  produced  or  delivered  is:   5.   Cost   The  costs  of  certifying  the  service(s),  including  all   direct  and  indirect  costs,  are:  

Scheme  A  

Scheme  B  

unknown  

extremely  high  

No  

No  

secured  

secured  

50%  proven  

90%  proven  

same  as  FM   certification   costs  

50%  more  than   FM  certification   costs  

Neither  

(I  am   interested  in   neither   scheme  A   nor  B.)  

   

3.3.

Factor  analysis  

Factor  analysis  was  applied  to  examine  potential  bundles  of  audit  capacity  of  CBs.  In  conducting   factor  analysis,  the  “don’t  know”  responses  were  combined  with  the  “low  capacity”  responses  with   the  assumption  that  the  survey  respondents  are  experts  so  that  if  they  are  not  aware  of  the  capacity,   CBs  might  not  yet  have  auditing  experience  with  these  ecosystem  services  and  have  low  capacity  to   audit  them.  After  testing  various  rotations,  a  varimax  rotation  was  selected  for  the  factor  analysis.   R  2.  10.1  was  also  used  for  the  statistical  computation.    

3.4.

Discrete  choice  models  

To  examine  discrete  choice  models,  random  utility  models  were  adopted  (Train  2009).  The  models   examine  three  groups  of  variables  and  their  impacts  on  CBs’  preferences  for  joining  auditing   business  for  certification  of  ecosystem  services.  Three  variable  groups  include  attributes  of   certification  of  ecosystem  services,  sociodemographic  variables  of  CBs,  and  CBs’  capacity  to  audit   ecosystem  services.  With  these  variables,  five  logit  models  were  specified:  two  logit  models   (Model  1  and  2)  and  three  mixed  logit  models  (Model  3,  4,  and  5).  Model  1  and  3  had  the  variables   of  the  five  certification  attributes  only,  Model  2  and  4  had  the  variables  of  the  certification  attributes   and  sociodemographic  variables,  and  Model  5  had  the  variables  of  the  attributes  and  audit  capacity   of  CBs.  Detailed  logit  models  and  their  specifications  used  in  the  analysis  are  demonstrated  in   Appendix  II.      

10    

 

3.5.

Three  types  of  supply  market  structures  

A  framework  was  developed  to  analyze  the  supply  market  structures  of  certification  for  forest   ecosystem  services  by  employing  two  criteria  (Fig.  3):  CBs’  capacity  to  audit  ecosystem  services  and   its  engagement  with  certification  schemes.  The  first  criterion  was  verified  by  the  result  of  the  audit   capacity  analysis.  The  second  criterion  was  verified  by  the  result  of  Model  5  with  the  assumption   that  if  CBs  are  in  high  audit  capacity  and  already  engaged  with  certification  schemes  for  ecosystem   services,  they  have  negative  log-­‐likelihoods  with  ecosystem  services.  This  assumption  is  based  on   logic  that  high  audit  capacity  of  CBs  can  be  explained  by  two  main  factors:  internal  organizational   capacity  and  capacity  supported  by  certification  systems.  First,  internal  organizational  capacity   comes  from  internal  elements  of  CBs  such  as  auditors  and  organizational  experience  with  auditing   ecosystem  services.  For  example,  CBs’  audit  capacity  is  increased  by  auditors  having  strong   experience  in  measuring  and  monitoring  ecosystem  services.  Second,  certification  systems  can   increase  the  audit  capacity  of  CBs.  For  instance,  if  certification  adopts  standards  technically  easy  to   be  verified  or  cost  efficient  and  provides  effective  guidelines  for  CBs,  audit  capacity  of  CBs  can  be   improved.  As  a  result,  high  audit  capacity  can  be  built  by  either  of  these  criteria,  or  a  combination  of   the  two.      

  -­‐  CBs:  certification  bodies   -­‐  ES:  ecosystem  services    

Figure  3.   A  framework  for  analyzing  certification’s  supply  markets  

    With  the  two  criteria,  the  framework  defines  three  supply  market  structures  for  certification  for   ecosystem  services:  type  1,  2,  and  3  (Fig.  3).  Type  1  defines  a  supply  market  structure  where  CBs  do   not  have  sufficient  capacity  to  audit  selected  ecosystem  services.  For  these  ecosystem  services,  CBs   are  not  yet  able  to  engage  with  certification  schemes  due  to  their  limited  auditing  capacity.  Type  2   defines  a  supply  market  structure  where  CBs  already  have  sufficient  capacity  to  audit  selected   ecosystem  services.  This  sufficient  capacity  mainly  comes  from  institutional  capacity  derived  from   expertise  in  certification.  For  these  ecosystem  services,  however,  not  many  certification  schemes  are   adopted  by  the  CBs’  auditing  business.  This  potentially  signals  that  the  selected  ecosystem  services   are  not  in  the  high  demand  for  certification  from  forest  owners  (or  the  demand-­‐side  of  the  

11  

certification  market  in  Fig.  1)  as  well  as  that  a  new  certification  scheme  does  not  have  high   competition  to  be  integrated  into  auditing  businesses  of  CBs.  Type  3  defines  a  supply  market   structure  where  CBs  already  have  the  capacity  to  audit  selected  ecosystem  services  as  in  type  2.  In   type  3,  however,  the  capacity  was  mainly  developed  specifically  for  certification  schemes  with  which   CBs  are  currently  engaged.  The  existence  of  this  capacity  indicates  the  potential  demand  for   certification  schemes  for  selected  ecosystem  services.  Also,  CBs  might  join  a  new  certification   scheme  only  if  this  new  scheme  provides  distinguishable  advantages  over  the  schemes  that  they  are   engaged  with,  such  as  higher  profits  or  demand  from  forest  owners:  high  competition  might  exist  for   a  new  certification  scheme.      

12    

 

4. Results    

4.1.

Capacity  to  audit  ecosystem  services  provision  

Most  of  the  forest  certification  bodies  (CBs)  indicated  that  their  capacity  is  near  or  above  medium   capacity  although  there  are  variations  among  ecosystem  services  (Fig.  4.).  The  highest  audit  capacity   was  observed  in  CBs  certifying  ecosystem  goods  such  as  timber  products,  non-­‐timber  forestry   product  (NTFP),  and  agricultural  product.  Their  capacity  to  audit  the  services  of  biodiversity   conservation  and  carbon  storage  were  also  evaluated  as  high,  though  not  as  high  as  for  goods.  In   comparison,  medium-­‐level  capacity  was  observed  in  CBs  or  auditing  the  services  of  ecotourism  for   cultural  experiences,  biodiversity  conservation,  and  scenic  beauty,  and  soil  conservation.  The  lowest   audit  capacity  observed  was  for  services  reducing  water  risk  and  improving  water  quality   and  quantity.    

  (Capacity  descriptions)   1.  not  at  all:  not  feasible  to  audit   2.  low  capacity:  challenging  to  audit   3.  medium  capacity:  might  be  possible  to  audit   4.  high  capacity:  highly  feasible  to  audit   5.  already  in  business:  services  are  already  in  business    

Figure  4.   Estimated  capacity  of  CBs  to  audit  ecosystem  services  

 

 

13  

4.2.

Capacity  to  audit  bundled  ecosystem  services  

Three  factors  were  identified,  i.e.  groupings  of  significantly  related  variables  corresponding  to  the   ecosystem  services  and  the  associated  relative  audit  capacity  of  CBs.  Each  factor  selected  comprised   closely  related  ecosystem  services  corresponding  to  watershed  protection,  ecosystem  goods,  and   ecotourism,  and  no  capacity  of  CBs  to  audit  services  across  those  categories  was  observed  from  the   survey.  The  three  factors  were  selected  based  on  a  scree  plot  of  eigenvalues  demonstrating  the   distinctive  slope  change  between  Comp.  3  (or  Factor  3)  and  Comp.  4  (Fig.  5.).  The  sum  of  Factor  1,  2,   and  3  represented  79.49  %  of  the  total  data  variance.  Of  rotation  methods,  the  varimax  rotation   method  was  chosen  because  it  provided  the  most  distinguishable  factor  loadings.  This  rotation  is   also  an  orthogonal  rotation  which  indicates  that  each  factor’s  correlation  is  zero  (Kaiser,  1958).  In   order  to  determine  variables  of  Factor  1,  2,  and  3,  cut  values  of  0.8,  0.7,  and  0.9  were  employed   respectively  (Table  5).  In  Factor  1,  variables  of  water  quality,  quantity,  and  risk  were  selected;  in   Factor  2,  variables  of  agricultural  goods,  NTFP,  and  timber  product  were  selected;  and  in  Factor  3,   ecotourism  based  on  scenic  beauty  and  cultural  experiences  were  selected  (Table  6).  According  on   the  selected  variables,  Factor  1,  2,  and  3  were  named  as  watershed  protection,  ecosystem  goods,   and  ecotourism  respectively.         Table  5.   Result  of  factor  analysis   Factor  analysis:  varimax  (factanal)   Factor Factor Ecosystem  services   1   2   Water  quality   0.94   0.16   Water  quantity   0.85   0.07   Water  risk   0.92   0.12   Carbon   0.63   0.36   Biodiversity   0.44   0.50   Ecotourism:  scenic   0.22   0.15   Ecotourism:  culture   0.19   0.17   Ecotourism:   0.37   0.41   biodiversity   Soil  conservation   0.47   0.67   Agriculture  goods   0.30   0.83   NTFP   0.09   0.88   Timber   0.01   0.70   Cut   v alues   >0.8   >0.7    

Factor 3   0.21   0.35   0.09   0.25   0.51   0.95   0.96   0.64   0.25   0.25   0.16   0.07   >0.9  

Figure  5.   Scree  plot  of  the  factor  analysis    

  Table  6.   Descriptions  of  Factor  1,  2,  and  3   Factors   Factor1   Factor2   Factor3    

Selected  variables   Water  quality,  Water  quantity,  and  Water  risk   Agriculture  goods,  NTFP,  and  timber   Ecotourism:  scenic,  and  Ecotourism:  culture    

Factor  names   Proportion  variance   Watershed  protection   30.00%   Ecosystem  goods   25.43%   Ecotourism   24.06%   Final  communality  estimates   Total  =  79.49%  

    A  component  plot  was  drawn  from  the  factor  analysis,  demonstrating  patterns  of  ecosystem  services   in  terms  of  CBs’  audit  capacity  (Fig.  6.).  The  plot  shows  services  of  carbon  sequestration  or  storage  is   close  to  Factor  1  (or  watershed  protection),  services  of  soil  conservation  is  close  to  Factor  2  (or  

14    

  ecosystem  goods),  and  services  of  providing  ecotourism  through  biodiversity  is  close  to  Factor  3  and   to  the  variable  service  of  biodiversity  conservation.    

  Figure  6.   Component  plot  of  the  factor  analysis  showing  the  three  significant  groupings  of  variables   corresponding  to  identified  ecosystem  services  and  the  relative  auditing  capacity  of  CBs  

   

4.3.

Preferences  for  certification  attributes  

The  result  of  the  logit  model  analysis  including  Model  1  and  2  are  shown  in  Table  7.  Both  models  had   significant  goodness  of  fit  in  the  likelihood  ratio  tests.  The  McFadden  R-­‐squares  demonstrate  that   Model  2  (0.103)  had  overall  model  fitness  higher  than  Model  1  (0.084).  In  Model  2  certification   attributes  meeting  5%  significant  level  were  secured  ownership  of  ecosystem  services,  low   certification  costs,  and  market  benefits.  Unlike  the  other  attributes,  the  cost  attribute  had  a  negative   log-­‐likelihood  ratio  supporting  the  assumption  that  the  utility  of  CBs  would  decrease  by  increasing   total  certification  costs  to  forest  owners.  Although  credibility  had  a  high  log-­‐likelihood  ratio  (1.19),   its  significance  level  remained  in  between  5%  and  10  %.  Sociodemographic  variables  achieving  5%   significant  level  were  “years-­‐in-­‐business”  and  “auditing  only  in  developed  countries.”  However,  the   log-­‐likelihood  ratio  (0.017)  of  business  years  was  negligible.  The  result  of  the  Hausman-­‐McFadden   test  shows  that  the  p-­‐value  (0.90)  of  the  test  was  close  to  0.10;  the  IIA  assumption  of  the  logit   models  was  rejected  with  5%  significant  level.            

  15  

Table  7.   Results  of  the  logit  models   Logit  models     ASC   (Std.  E)   Market     benefits   (Std.  E)   ES  market     registration     service   (Std.  E)   Secured  ES  ownership   (Std.  E)  

 

Model  1   -­‐1.213540   **   (0.01192)     0.540140   **   (0.01047)    

 

Model  2   -­‐4.61E-­‐01   (0.39831)       5.55E-­‐01   ***   (0.00935)    

 

0.198850   2.04E-­‐01   (0.32747)     (0.31919)     0.743540   ***     7.44E-­‐01    ***   (0.00020)   (0.00022)        Credibility   1.190660   *   1.19E+00    *   (Std.  E)   (0.06728)   (0.07107)     Cost   -­‐0.622710   ***   -­‐6.27E-­‐01    ***   (Std.  E)   (0.00013)   (0.00013)        -­‐1.74E-­‐02    **     Year     (Std.  E)       (0.03919)     Employee     1.14E-­‐05    

(Std.  E)       (0.37656)   Developing  countries       -­‐1.18E-­‐01   (Std.  E)       (0.75007)   Developed         countries   -­‐8.47E-­‐01   (Std.  E)       (0.00168)     -­‐315.68     Log-­‐Likelihood:   -­‐309.33   Likelihood  ratio  test                  Chisq     58.492       71.188                Pr(>Chisq)   2.49E-­‐11   ***     8.90E-­‐12   McFadden  R-­‐square   0.08479   0.10319     test   Hausman-­‐McFadden     chisq  =  2.1323,  df  =  6,  p-­‐value  =  0.9071   alternative  hypothesis:  IIA  is  rejected  

        ***          ***    

***0.01  significant  level,  **  0.05  significant  level,  *0.10  significant  level  with  two-­‐tailed  tests.   -­‐  ASC:  Alternative  Specific  Constant  

    The  result  of  the  mixed  logit  analysis  including  Model  3,  4,  and  5  are  described  in  Table  8.  All  the   models  met  0.01%  significant  level  in  their  likelihood  ratio  tests  and  were  not  restricted  to  the   independence  of  irrelevant  alternatives  (IIA)  assumption.  All  the  mixed  logit  models  had  McFadden   R-­‐squares  higher  than  the  logit  models,  and  Model  5  had  the  highest  McFadden  R-­‐square  (0.31).  In   Model  5  certification  attributes  meeting  5%  significant  level  were  secured  ownership  of  ecosystem   services  and  total  certification  cost,  while  the  market  benefits  attribute  was  only  significant  with  10%   significant  level.  Sociodemographic  variables  meeting  5%  significant  level  were  ecotourism  for  scenic   beauty  and  cultural  experiences  (Factor  3),  ecotourism  for  biodiversity,  and  soil  conservation.    

16    

    Table  8.   Results  of  the  mixed  logit  models   Mixed  logit  models   Model  3    

ASC   (Std.  E)  

-­‐1.48039   (0.08103)  

Model  4   *    

Market   benefits   (Std.  E)  

0.65552   (0.12584)  

   

ES  market   registration   service   (Std.  E)  

0.52968   (0.13089)  

Secured  ES   ownership   (Std.  E)  

1.47485   (0.00005)  

***  

   Credibility   (Std.  E)  

2.34911   (0.06375)  

 *  

Cost   (Std.  E)  

-­‐1.68578   (0.00010)  

 ***  

         

 

   

   

     

-­‐1.02E+00   (0.38034)  

Market   benefits   (Std.  E)  

6.41E-­‐01   (0.14185)  

   

Secured  ES   ownership   (Std.  E)  

1.28007   (0.00038)  

***    

   Credibility   (Std.  E)  

2.02998   (0.10267)  

   

Cost   (Std.  E)  

-­‐1.37466   (0.00054)    

***      

Watershed     (Factor  1)   (Std.  E)  

0.20827   (0.40851)  

   

Ecosystem  goods   (Factor  2)     (Std.  E)  

-­‐0.17370   (0.59281)  

   

Ecotourism   (Factor  3)   (Std.  E)  

0.78395   (0.02125)  

**    

Carbon   (Std.  E)  

-­‐0.41677   (0.08548)  

*    

       

Biodiversity   (Std.  E)   Ecotourism:   biodiversity   (Std.  E)  

-­‐0.63106   (0.15135)  

   

-­‐1.33097   (0.01009)  

***    

   

Soil  conservation   (Std.  E)  

1.43875   (0.00000)  

***    

 

-­‐237.23  

-­‐1.68E+00   (0.00014)  

-­‐5.93E-­‐03   (0.84865)  

Employee   (Std.  E)  

-­‐1.20E-­‐05   (0.76477)  

Developing   countries   (Std.  E)  

9.09E-­‐01   (0.16657)  

Developed   countries   (Std.  E)  

-­‐9.96E-­‐01   (0.09188)  

       

       

   

   

 

   

   

 

   

   ***      

Year   (Std.  E)  

   

0.29978  

0.36953   (0.27662)  

Cost   ((Std.  E)  

       

McFadden     R-­‐square  

ES  market   registration   service   (Std.  E)  

 

   

Likelihood  ratio  test            Chisq     206.81            Pr(>Chisq)     2.20E-­‐16  

*    

1.99E+00   (0.13734)  

   

-­‐241.52  

0.78402   (0.06507)  

   

   Credibility   (Std.  E)  

   

Log-­‐Likelihood:  

Market     benefits   (Std.  E)  

   

***  

   

 

   

1.40E+00   (0.00007)  

   

 

-­‐0.59063   (0.73666)  

Secured  ES   ownership   (Std.  E)  

   

 

  ASC   (Std.  E)  

4.55E-­‐01   (0.19110)  

 

   

Model  5    

ES  market   registration   service   (Std.  E)  

 

   

   

  ASC   (Std.  E)  

 

            *    

       

       

    ***  

-­‐239.95   209.95   2.20E-­‐16  

 

 

0.30435  

 

 

     

    ***    

 

215.38   2.20E-­‐16    

0.31222  

  ***    

***0.01  significant  level,  **  0.05  significant  level,  *0.10  significant  level  with  two-­‐tailed  tests.   -­‐  ASC:  Alternative  Specific  Constant    

 

  17  

4.4.

Supply  market  structures  analysis  

The  framework  analysis  identified  that  watershed  protection  (Factor  1)  is  in  type  1  of  the  supply   market  structure  (no  audit  capacity),  ecotourism  (Factor  3)  and  soil  conservation  are  in  type  2   (institutional  audit  capacity),  and  carbon  storage  and  ecotourism  for  biodiversity  experience  are  in   type  3  (audit  capacity  developed  for  a  certification  scheme)  (Table  8).  The  first  criterion   (presence/absence  of  high  audit  capacity)  was  verified  with  all  the  variables  of  ecosystem  services  in   the  audit  capacity  analysis.  On  the  other  hand,  due  to  some  insignificant  results  from  the  mixed  logit   model,  the  second  criterion  (institutional  vs.  certification-­‐specific  audit  capacity)  was  available  for   the  supply  market  structure  analysis  only  for  the  variables  of  ecotourism  (Factor  3),  carbon  storage,   ecotourism  (for  biodiversity),  and  soil  conservation.      

18    

 

 

5. Discussion    

5.1.

Three  enabling  conditions  for  certification  

In  order  for  certification  to  support  REDD+  and  PES  schemes,  establishing  a  functional  certification   system  would  be  a  logical  prerequisite.  For  such  a  system  to  work  in  a  rational  market,  a  certain   number  of  enabling  conditions  is  required.  This  study  identified  three  enabling  conditions  likely  to  be   required  in  order  to  attract  the  adherence  of  CBs.  There  are  secured  ownership  of  ecosystem   services,  low  cost  of  certification,  and  high  credibility  of  certification.       First,  secured  ownership  is  critical  as  shown  in  the  mixed  logit  models  (log-­‐likelihood  ≥  1.28;   significance  <  1%).  It  showed  that  participating  CBs  consider  this  attribute  highly  important  when   choosing  a  certification  scheme.  This  finding  indicates  that  conflicting  or  unclear  ownership  of   ecosystem  services  would  work  as  a  barrier  to  implementing  certification  for  ecosystem  services.   Although  forest  certification  is  sometimes  used  as  a  strategy  to  reinforce  forest  rights  or  tenure   especially  by  local  communities  and  indigenous  peoples  (Bass  et  al.,  2001;  Taylor,  2005),  issuing  a   certificate  at  the  first  place  is  not  feasible  if  forests  involve  deep  social  conflicts  and  ambiguous   ownerships  of  ecosystem  services.  In  such  circumstances  identifying  an  owner  of  ecosystem  services   is  especially  challenging.  Meijaard  et  al.  (2011)  point  out  that  for  less  tangible  eocsystem  services   such  as  watershed  protection  and  carbon  storage,  the  relationships  between  resources,  resource   onwer,  and  stakeholders  become  less  clear  compared  to  goods  such  as  timber,  which  highlights  the   importance  of  clear  and  secured  ownership  in  implementing  certification  for  ecosystem  services.   Many  REDD+  studies  also  show  that  weak  and  insecure  forest  and  carbon  ownership  is  one  of  the   main  challenges  in  developing  REDD+,  corroborating  the  significance  of  this  enabling  condition   (Sunderlin  et  al.,  2008;  Sunderlin  et  al.,  2009;  Larson,  2010;  Larson  et  al.,  2012;  Yasmi  et  al.,  2012).     Second,  low  cost  is  a  requried  enabling  condition:  the  cost  of  certification  of  ecosystem  services   must  not  be  higher  than  the  cost  of  forest  management  certification.  In  the  mixed  logit  models,  the   cost  attribute  (-­‐1.68  ≤  log-­‐likelihood  ≤  -­‐1.37;  significance  <  1%)  determined  that  the  probability  that   CBs  would  join  a  certification  scheme  decreased  when  certification  costs  increased,  which  is  likely   due  to  the  inability  of  forest  owners  to  pay  for  the  certification.  In  forest  certification,  high   certification  cost  has  been  frequently  identified  as  a  constraint  to  expand  forest  certification,   especially  for  small  forest  owners  and  in  developing  countries  (Butterfield  et  al.,  2005;  Durst  et  al.,   2006).  The  costs  of  certification  of  ecosystem  services  can  be  divided  into  direct  and  indirect  costs,   as  in  certification  of  forest  management  (Simula  et  al.,  2004).  The  direct  costs  are  the  auditing  costs   from  CBs  including  initial  assessment  costs  and  annual  auditing  costs,  and  the  indirect  costs  are  the   costs  to  meet  certification  standards  such  as  costs  for  improving  forest  management.  In  the  case  of   certification  for  ecosystem  services,  indirect  costs  are  expected  to  be  higher  than  those  of  forest   certification  because  ecosystem  services  management  is  not  only  a  less  well-­‐known  concept  to   forest  owners  but  is  also  more  complex,  compared  to  forest  or  timber  management  (Kiker  and  Putz,   1997;  Kremen,  2005;  Patterson  and  Coelho,  2009).  Therefore,  more  corrective  actions  are  to  be   expected  with  certification  of  ecosystem  services,  resulting  in  higher  indirect  costs.  In  this  manner,   certification  of  ecosystem  services  should  take  strategies  to  reduce  costs,  such  as  developing  cost-­‐ effective  standards  and  building  the  management  capacity  of  forest  owners.     Third,  high  credibility  is  required.  Compared  to  the  previous  two  conditions,  this  attribute  received   less  significant  levels  (between  6%  to  13%)  but  higher  log-­‐likelihood  ratios  (above  1.99)  from  the  

  19  

mixed  logit  models.  Credibility  is  the  main  value  of  certification.  Certification  credibility  is  subject  to   the  level  of  asymetric  information  in  the  market  of  certified  services,  reputations  of  certifcate   holders,  and  uncertain  standards  (Harbaugh  et  al.,  2011).  Certification  gives  credence  to  the  impact   of  sustainable  management,  the  environmental  impact  which  often  cannt  be  directly  observed  by   consumers,  so  that  certification  can  generate  a  greater  value  if  certificate  holders  are  associated   with  activities  with  potentially  negative  environmental  effects  (Harbaugh  et  al.,  2011).  Without   credibility,  certification  loses  its  demand  from  services  buyers,  forest  owners,  and  CBs  and  cannot   survive  in  the  market;  building  credibility  is  continuously  to  sustain  a  certification  system.      

5.2.

Supply  market  structures  of  certification  

Three  types  of  supply  market  structures  were  defined  by  CBs’  audit  capacity  and  preferences  for  the   ecosystem  services  (Fig.  3,  and  Table  8).  Our  analysis  identified  that  type  1  includes  the  services  of   watershed  protection  for  improving  water  quality  and  quantity  and  reducing  water-­‐related  risks.   Type  1  is  defined  as  the  supply  market  structure  where  CBs  do  not  have  sufficient  capacity  to  audit   ecosystem  services.  In  other  words,  capacity  of  the  supply-­‐side  of  certification  (Fig.  1)  not  sufficiently   equipped  to  provide  auditing  of  ecosystem  services  in  forests.  Thus,  strengthening  the  capacity  of   CBs  is  required  to  establish  a  certification  system  that  covers  ecosystem  services  in  this  market   structure.  Capacity  strengthening  would  be  motivated  once  CBs  sense  increasing  market  demand  for   certification  from  forest  owners.  This  result  dovetails  with  findings  from  other  literature.  For   example,  Bond  and  Mayers  (2010)  claim  that  awareness  of  market  opportunities  and  private  sector   demand  are  still  low  for  watershed  protection  services.  Experienced  in  certification  projects,  Orrego   (2005)  also  asserts  that  the  watershed  market  faces  challenges  in  that  many  watersheds  are   restricted  to  the  local  scale  and  that  it  is  often  challenging  to  identify  payers  and  suppliers  of   watershed.     Our  analysis  shows  that  type  2  includes  ecotourism  (Factor  3)  and  soil  conservation.  Type  2  is   defined  as  the  supply  market  structure  where  CBs  have  sufficient  audit  capacity  but  are  not  engaged   with  many  certification  schemes.  These  CBs  are  likely  to  adopt  a  new  certification  scheme  into  their   audit  business  if  market  demand  is  detected  from  forest  owners  because  they  have  high  capacity   and  may  wish  to  add  a  new  scheme  to  their  potentially  incomplete  portfolio.  Since  these  CBs  are  not   working  with  many  certification  schemes,  there  is  little  pre-­‐existing  competition  to  a  new  scheme.   On  the  other  hand,  this  low  engagement  suggests  a  lack  of  market  demand  or  low  profits  from   auditing  services.  Weak  market  demand  from  forest  owners  can  drive  CBs  to  abandon  their  auditing   businesses  related  to  these  certification  schemes.  Another  possibility  is  that  the  market  demand  for   certification  exists,  but  that  the  auditing  business  associated  with  this  certification  scheme  is  not   profitable  for  CBs.     Identified  as  type  2,  ecotourism  included  in  Factor  3  is  ecotourism  schemes  based  on  scenic  beauty   and  cultural  experience  (Table  5  and  6).  For  ecotourism,  currently  there  are  more  than  70  similar   certification  schemes  (Font,  2003).  However,  despite  their  increasing  number,  their  economic   viability  is  not  yet  certain  (Medina,  2005),  and  in  many  cases  a  certificate  heavily  depends  on  third-­‐ party  funding  (Font,  2007).  This  uncertain  economic  viability  partially  explains  why  the  study  result   indicates  that  not  many  forest  CBs  are  involved  with  ecotourism  certification  schemes  despite  the   large  number  of  the  certification  schemes  available  (with  the  exception  of  one  non-­‐profit  CB).   Conserving  soil  quality  or  quantity  is  required  by  a  few  agricultural  certification  schemes  (e.g.,   Global-­‐GAP)  and  the  FSC  solely  requires  minimizing  erosion  risk  (van  Dam  et  al,  2010),  which   explains  why  not  many  CBs  are  engaged  with  auditing  services  for  soil  conservation.    

20    

  Our  results  indicate  that  type  3  includes  ecotourism  for  biodiversity  experience  and  carbon  storage.   Type  3  is  defined  as  the  supply  market  structure  where  CBs  have  sufficient  audit  capacity  and   provide  auditing  services  for  specific  certification  schemes.  On  the  one  hand,  type  3  confirms   existing  market  demand  from  forest  owners  for  a  certification  scheme  for  ecosystem  services.  For   this  reason,  many  CBs  already  provide  auditing  services  for  these  certification  schemes.  On  the  other   hand,  type  3  signals  competition  among  certification  schemes  not  only  to  obtain  the  auditing   services  of  CBs,  but  also  to  gain  more  certificate  holders.  Both  CBs  and  forest  owners  will  choose  a   certification  scheme  only  if  it  has  advantages  over  the  other  schemes,  which  may  include  higher   credibility,  more  sufficient  standards,  low  costs,  and  higher  economic  benefits.       Identified  as  type  3,  ecotourism  for  biodiversity  experience  was  included  in  type  3  because  CBs   consider  that  the  FSC  scheme  covers  biodiversity  and  that  services  of  biodiversity  conservation  and   ecotourism  for  biodiversity  experience  are  similar  to  each  other.  The  principle  9  of  the  FSC  requires   forest  owners  to  consider  maintenance  of  high  conservation  value  forests  (FSC,  2012),  so  that  many   CBs  might  consider  that  they  audit  biodiversity  conservation  via  the  FSC  scheme.  Also  the  factor   analysis  demonstrates  that  audit  capacity  for  biodiversity  conservation  was  similarly  high  to  that  for   ecotourism  for  biodiversity  experience  (Fig.  6).  Carbon  storage  related  auditing  capacity  is  also  high   because  this  service  is  already  covered  by  various  certification  schemes  including  Climate,   Community  and  Biodiversity  (CCB)  and  the  Voluntary  Carbon  Standard  (VCS)  (Merger  et  al.,  2001),   and  audited  by  many  forest  CBs  for  CDM  and  REDD+.      

  21  

6. Conclusions     This  market  analysis  focuses  on  the  supply-­‐side  of  certification  (Fig.  1),  identifying  three  enabling   conditions  and  three  supply  market  structures.  For  certification  to  support  other  market-­‐based   mechanisms  successfully  such  as  PES  and  REDD+,  the  fundamental  enabling  condition  that  must  be   met  are:  secured  ownership  of  ecosystem  services,  low  certification  costs,  and  high  credibility  of   certification  to  forest  owners  as  well  as  CBs.       In  the  identification  of  supply  market  structures,  we  found  that  CBs  have  relatively  low  capacity   (type  1)  to  audit  watershed  protection  services.  If  a  new  certification  scheme  that  includes   watershed  services  is  developed,  it  would  need  to  be  accompanied  by  major  capacity  building  of  CBs   to  audit  those  services.     CBs  have  high  capacity  to  audit  services  of  soil  conservation  and  ecotourism  for  scenic  beauty  and   cultural  experience,  but  their  business  does  not  currently  cover  those  services  (type  2).  Therefore,   these  may  be  a  potentially  untapped  opportunity  provide  certification  of  those  services  without  a   large  involvement  in  auditing  capacity.  On  the  other  hand,  the  lack  of  coverage  of  these  ecosystem   services  may  be  associated  with  lack  of  demand  from  forest  owners,  which  would  need  to  be   established  before  launching  a  scheme  including  these  ecosystem  services.     Finally,  CBs  have  high  capacity  to  audit  carbon  storage  and  ecotourism  for  biodiversity  experience,   and  there  are  already  many  CBs  that  already  engage  in  auditing  of  schemes  covering  those  services   (type  3).  The  fact  that  CBs  are  already  engaged  in  auditing  these  schemes  is  indicative  of  existing   demand  from  forest  owners.  On  the  other  hand,  for  a  new  certification  scheme  to  succeed  in  the   areas  of  carbon  storage  and  ecotourism,  it  would  need  to  provide  advantages  over  the  existing   schemes  already  audited  by  these  CBs.  Such  advantages  might  include  a  more  efficient  standard,   lower  certification  cost,  and  higher  credibility.     These  findings  would  benefit  the  development  of  a  scheme  for  certification  of  ecosystem  services  by   demonstrating  which  strategies  should  be  taken  into  account  and  which  ecosystem  services  likely   face  stronger  market  opportunities  or  challenges  in  terms  of  the  supply  market  of  certification.  In   future  studies,  it  is  also  necessary  to  analyze  the  demand-­‐side  of  certification  (Fig.  1),  which  includes   forest  owners  and  stakeholders  of  PES  and  REDD+  schemes.  These  demand-­‐side  studies  would  assist   in  completing  the  picture  of  certification’s  potential  to  underpin  PES  and  REDD+  schemes.  

22    

 

7. References     Adamowicz,  W.,  Boxall,  P.,  Williams,  M.,  &  Louviere,  J.  1998.  Stated  preference  apporaches  for  measuring   passive  use  values:  choice  experiments  and  contingent  valuation.  American  Agricultural  Economics,   80,  64-­‐75.   Aizaki,  H.,  &  Nishimura,  K.  2008.  Design  and  analysis  of  choice  experiments  using  R:  A  brief  introduction.   Agricultural  Information  Research,  17(2),  86-­‐94.   Araujo,  M.,  Kant,  S.,  &  Couto,  L.  2009.  Why  Brazilian  companies  are  certifying  their  forests?  Forest  Policy  and   Economics,  11,  579-­‐585.   Auld,  G.,  &  Bull,  G.  Q.  2003.  The  institutional  design  of  forest  certification  standards  initiatives  and  its  influence   on  the  role  of  science:  the  case  of  forest  genetic  resources.  Journal  of  Environmental  Management,   69(1),  47-­‐62.   Bass,  S.,  Thornber,  K.,  Markopoulos,  M.,  Roberts,  S.,  &  Grieg-­‐Gran,  M.  2001.  Certification’s  Impacts  on  Forests,   Stakeholders  and  Supply  Chains:  Instruments  for  sustainable  private  sector  forestry  series.  London:   International  Institute  for  Environment  and  Development   Bateman,  I.  J.,  Carson,  R.  T.,  Day,  B.,  Hanemann,  M.,  Hanley,  N.,  Hett,  T.,  et  al.  2002.  Economic  Valuation  with   Stated  Preference  Techniques:  A  Manual.  Cheltenham:  Edward  Elgar  Publishing  Limited.   Bond,  I.,  &  Mayers,  J.  2010.  Fair  deals  for  watershed  services:  Lessons  from  a  multi-­‐country  action-­‐learning   project.  London:  International  Institute  for  Environment  and  Development.   Butterfield,  R.,  Hansen,  E.,  Fletcher,  R.,  &  Nikinmaa,  H.  2005.  Forest  Certification  and  Small  Forest  Enterprises:   Key  Trends  and  Impacts  -­‐  Benefits  and  Barriers.  Washington  D.C.:  Forest  Trends.   Camino,  R.  d.,  &  Alfaro,  M.  1998.  Rural  Development  Forestry  Network:  Certification  in  Latin  America:   Experience  to  Date.  London:  Rural  Development  Forestry  Network.   Cashore,  B.,  Kooten,  C.  v.,  Vertinsky,  I.,  Auld,  G.,  &  Affolderbach,  J.  2005.  Private  or  self-­‐regulation?  A   comparative  study  of  forest  certification  choices  in  Canada,  the  United  States  and  Germany.  Forest  Policy   and  Economics,  7,  53-­‐69.   Cashore,  B.,  Gale,  F.,  Meidinger,  E.,  &  Newsom,  D.  2006.  Confronting  Sustinability:  Forest  Certification  in   Developing  and  Transitioning  Countries  (No.  8).  New  Haven:  Yale  School  of  Forestry  &   Environmental  Studies.   Cerbu,  G.  A.,  Swallow,  B.  M.,  &  Thompson,  D.  Y.  2011.  Locating  REDD:  A  global  survey  and  analysis  of  REDD   readiness  and  demonstration  activities.  Environmental  Science  &  Policy,  14(2),  168-­‐180.   Cerutti,  P.  O.,  Tacconi,  L.,  Nasi,  R.,  &  Lescuyer,  G.  2011.  Legal  vs.  certified  timber:  Preliminary  impacts  of  forest   certification  in  Cameroon.  Forest  Policy  and  Economics,  13(3),  184-­‐190.   Charles,  E.  2001.  Auditing  and  Governance  in  the  forestry  industry:  Between  protest  and  professionalism.   Critical  Perspectives  on  Accounting,  12(5),  647-­‐671.   Corbera,  E.,  &  Brown,  K.  2008.  Building  Institutions  to  Trade  Ecosystem  Services:  Marketing  Forest  Carbon  in   Mexico.  World  Development,  36(10),  1956-­‐1979.   Corbera,  E.,  Soberanis,  C.  G.,  &  Brown,  K.  2009.  Institutional  dimensions  of  Payments  for  Ecosystem  Services:   An  analysis  of  Mexico's  carbon  forestry  programme.  Ecological  Economics,  68(3),  743-­‐761.   Costanza,  R.,  d'Arge,  R.,  Groot,  R.  d.,  Farber,  S.,  Grasso,  M.,  Hannon,  B.,  et  al.  1997.  The  Value  of  the  World's   Ecosystem  Services  and  Natural  Capital.  Nature,  387,  253-­‐260.   Durst,  P.  B.,  Mckenzie,  P.  J.,  Brown,  C.  L.,  &  Appanah,  S.  2006.  Challenges  facing  certification  and  eco-­‐labelling   of  forest  products  in  developing  countries.  International  Forestry  Review,  8(2),  193-­‐200.   Entenmann,  S.  2010.  Certification  of  REDD+  pilot  projects  for  biodiversity  conservation.  In  D.  Sheil,  F.  E.  Putz  &   R.  J.  Zagt  (Eds.),  Biodiversity  Conservation  in  Certified  Forests.  Wageningen:  Tropenbos  International.   FSC.  2012.  FSC  Principles  and  Criteria  for  Forest  Stewardship  (FSC-­‐STD-­‐01-­‐001  V5-­‐0  D5-­‐0  EN).  Bonn.   Ferraro,  P.  J.  2008.  Asymmetric  information  and  contract  design  for  payments  for  environmental  services.   Ecological  Economics,  65(4),  810-­‐821.  

  23  

Font,  X.,  Sanabria,  R.,  &  Skinner,  E.  2003.  Sustainable  Tourism  and  Ecotourism  Certification:  Raising  Standards   and  Benefits.  Journal  of  Ecotourism,  2(3),  213-­‐218.   Font,  X.  2007.  Ecotourism  certification:  potential  and  challenges.  In  J.  Higham  (Ed.),  Critical  Issues  in  Ecotourism   (pp.  386-­‐405).  Oxford:  Elsevier  Butterworth  Heinemann.   Ghazoul,  J.,  Garcia,  C.,  &  Kushalappa,  C.  G.  2009.  Landscape  labelling:  A  concept  for  next-­‐generation  payment   for  ecosystem  service  schemes.  Forest  Ecology  and  Management,  258(9),  1889-­‐1895.   Hanley,  N.,  Wright,  R.  E.,  &  Adamowicz,  V.  1998.  Using  choice  experiments  to  value  the  environment.   Environmental  and  Resource  Economics,  11(3-­‐4),  413-­‐428.   Harbaugh,  R.,  Maxwell,  J.  W.,  &  Roussillon,  B.  2011.  Label  Confusion:  The  Groucho  Effect  of  Uncertain   Standards.  Management  Science,  doi:  10.1287/mnsc.1110.1412.   Hausman,  J.,  &  McFadden,  D.  1984.  Specification  Tests  for  the  Multinomial  Logit  Model.  Econometrica,   52(5),  1219-­‐1240.   Herold,  M.,  &  Skutsch,  M.  M.  2009.  Measurement,  Reporting  and  Verification  for  REDD+:  Objectives,  Capacities   and  Institutions.  In  A.  Angelsen  (Ed.),  Realising  REDD+:  National  Strategy  and  Policy  Options  (pp.  85-­‐100).   Bogor:  Center  for  International  Forestry  Research  (CIFOR).   Hoyos,  D.  2010.  The  state  of  the  art  of  environmental  valuation  with  discrete  choice  experiments.  Ecological   Economics,  69(8),  1595-­‐1603.   Jagger,  P.,  Lawlor,  K.,  Brockhaus,  M.,  Gebara,  M.  F.,  Sonwa,  D.  J.,  &  Resosudarmo,  I.  A.  P.  2012.  REDD+   safeguards  in  national  policy  discourse  and  pilot  projects.  In  A.  Angelsen,  M.  Brockhaus,  W.  D.  Sunderlin  &   L.  Verchot  (Eds.),  Analysing  REDD+:  Challenges  and  choices  (pp.  301-­‐316).  Bogor,  Center  for  International   Forestry  Research  (CIFOR).   Johnstone,  N.,  &  Labonne,  J.  2009.  Why  do  manufacturing  facilities  introduce  environmental  management   systems?  Improving  and/or  signaling  performance.  Ecological  Economics,  68(3),  719-­‐730.   Kaiser,  H.  1958.  The  varimax  criterion  for  analytic  rotation  in  factor  analysis.  Psychometrika,  23(3),  187-­‐200.   Kanowski,  P.  J.,  McDermott,  C.  L.,  &  Cashore,  B.  W.  2011.  Implementing  REDD+:  lessons  from  analysis  of  forest   governance.  Environmental  Science  &  Policy,  14(2),  111-­‐117.   Kiker,  C.  F.,  &  Putz,  F.  E.  1997.  Ecological  certification  of  forest  products:  Economic  challenges.  Ecological   Economics,  20(1),  37-­‐51.   Kremen,  C.  2005.  Managing  ecosystem  services:  what  do  we  need  to  know  about  their  ecology?  Ecology   Letters,  8,  468-­‐470.   Larson,  A.  M.  2010.  Forest  Tenure  Reform  in  the  Age  of  Climate  Change:  Lessons  for  REDD+.  Global   Environmental  Change,  JGEC-­‐827,  1-­‐10.   Larson,  A.  M.,  Brockhaus,  M.,  &  Sunderlin,  W.  D.  2012.  Tenure  matters  in  REDD+:  Lessons  from  the  field.  In  A.   Angelsen,  M.  Brockhaus,  W.  D.  Sunderlin  &  L.  V.  Verchot  (Eds.),  Analysing  REDD+:  Challenges  and  Choices.   Bogor:  Center  for  International  Forestry  Research  (CIFOR).   Louviere,  J.  J.,  Hensher,  D.  A.,  &  Swait,  J.  D.  2000.  Stated  Choice  Methods:  Analysis  and  Applications.   Cambridge:  Cambridge  University  Press.   McDermott,  C.  L.  2011.  Trust,  legitimacy  and  power  in  forest  certification:  A  case  study  of  the  FSC  in  British   Columbia.  Geoforum,  43(3),  634-­‐644.   McDermott,  C.  L.,  Noah,  E.,  &  Cashore,  B.  2008.  Differences  That  ‘Matter’?  A  Framework  for  Comparing   Environmental  Certification  Standards  and  Government  Policies.  Journal  of  Environmental  Policy  &   Planning,  10(1),  47-­‐70.   Medina,  L.  K.  2005.  Ecotourism  and  Certification:  Confronting  the  Principles  and  Pragmatics  of  Socially   Responsible  Tourism.  Journal  of  Sustainable  Tourism,  13(3),  281-­‐295.   Meijaard,  E.,  Sheil,  D.,  Guariguata,  M.  R.,  Nasi,  R.,  Sunderland,  T.  C.  H.,  &  Putzel,  L.  2011.  Ecosystem  services   certification:  Opportunities  and  constraints  (pp.  57p.).  Bogor,  Indonesia:  Center  for  International  Forestry   Research  (CIFOR).   Merger,  E.,  Dutschke,  M.,  &  Verchot,  L.  2011.  Options  for  REDD+  Voluntary  Certification  to  Ensure  Net  GHG   Benefits,  Poverty  Alleviation,  Sustainable  Management  of  Forests  and  Biodiversity  Conservation.   Forests,  2,  550-­‐577.  

24    

  Millennium  Ecosystem  Assessment  (MA).  2005.  Ecosystems  and  Human  Well-­‐being:  A  Framework  for   Assessment:  Island  Press.   Nussbaum,  R.,  &  Simula,  M.  2005.  The  Forest  Certification  Handbook  (2nd  ed.).  London:  Earthscan.   Orrego,  J.  2005.  The  Plan  Vivo  experience  with  carbon  service  provision  and  the  potential  lessons  for  watershed   service  projects.  London:  International  Institute  for  Environment  and  Development.   Ottaviani,  D.,  &  Scialabba,  N.  E.-­‐H.  2011.  Payment  for  Ecosystem  Services  and  Food  Security.  Rome:  FAO.   Overdevest,  C.,  &  Rickenbach,  M.  G.  2006.  Forest  certification  and  institutional  governance:  An  empirical  study   of  forest  stewardship  council  certificate  holders  in  the  United  States.  Forest  Policy  and  Economics,   9(1),  93-­‐102.   Patterson,  T.  M.,  &  Coelho,  D.  L.  2009.  Ecosystem  services:  Foundations,  opportunities,  and  challenges  for  the   forest  products  sector.  Forest  Ecology  and  Management,  257(8),  1637-­‐1646.   Pettenella,  D.,  &  Brotto,  L.  2012.  Governance  features  for  successful  REDD+  projects  organization.  Forest  Policy   and  Economics,  18,  46-­‐52.   Rametsteiner,  E.  2002.  The  role  of  governments  in  forest  certification  -­‐  a  normative  analysis  based  on  new   institutional  economics  theories.  Forest  Policy  and  Economics,  4,  163–173.   Romijn,  E.,  Herold,  M.,  Kooistra,  L.,  Murdiyarso,  D.,  &  Verchot,  L.  2012.  Assessing  capacities  of  non-­‐Annex  I   countries  for  national  forest  monitoring  in  the  context  of  REDD+.  Environmental  Science  and  Policy,   19-­‐20,  33-­‐48.   Simula,  M.,  Astana,  S.,  Ishmael,  R.,  Santana,  E.  J.,  &  Schmidt,  M.  L.  2004.  Report  on  Financial  Cost-­‐Benefit   Analysis  of  Forest  Certification  and  Implementation  of  Phased  Approaches.  Yokohama:  International   Tropical  Timber  Council.   Sunderlin,  W.  D.,  Hatcher,  J.,  &  Liddle,  M.  2008.  From  Exclusion  to  Ownership?  Challenges  and  Opportunities  in   Advancing  Forest  Tenure  Reform.  Washington  DC:  Rights  and  Resources  Initiative.   Sunderlin,  W.  D.,  Larson,  A.  M.,  &  Cronkleton,  P.  2009.  Forest  tenure  rights  and  REDD+:  From  inertia  to  policy   solutions.  In  A.  Angelsen  (Ed.),  Realising  REDD+:  National  Strategy  and  Policy  Options  (pp.  139-­‐150).   Bogor:  Center  for  International  Forestry  Research  (CIFOR).   Taylor,  P.  L.  2005.  In  the  Market  But  Not  of  It:  Fair  Trade  Coffee  and  Forest  Stewardship  Council  Certification  as   Market-­‐Based  Social  Change  World  Development,  33(1),  129–147.   Tikina,  A.,  Kozak,  R.,  &  Larson,  B.  2008.  What  factors  influence  obtaining  forest  certification  in  the  U.S.  Pacific   Northwest?  Forest  Policy  and  Economics,  10(4),  240-­‐247.   Train,  K.  2009.  Discrete  Choice  Methods  with  Simulation.  Cambridge:  Cambridge  University  Press.  Available:   http://elsa.berkeley.edu/∼train   Upton,  C.,  &  Bass,  S.  1995.  The  Forest  Certification  Handbook.  London:  Earthscan  Publications  Limited.   van  Dam,  J.,  Junginger,  M.,  &  Faaij,  A.  P.  C.  2010.  From  the  global  efforts  on  certification  of  bioenergy  towards   an  integrated  approach  based  on  sustainable  land  use  planning.  Renewable  and  Sustainable  Energy   Reviews,  14(9),  2445-­‐2472.   van  Noordwijk,  M.,  Purnomo,  H.,  Peskett,  L.,  &  Setiono,  B.  2008.  Reducing  emissions  from  deforestation  and   forest  degradation  (REDD)  in  Indonesia:  options  and  challenges  for  fair  and  efficient  payment  distribution   mechanisms  (No.  81).  Bogor:  ICRAF.   Vatn,  A.  2010.  An  institutional  analysis  of  payments  for  environmental  services.  Ecological  Economics,  69(6),   1245-­‐1252.   Vogt,  K.  A.,  Larson,  B.  C.,  Gordon,  J.  C.,  Vogt,  D.  J.,  &  Fanzers,  A.  2000.  Forest  Certification:  Roots,  Issues,   Challenges,  and  Benefits.  New  Haven:  School  of  Forestry  and  Environmental  Studies,  Yale  University.   Wertz-­‐Kanounnikoff,  S.,  &  Kongphan-­‐apirak,  M.  2009.  Emerging  REDD+:  A  Preliminary  Survey  of  Demonstration   and  Readiness  Activities.  Bogor:  CIFOR.   Wunder,  S.,  Engel,  S.,  &  Pagiola,  S.  2008.  Taking  stock:  A  comparative  analysis  of  payments  for  environmental   services  programs  in  developed  and  developing  countries.  Ecological  Economics,  65(4),  834-­‐852.   Yasmi,  Y.,  Kelley,  L.,  Murdiyarso,  D.,  &  Patel,  T.  2012.  The  struggle  over  Asia’s  forests:  An  overview  of   forest  conflict  and  potential  implications  for  REDD+.  International  Forestry  Review,  14(1),  99-­‐109.   Zorn,  A.,  Lippert,  C.,  &  Dabbert,  S.  2009.  Economic  Concepts  of  Organic  Certification:  Deliverable  5:  Economic   Analysis  of  Certification  Systems  in  Organic  Food  and  Farming.    

  25  

Appendix  I:  ecosystem  services  selected  for   the  market  assessment     Ecosystem  services  for  the  market  assessment  were  selected  by  examining  175  ecosystem  services   projects  whose  main  objectives  are  either  conserving  or  selling  ecosystem  services.  The  project   schemes  include  payment  for  ecosystem  services  (PES),  protected  areas  (PAs),  and  integrated   conservation  and  development  projects  (ICDPs).  The  project  data  were  collected  online  via  project   websites.  The  analyzed  projects  include  Rewarding  Upland  Poor  for  Environmental  Services  (RUPES)   programme,  Pro-­‐Poor  Rewards  for  Environmental  Services  in  Africa  (PRESA),  payment  for  ecosystem   services  (PES)  projects  of  the  CIFOR,  and  a  database  for  the  Integrated  Valuation  of  Ecosystem   Services  and  Tradeoffs  (InVEST)  project.  RUPES  and  PRESA  are  PES  projects  run  by  the  World   Agroforestry  Centre  (ICRAF).  InVEST  is  a  tool  created  by  the  Natural  Capital  Project,  both  mapping   and  modelling  ecosystem  services  in  the  world  by  Geographic  Information  System  (GIS).  InVEST  built   a  database3  that  contains  information  of  159  ecosystem  services  projects.  The  projects  in  the   database  of  InVEST  are  schemes  of  PES,  Protected  Areas  (PAs),  and  Integrated  Conservation  and   Development  Projects  (ICDPs).  The  database,  for  instance,  includes  a  project  site  of  payment  for   watershed  services  in  Lombok,  which  is  Pilot  4  of  the  ForCES  project,  and  a  project  site  of  PRESA  in   the  Usambara  Mountains  in  Tanzania.       In  order  to  count  ecosystem  services  targeted  by  the  projects,  an  analytic  framework  with  24   categories  of  ecosystem  services  was  adapted  from  the  Millennium  Ecosystem  Assessment  (MA)   (Table  A1).  Some  of  the  categories  were  combined  together  due  to  projects  not  distinguishing   ecosystem  services  as  the  analytic  framework  categorizes.  For  example,  a  project  target  described  as   water  quality  and  quantity  improvement  was  counted  as  the  watershed  “regulating  service”  (ESG14)   although  it  might  belong  to  the  fresh  water  “provision  service”  (ESG6).  Those  targeting  soil   conservation  to  improve  an  agricultural  system  were  counted  as  a  “supporting  service”  (ESG23)  even   though  it  might  have  been  counted  as  a  “regulating  service”  (ESG13).       The  selection  result  demonstrates  that  the  most  commonly  targeted  ecosystem  services  by  the   projects  are  watershed  protection  (152  sources  =  ES12  +  ES14),  carbon  storage4  (27),  biodiversity   conservation  (42  =  ES4  +  ES9),  cultural  service  (48)  and  ecotourism  (79)5.  Soil  conservation  (41)  also   includes  production  of  nutrients  (17)  so  the  service  of  nutrient  projection  was  combined  into  the   service  of  soil  conservation.      

                                                                                                                       

3   The  database  is  available  at:  http://www.naturalcapitalproject.org/database.html   4   REDD+  projects  were  not  targeted  in  this  analysis  because  carbon  sequestration  is  obviously  within  the  eventual  scope   of  the  project  and  all  supporting  research.  As  a  result,  carbon  storage  only  received  a  count  of  27.  However,  carbon  storage   has  an  obviously  strong  potential  demand  for  the  ecosystem  services  certification  due  to  increasing  demonstration  and   readiness  activities  of  REDD+  globally  (Wertz-­‐Kanounnikoff  &  Kongphan-­‐apirak,  2009;  Cerbu  et  al.,  2010);  it  is  included  in   the  analysis.     5   As  an  ecosystem  service,  ecotourism  does  not  stand  alone:  it  entails  conserving  the  other  services  of  scenic  beauty,   cultural  values,  and  biodiversity.    However,  these  ecosystem  services  are  examined  separately  due  to  different   categorizations  used  in  project  reports.  

26    

  Table  A1.   A  result  of  the  analysis  of  ecosystem  services  projects   ES  category   1.  Providing  services  

2.  Regulating  services  

#  

Ecosystem  services  

4.  Supporting  services  

   

Comments  

ESG1  

Agriculture  

54  

Eco-­‐certifications  certify  them.  

ESG2  

NFTPs  

5  

ESG3  

Timber  

29  

FSC  and  eco-­‐certifications  certify   them.   FSC  certifies  them.    

ESG4  

Biodiversity-­‐Genetic  

32  

ESG5  

NFTPs-­‐Medicines  

22  

ESG6  

Fresh  water  

0  

Ecosystem  service  market  (PES)   exists.   FSC  and  eco-­‐certifications  certify   them.    

ESG7  

Aesthetic  

0  

   

ESG8  

Ecotourism  

79  

Eco-­‐certification  schemes  exist.  

ESG9  

Biodiversity  

10  

ESG10  

Air  quality  

0  

Ecosystem  service  market  (PES)   exists.      

ESG11  

Carbon  

27  

ESG12  

Watershed  –risk   management   Soil  

41  

ESG14  

Watershed  –  Water   quality  and  quantity  

111  

ESG15  

Health  

0  

Ecosystem  service  market  (PES)   exists.   A  FSC  case  exists  in  Mexico.      

ESG16  

Pest  

0  

   

ESG17  

Pollination  

5  

   

ESG18  

Disasters  

3  

   

ESG19  

Culture  

48  

 Relevant  to  ecotourism  

ESG20  

Spiritual  

0  

   

ESG21  

0  

   

ESG22  

Traditional  ecological   knowledge.   Education  /research  

0  

   

ESG23  

Soil  

41  

 Relevant  to  agriculture  

ESG24  

Nutrient  

17  

 Relevant  to  agriculture  

ESG13  

3.  Cultural  services  

Count  

0  

Ecosystem  service  market  (PES,   REDD+,  A/R  CDM),  and  carbon   certification  schemes  exist.   Ecosystem  service  market  (PES)   exists.      

 

  27  

Appendix  II:  discrete  choice  models    

Random  utility  models   Following  Train  (2009),  random  utility  models  were  employed  to  examine  both  impacts  of  the  given   attributes  of  certification  and  of  respondents’  sociodemographic  variables  on  their  decisions.  Both   logit  and  mixed  logit  models  were  tested  in  this  analysis.  Let’s  say  there  is  a  certification  body  n  who   face  J  alternatives,  or  certification  schemes.  A  certification  body  takes  the  utility  ( U nj )  from  its   choice,  and  the  utility  can  be  divided  into  two  parts:  utility  known  ( Vnj )  and  unknown  ( ε nj )  to  the   researchers:       U nj =     Vnj  +   ε nj ∀j    =    V( xnj , sn )  +   ε nj

                                                                                                                                                     (1)

 

 

ε nj  is  treated  as  random.  With  a  logit  model   ε nj takes  the  assumption  that  each  unknown  utility  is   extreme  value  that  is  distributed  independently  and  identically,  or  called  the  independence  from   irrelevant  alternatives  (IIA)  property.  In  order  to  test  the  IIA  property,  the  Hausman-­‐McFadden  Test   was  utilized  by  generating  an  artificial  nested  logit  model  having  the  second  and  third  alternatives  as   subset  alternatives  (Hausman  and  McFadden,  1984).  With  a  mixed  logit  model,  however,  this   assumption  is  relaxed,  a  strong  advantage  of  a  mixed  logit  model  (Hoyos,  2010;  Train,  2009).  Based   on  this  setting,  the  probability  that  a  certification  body  n  chooses  alternative  scheme  i  over   scheme  j  is:     Pni =  Prob( Vni  + ε ni >   Vnj  + ε nj ∀j ≠ i )                                                                                                                                                          (2)     The  logit  probabilities  of  the  logit     models  become  (Train,  2009):    

Pni =  

expVni ∑ expVnj

(3)  

j                                                                                                                                                                                                                                       The  mixed  logit  probabilities  use  the  integrals  of  logit  probabilities  over  parameter  densities,   becoming:    

Pni =   Lni (β ) f (β )dβ                                                                                                                                                                                                              (4)  



  where   Lni ( β )  is  the  utility  observed  by  researchers,  and   f ( β ) is  a  parameter’s  density  function.   Simulation  techniques  are  used  to  calculate  mixed  logit  probabilities.  Computing  logit  and  mixed   logit  probabilities  were  done  by  R  2.  10.1  installed  with  mlogit  and  Support.CEs  packages.        

28    

 

Model  specifications   Five  logit  models  were  specified:  two  logit  models  (Model  1  and  2)  and  three  mixed  logit  models   (Model  3,  4,  and  5).  Model  1  and  3  had  the  variables  of  the  five  certification  attributes  only,  Model  2   and  4  had  both  the  variables  of  the  certification  attributes  and  sociodemographic  factors,  and  Model   5  had  the  variables  of  the  attributes  and  estimated  audit  capacity  of  certification  bodies.  Model  1   and  3  were  specified  as:       V1nj = ASC + β1 x1nj + β 2 x2 nj + β 3 x3nj + β 4 x4 nj + β 5 x5 nj                                                                                                                (5)   where,  ASC  is  alternative  specific  constant  that  captures  the  average  effect  on  utility  of  all  factors   not  included  in  the  choice  model  (Train,  2009);   x1nj is  the  variable  of  economic  benefits;   x 2 nj is  the   variable  of  administrative  service;   x3nj is  the  variable  of  ownership  of  the  ecosystem  services;   x 4 nj is   the  variable  of  credibility  of  certification;  and   x5 nj is  the  variable  of  total  certification  costs  to  forest   owners.  Model  2  and  4  were  specified  as:     4

5

4

k =1

i =1

k =1

V 2 nj =     V1nj +   ASC (∑ γ k sknj ) = ASC + ∑ β i xinj + ASC (∑ γ k sknj )                                                                      (6)      

  where, s1nj  is  how  many  years  certification  bodies  have  been  in  their  business;   s2 nj is  the  number  of     employees  in  certification  bodies;   s3 nj is  a  dummy  variable  that  indicates  certification  bodies  only   auditing  in  developing  countries;  and   s4 nj is  a  dummy  variable  that  indicates  certification  bodies  only   auditing  in  developed  countries.  When  both   s3 nj and   s4 nj are  zero,  it  indicates  certification  bodies   auditing  internationally.  Model  5  was  specified  as:    

V 3nj =     V1nj +   ASC (

11

∑γ

s )                                                                                                                                                                                        (7)  

k knj

k =5

  where, s5 nj , s6 nj ,  and s7 nj are  Factor  1,  2,  and  3  from  the  factor  analysis.  Each  factor  variable  was  built     by  averaging  selected  capacities  of  certification  bodies.   s8 nj , s9 nj , s10 nj and   s11nj are  estimated   capacities  of  certification  bodies  to  audit  ecosystem  services  of  carbon  storage,  biodiversity   conservation,  ecotourism  for  biodiversity  experience,  and  soil  conservation  respectively.    

  29  

This research was carried out by CIFOR as part of the CGIAR Research Program on Forests, Trees and Agroforestry. This collaborative program aims to enhance the management and use of forests, agroforestry and tree genetic resources across the landscape from forests to farms. CIFOR leads the program in partnership with Bioversity International, CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), the International Center for Tropical Agriculture and the World Agroforestry Centre.

cifor.org

blog.cifor.org

Center for International Forestry Research CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is a CGIAR Consortium Research Center. CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America.

Suggest Documents