static model of the meniscus for continuous casting

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks Elimination or minization of oscillation marks – A path to improved cast surface ...
3 downloads 1 Views 2MB Size
AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Elimination or minization of oscillation marks – A path to improved cast surface quality

static model of the meniscus for continuous casting A. Moinet & A.W. Cramb 9th AISI / DOE TRP Industry briefing session

A. Moinet & A. W. Cramb

A static model for the meniscus

1

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Outline • Introduction – Continuous casting – The meniscus area – Oscillation marks

• Model – Numerics – Description of the problem – Simplifications: • Limits • Turbulence • Shell removal

• Results – Determination of key parameters for this simulation – Effect of heat input and/or insulating panel on oscillation marks A. Moinet & A. W. Cramb

A static model for the meniscus

2

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Introduction: continuous casting • Liquid steel is injected through the nozzles, and cools down along the mold • To prevent sticking, molten slag and mold oscillations (negative strip time) • Various defects are thought to be created at the meniscus A. Moinet & A. W. Cramb

A static model for the meniscus

3

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Description of the meniscus area • •

• •

Mushy zone: latent heat release



Liquid and solid slag : conduction, radiation



Free surface movements, surface tension Solidified slag: glassy/crystalline structure



A. Moinet & A. W. Cramb

A static model for the meniscus

Heat input: hot metal Conduction through liquid metal: convection, diffusion, turbulence Conduction through solid metal: diffusion

4

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Oscillation marks • Perpendicular to the withdrawal direction • Typically, one mark per oscillation of the mold • Up to a few millimeters deep • Source of other defects (inclusions, cracks), necessity of hot rolling • Observations: formation happen at the meniscus level, heat release • No certain explaination A. Moinet & A. W. Cramb

A static model for the meniscus

Withdrawal direction

5

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Theory for oscillation mark formation: meniscus overflow

A. Moinet & A. W. Cramb

A static model for the meniscus

6

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Goal of the project • The partial solidification of the meniscus is likely to be responsible for oscillation marks • We need to better understand what’s going on near the meniscus • Eventually, the meniscus area will be modelled, including all the phenomena aforementionned (heat, flow, free surface, thermal radiative transfer) • Simplifications must be done, limit boundaries must be formulated • A preliminary static thermal model for the meniscus was designed

A. Moinet & A. W. Cramb

A static model for the meniscus

7

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Numerical methods • Heat transport:

• dT ⎛ ∂T ⎞ 2 ρ Cp = ρ Cp⎜ + V.∇T ⎟ = k ∇ T + Q dt ⎝ ∂t ⎠

– Governed by Fourier’s law: – Continuous second order differential equations can be solved by finite element methods

• Solidification modeling – Latent heat release in regions where: • Tsolidus< T < Tliquidus

– Use of effective heat capacity •

Q = ρ HL ρ C p eff

∂f ∂T ∂T ∂f ∂f = ρ HL = C p latent heat ⇒ Clatent heat = ρ H L ∂t ∂T ∂t ∂t ∂T

• dT ⎞ ⎛ ∂T = ρ C peff ⎜ + V.∇T ⎟ = k ∇ 2T + Q dt ⎠ ⎝ ∂t

A. Moinet & A. W. Cramb

A static model for the meniscus

8

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Numerical methods: Issues with solidification modeling – The effective heat capacity is not continuous and it can be much larger than the actual heat capacity • Ex: δ-ferrite: Cp = 800 J/K/kg, Cpeff = 9000 J/K/kg

– The area where to use Cpeff instead of Cp moves: the mesh cannot be easily adapted – Various methods:

A. Moinet & A. W. Cramb

A static model for the meniscus

9

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

50 mm

10 mm

Description of the model

100 mm

A. Moinet & A. W. Cramb

A static model for the meniscus

50 mm

10

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Description of the model •



A. Moinet & A. W. Cramb

In an actual (transcient) conditions, the solidified steel is withdrawn. If not, solid steel accumulates and the calculated thickness of the shell will not be realistic. A flow that simulates steel withdrawal was calculated and applied to all calculations

A static model for the meniscus

11

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Temperature at boundaries: issues • Steel is injected in the mold at a temperature slightly superior to the liquidus temperature • From the exit of the nozzle to the surface of the mold, there exists a temperature gradient that is a function of the flow field and the conductivity of the metal • Both the flow field and the steel conductivity are not trivial A. Moinet & A. W. Cramb

A static model for the meniscus

12

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Temperature at boundaries: dependance on flow field

Boundary conditions: Inlet (mass controlled) Outlet (free flow) k-ε for tubulence

Fluid flow (m/s) [Fluent simulation] A. Moinet & A. W. Cramb

k-ε model: Effective thermal conductivity (K/m/s) [Fluent simulation]

A static model for the meniscus

13

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Temperature at boundaries: dependance on flow field

Boundary conditions: T = Tsuperheat

Border 2

No solidification but T = Tliquidus

• • • •

Temperature drop is not linear or uniform within the mold It is stronger around the meniscus Horizontal gradient is smaller on border 1 Temperature has to be set on border 2

A. Moinet & A. W. Cramb

A static model for the meniscus

Border 1

14

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Effective thermal conductivity in the meniscus area

k-ε model: Effective thermal conductivity (K/m/s) around the meniscus [Fluent simulation] A. Moinet & A. W. Cramb

• Effective thermal conductivity decreases linearly with the distance to the surface of the mold • Rather than calculating the turbulences at each step, effective thermal conductivity will be approximated by a linear function of the distance to the mold

A static model for the meniscus

15

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

To summarize

• • • • •

The mold is 100 mm thick, the slag layer is 1-2 mm thick and the 50 mm around the meniscus are investigated The heat input: fixed temperature before the meniscus The heat release: water cooling, forced convection, function of h (convection coefficient) Heat conduction in the liquid metal: proportional to the distance to the border We want to see how various parameters affect the meniscus

A. Moinet & A. W. Cramb

A static model for the meniscus

16

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

To summarize

slag

Steel Solidus

1492 °C

Liquidus

1530 °C

Thermal conductivity in solid

40 W/m/K

Effective thermal conductivity in liquid

5,000 W/m/K

Latent heat of fusion

250,000 J/kg

Density

7000 kg/m3

Heat capacity

800 J/K/kg

Slag Thermal conductivity in solid Radiative heat transfer Density

1 W/m/K no 1000 kg/m3

casting parameters Withdrawal velocity Superheat water cooling convection coefficient

0.02 m/s 27 °C 20,000 W/K/m2

Copper mold

Steel (liquid) Steel (solid)

A. Moinet & A. W. Cramb

A static model for the meniscus

17

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Effects of superheat Superheat = 18°C Superheat = 27°C Superheat = 36 °C

A. Moinet & A. W. Cramb

A static model for the meniscus

18

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Effects of water cooling convection coefficient h = 20,000 W/K/m2 h = 40,000 W/K/m2 h = 10,000 W/K/m2

A. Moinet & A. W. Cramb

A static model for the meniscus

19

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Effects of effective conductivity in the liquid steel Keff max = 5,000 W/m/K Keff max = 6,000 W/m/K Keff max = 4,000 W/m/K No effective conductivity

A. Moinet & A. W. Cramb

A static model for the meniscus

20

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Effects of radiative heat transfer in the slag layer No radiative heat transfer Absorption coefficient = 5000 m-1 Absorption coefficient = 2000 m-1

A. Moinet & A. W. Cramb

A static model for the meniscus

21

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Effects of the slag layer conductivity k = 0.5 W/M/K k = 1 W/m/K k = 2 W/m/K

A. Moinet & A. W. Cramb

A static model for the meniscus

22

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Heat input • Heat input could reduce heat transfer, in order to prevent freezing of the meniscus • The effect of heat input at the meniscus level (a quantity similar to the heat flux, 1 MW/m2) was monitored slag mold

steel

Heated area A. Moinet & A. W. Cramb

A static model for the meniscus

23

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Heat input (1 MW/m2)

A. Moinet & A. W. Cramb

A static model for the meniscus

24

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Heat input (1 MW/m2)

A. Moinet & A. W. Cramb

A static model for the meniscus

25

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Heat input (100 MW/m2)

A. Moinet & A. W. Cramb

A static model for the meniscus

26

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Heat input (100 MW/m2)

A. Moinet & A. W. Cramb

A static model for the meniscus

27

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Insulating panel • An insulating material is inserted between the slag layer and the mold, at the meniscus level • The effect of heat input at the meniscus level (a quantity similar to the heat flux, 1 MW/m2) was monitored slag mold

steel

insulated area A. Moinet & A. W. Cramb

A static model for the meniscus

28

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Insulating panel

A. Moinet & A. W. Cramb

A static model for the meniscus

29

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Insulating panel + heat input slag

mold

insulated area Heated area A. Moinet & A. W. Cramb

A static model for the meniscus

steel 30

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Insulating panel + heat input: 10 MW/m2

A. Moinet & A. W. Cramb

A static model for the meniscus

31

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Conclusions • A model for studying the meniscus at steady state was designed • When focusing on the meniscus area, some parameters can be neglected or simplified: turbulent heat transport, mold water cooling • Superheat is a sensitive parameter but can be evaluated • The slag properties are very sensitive • Inputting heat transfer in the mold can hinder solidification of the steel shell. However, energy input rates are very high to have any effect • Inserting an insulating board can be effective • The heat needs to be brought directly on the steel A. Moinet & A. W. Cramb

A static model for the meniscus

32

AISI/DOE TRP 0408 -Elimination or Minimization of Oscillation Marks

Thank you for your attention

A. Moinet & A. W. Cramb

A static model for the meniscus

33

Suggest Documents