Superconductivity and BCS Theory

Superconductivity and BCS Theory I. Eremin, Max-Planck Institut für Physik komplexer Systeme, Dresden, Germany Institut für Mathematische/Theoretische...
17 downloads 0 Views 799KB Size
Superconductivity and BCS Theory I. Eremin, Max-Planck Institut für Physik komplexer Systeme, Dresden, Germany Institut für Mathematische/Theoretische Physik, TU-Braunschweig, Germany

Introduction Electron-phonon interaction, Cooper pairs BCS wave function, energy gap and quasiparticle states Predictions of the BCS theory Limits of the BCS gap equation: strong coupling effects

I. Eremin, MPIPKS

Introduction: conductivity in a metal • Drude theory: metals are good electrical conductors because electrons can move nearly

freely between the atoms in solids

ne 2τ σ= m

ρ =σ

−1

m −1 = 2τ ne

n - density of conduction electrons, m is an effective mass of conduction electrons, and τ - average lifetime for the free motion of electrons between collision with impurities, other electrons, etc



(T ) ~ T 2 ~ T 5 −1 τ −1 = τ imp + τ el−1−el + τ el−1− ph

ρ = ρ 0 + aT 2 + bT 5 + ... • firstly observed in mercury (Hg) below 4K by Kamerlingh Onnes in 1911

I. Eremin, MPIPKS

Introduction: Superconducting Materials

Element

Tc (K)

Nb

9.25

Pt

• common

feature of many elements

I. Eremin, MPIPKS

0.0019

Hg

4.2

Nb3Sn

18

Nb3Ge

23

Introduction: Superconducting Materials

{

High-Tc layered cuprates (1986) Bednorz Müller Borocarbide superconductors discovered in 2001 Heavy-fermion superconductors

Possible triplet superconductors

{ {

{ {

Material

Tc (K)

HgBa2Ca2Cu3O8+δ

138

YBa2Cu3O7

92

La1.85Sr0.15CuO4

39

YNi2B2C

17

MgB2

38

CeCu2Si2

0.65

UPt3

0.5

Na0.3CoO2-1.3H2O

5

Sr2RuO4

1.5

I. Eremin, MPIPKS

Introduction: Basic Facts ⇒ Meissner-Ochsenfeld Effect What does it mean to have ρ =0 ?

Ε=ρ j

• •

1) E = 0, j is finite inside all points of superconductors 2) From the Maxwell equation:

∂B ∇×E = − =0 ∂t

Below Tc the magnetic field does not penetrate into superconductor (if we start from B=0 in the normal state) if above Tc there some magnetic field B ≠ 0, then below Tc it is expelled out of the system ⇒ Meissner effect

Superconductors are perfect diamagnets!

I. Eremin, MPIPKS

Introduction: Basic Facts ⇒ Type I and type II superconductivity What happens for the large magnetic field ?

Magnetic field enters in the form of vortices (Hc1 < H < Hc2)

Abrikosov

• •

in type I superconductor the B field remains zero until suddenly the superconductivity is destroyed, Hc in type II superconductor there are two critical fields, Hc1 and Hc2 I. Eremin, MPIPKS

Microscipic BCS Theory of Superconductivity First truly microscopic theory of superconductivity! (Bardeen-Cooper-Schrieffer 1957) Three major insights:

(i) The effective forces between electrons can sometimes be attractive in a solid rather than repulsive (ii) „Cooper problem“ ⇒ two electrons outside of an occupied Fermi surface form a stable pair bound state, and this is true however weak the attractive force (iii) Schrieffer constructed a many-particle wave function which all the electrons near the Fermi surface are paired up I. Eremin, MPIPKS

BCS theory: the electron-electron interaction (i) Bare electrons repel each other with electrostatic potential:

e2 V (r − r ' ) = 4πε 0 | r − r ' | In a metal we are dealing with quasiparticles (electron with surrounding exchange-correlated hole)

e2 V (r − r ' ) = e −|r −r '|/ rTF 4πε 0 | r − r ' | Thomas-Fermi screening rTF reduces substantially the repulsive force

I. Eremin, MPIPKS

BCS theory: the electron-phonon interaction (Frölich 1950) (i) Electrons move in a solid in the field of positively charged ions

due to vibrations the ion positions at Ri will be displaced by δRi Such a displacement means a creation of phonons ⇒ a set of quantum harmonic oscillators

Modulation of the charge density and the effective potential V1(r) for the electrons I. Eremin, MPIPKS

BCS theory: the electron-phonon interaction (Frölich 1950) (i)

∂V1 (r ) δ V1 (r ) = ∑ δ Ri ∂R i i

with wavelength 2π/q

a scattering of 1 electron

Ψnk (r ) ⇒ Ψn 'k −q (r ) with emission of phonon

a scattering of 2 electron

Ψmk (r ) ⇒ Ψm 'k +q (r ) with absorption of phonon

I. Eremin, MPIPKS

BCS theory: the electron-phonon interaction (Frölich 1950) (i) Effective interaction of electrons due to exchange of phonons

Veff (q, ω ) = g qλ

2

1 ω 2 − ωq2λ

gqλ is a constant of electron-phonon interaction

ωqλ is a phonon frequency

I. Eremin, MPIPKS

m ~ ⇒ M

small number

BCS theory: the electron-phonon interaction (Frölich 1950) (i) Effective interaction of electrons due to exchange of phonons

Veff (ω ) = g eff

2

1 ω 2 − ω D2

after averaging

• geff is an effective constant of electron-phonon interaction

Attraction!

• ωD is a typical Debye phonon frequency For ω

< ω D and low temperatures

2

Veff (ω ) = − g eff ,

ω < ωD

ε k − ε F < hω D i

ξ I. Eremin, MPIPKS

coherence length

BCS theory: Cooper problem (ii) What is the effect of the attraction just for a single pair of electrons outside of Fermi sea:

Trial two-electron wave function

Ψ (r1 , σ 1 , r2 , σ 2 ) = e ik cm R cm ϕ (r1 − r2 ) χσspin 1 ,σ 2 Ψ (r1 , σ 1 , r2 , σ 2 ) = − Ψ (r2 , σ 2 , r1 , σ 1 ) 1) kcm =0, Cooper pair without center of mass motion 2) Spin wave function Spin singlet (S=0)

Spin triplet (S=1)

χσspin,σ = 1

χσspin,σ 1

2

2

I. Eremin, MPIPKS

(

1 ↑↓ − ↑↓ 2

)

⎧ ↑↑ ⎪ ⎪ 1 =⎨ ↑↓ + ↑↓ ⎪ 2 ⎪ ↓↓ ⎩

(

)

BCS theory: Cooper problem (ii) 3) Orbital part of the wave function

Spin singlet

ϕ (r1 − r2 ) = +ϕ (r2 − r1 ) even function

Spin triplet

ϕ (r1 − r2 ) = −ϕ (r2 − r1 ) odd function

ϕ (r1 − r2 ) = f (| r1 − r2 |)Υlm (θ , φ ) BCS: For the spin singlet state and s-wave symmetry a subsititon of the trial wave function in Schrödinger equation HΨ = EΨ

− E = 2hω D e

−1 / λ

2

, λ = g eff N (ε F )

λ - electron-phonon coupling parameter Bound state exists independent of the value of λ

I. Eremin, MPIPKS

!!!

BCS wave function (iii) Whole Fermi surface would be unstable to the creation of such pairs Pair creation operator

[Pˆ ,Pˆ ] ≠ 1 k

+ k

Pˆk+ = ck+↑ c−+k ↓

[Pˆ ,Pˆ ] = 0 + k

( )

+ k

Pˆk+

2

=0

Cooper pairs are not bosons!

(

)

ΨBCS = ∏ uk* + vk* Pk+ 0 k

uk and vk are the normalizing coefficients (parameters)

uk + vk = 1 2

ΨBCS ΨBCS = 1

I. Eremin, MPIPKS

2

BCS wave function: variational apporach at T=0 (iii)

E = ΨBCS Hˆ ΨBCS

minimize

Hˆ = ∑ ε k ck+σ ckσ − g eff

2

k ,σ

(

k ,k '

)

2

2

k

(

* * v v u u ∑ k k' k' k k ,k '

)

N = ∑ vk − uk + 1 2

2

k

uk + vk = 1 2

Nˆ = const

+ + c c ∑ k ↑ −k ↓c−k '↓ck '↑

E = ∑ ε k vk − uk + 1 − g eff 2

with

2

I. Eremin, MPIPKS

BCS wave function: variational approach at T=0 (iii) Minimization with Lagrange multipliers μ and Ek

∂E ∂N 0 = * − μ * + Ek uk ∂uk ∂uk

Ek uk = (ε k − μ )uk + Δ vk Ek vk = Δ*uk − (ε k − μ )vk

∂E ∂N 0 = * − μ * + Ek vk ∂vk ∂vk

Δ = g eff

2

* u v ∑ kk

BCS gap parameter

k

± Ek = ± (ε k − μ ) + Δ 2

uk

2

2

vk I. Eremin, MPIPKS

2

1 ⎛ εk − μ ⎞ ⎟⎟ = ⎜⎜1 + 2⎝ Ek ⎠ 1 ⎛ εk − μ ⎞ ⎟⎟ = ⎜⎜1 − 2⎝ Ek ⎠

BCS energy gap and quasiparticle states (iii)

Δ = g eff

2

Δ ∑k 2 E k

Δ = 2hω D e −1/ λ

equals to the binding energy of a single Cooper pair at T=0!

What about the excited states and finite temperatures? Consider

ΨBCS

and small excitations relative to this state

ck+↑ c−+k ↓ c−k '↓ ck '↑ ≈ ck+↑ c−+k ↓ c−k '↓ ck '↑ + ck+↑ c−+k ↓ c−k '↓ ck '↑

(

Hˆ = ∑ (ε k − μ )ck+σ ckσ − ∑ Δ*c−k ↓ ck ↑ + Δck+↑ c−+k ↓ k ,σ

k

I. Eremin, MPIPKS

)

BCS energy gap and quasiparticle states Unitary transformations:

⎛ uk U = ⎜⎜ ⎝ − vk

U + Hˆ U = Hˆ diag

v ⎞ ⎟ u ⎟⎠ * k * k

new pair of operators:

± Ek = ± (ε k − μ ) + Δ 2

2

u and v are BogolyubovValatin coeffiecents:

bk ↑ = uk* ck ↑ − vk* c−+k ↓ b−+k ↓ = vk ck ↑ + uk c−+k ↓

(

Hˆ diag = ∑ Ek bk+↑bk ↑ + b−+k ↓b−k ↓

)

k

What is the physical meaning of these operators? I. Eremin, MPIPKS

BCS quasiparticle states 1) b operators are fermionic:

{b

}

{

}

+ + + { } , b = δ δ , b , b = 0 , b , b kσ k 'σ ' kk ' σσ ' kσ k 'σ ' k 'σ ' k 'σ ' = 0

2) b „particles“ are not present in the ground state:

bk ↑ ΨBCS = 0

3) The excited state corresponds to adding 1,2, ... of the new quasiparticles to this state

bk ↑ = uk* ck ↑ − vk* c−+k ↓ 4) b –quasiparticle is superposition of an electron and a hole 5) the energy gap is 2Δ

I. Eremin, MPIPKS

BCS gap equation at finite temperature: Tc

bk+↑bk ↑ = f (Ek ), b−k ↓b−+k ↓ = 1 − f (Ek ) allows to determine temperature dependence of the gap

Δ = g eff

2

∑ k

c−k ↓ ck ↑

Δ = g eff

2

⎛ Ek ⎞ Δ ∑k 2 E tanh⎜⎜ 2k T ⎟⎟ k ⎝ B ⎠

2Δ(T = 0 ) = 3.52k BTc k BTc = 1.13hω D exp(− 1 / λ )

Tc ∝ M Condensation energy

Econd



1 2

isotope effect !

1 2 ≈ ∑ [ε k − Ek ] = − N (ε F ) Δ 2 k

I. Eremin, MPIPKS

Some thermodynamic properties 1) Specific heat discontinuity at T=Tc 2nd order phase transiton ⇒ discontinuity of specific heat

C − Cn ΔC = Cn T =T Cn c

= 1.43 T =Tc

2) Key quantity: density of states

N (E ) = 2∑ δ (ω − Ek ) k

I. Eremin, MPIPKS

Predictions of the BCS theory

M = χH

1) Paramagnetic susceptibility of the conduction electrons

χ (q → 0, ω → 0) ∝ N (ε F ) → n↑ − n↓ spin of Cooper Pairs S=0

1 2 ∝ [N (ε F )] T1T

I. Eremin, MPIPKS

effect of coherence factors

Predictions of the BCS theory 2) Andreev scattering: electron in a metal

εk − ε F < Δ e and h are exactly time reversed

−e⇒ e k ⇒ −k

σ ⇒ −σ

a) an electron will be reflected at the interface b) An electron will combine another electron and form Cooper pair

I. Eremin, MPIPKS

Time inversion symmetry consequencies 1) Even if k is not a good qunatum number a) To reformulate the BCS theory in terms of field operators

Ψi↑ (r ), Ψi*↓ (r ) works for alloys Non-magnetic impurities do not influence swave superconductivity Anderson (1959)

I. Eremin, MPIPKS

Paramagnetic limit of superconductivity Lack of inversion symmetry

1) Condensation energy vs polarization energy

Δ q = Δ 0 e iqr

I. Eremin, MPIPKS

Predictions of the BCS theory: Josephson effect 1) Violation of U(1) gauge symmetry

ck ↑ ⇒ ck ↑ eiϕ

ΨBCS ⇒ ΨBCS e i 2ϕ 2) Coherent tunneling of a Cooper-pairs

I. Eremin, MPIPKS

Interplay of Coulomb repulsion and attraction: Anderson-Morel model

Coulomb repulsion is larger than attractive

⎡ 1 ⎤ k BTc = 1.14hω D exp ⎢− *⎥ − λ μ ⎣ ⎦

μ = *

μ

1 + μ ln (W / hω D )

Tc ≠ 0 even λ < μ

I. Eremin, MPIPKS

Strong coupling effects: Eliashberg theory Assumption of BCS: λ

Suggest Documents