Some Lacunary Sequence Spaces of Invariant Means Defined by Musielak-Orlicz Functions on 2-Norm Space

Applied Mathematics, 2014, 5, 2602-2611 Published Online September 2014 in SciRes. http://www.scirp.org/journal/am http://dx.doi.org/10.4236/am.2014.5...
3 downloads 0 Views 3MB Size
Applied Mathematics, 2014, 5, 2602-2611 Published Online September 2014 in SciRes. http://www.scirp.org/journal/am http://dx.doi.org/10.4236/am.2014.516248

Some Lacunary Sequence Spaces of Invariant Means Defined by Musielak-Orlicz Functions on 2-Norm Space Mohammad Aiyub Department of Mathematics, University of Bahrain, Sakhir, Bahrain Email: [email protected] Received 11 July 2014; revised 15 August 2014; accepted 25 August 2014 Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space. We establish some inclusion relations between these spaces under some conditions.

Keywords Invariant Means, Musielak-Orlicz Functions, 2-Norm Space, Lacunary Sequence

1. Introduction Let ω be the set of all sequences of real numbers  ∞ , c and c0 be respectively the Banach spaces of bounded, convergent and null sequences x = ( xk ) with ( xk ) ∈  or  the usual norm x = sup k xk , 1, 2,3,  , the positive integers. where k ∈  = The idea of difference sequence spaces was first introduced by Kizmaz [1] and then the concept was generalized by Et and Çolak [2]. Later on Et and Esi [3] extended the difference sequence spaces to the sequence spaces:

( ) {

(

)

}

X ∆ vm = x = ( xk ) : ∆ vm x ∈ X ,

for X =  ∞ , c and c0 , where v = ( vk ) be any fixed sequence of non zero complex numbers and ∆ vm xk = ∆ vm −1 xk − ∆ vm −1 xk +1 .

(

) (

)

The generalized difference operator has the following binomial representation, How to cite this paper: Aiyub, M. (2014) Some Lacunary Sequence Spaces of Invariant Means Defined by Musielak-Orlicz Functions on 2-Norm Space. Applied Mathematics, 5, 2602-2611. http://dx.doi.org/10.4236/am.2014.516248

m i m ∆ vm xk = ∑ ( −1)   vk + i xk + i , for all k ∈ . i =0 i

M. Aiyub

The sequence spaces ∆ vm (  ∞ ) , ∆ vm ( c ) and ∆ vm ( c0 ) are Banach spaces normed by m

∑ vi xi

= x∆

i =1

+ ∆ vm x . ∞

The concept of 2-normed space was initially introduces by Gahler [4] as an interesting linear generalization of normed linear space which was subsequently studied by many others [5] [6]). Recently a lot of activities have started to study summability, sequence spaces and related topics in these linear spaces [7] [8]). Let X be a real vector space of dimension d , where 2 ≤ d < ∞ . A 2-norme on X is a function .,. : X × X →  which satisfies: 1) x, y = 0 if and only if x and y are linearly dependent, 2) x, y = y, x , 3) = α x, y α x, y , α ∈  , 4)

x, y + z ≤ x, y + x, z .

The pair ( X , .,. ) is called a 2-normed space. As an example of a 2-normed space we may take X =  2 being equiped with the 2-norm x, y = the area os paralelogram spaned by the vectors x and y , which may be given explicitly by the formula x1 , x2

E

x = abs  11  x21

x22  . x22 

Then clearly ( X , .,. ) is 2-normed space. Recall that ( X , .,. ) is a 2-Banach space if every cauchy sequence in X is convergent to some x ∈ X . Let σ be a mapping of the positive integers into itself. A continuous linear functional φ on  ∞ is said to be an invariant mean or σ -mean if and only if 1) φ ( x ) ≥ 0 , when the sequence x = ( xn ) has, xn ≥ 0 for all n , 2) φ ( e= e (1,1,1, ) , ) 1,=

(

)

3) φ xσ ( n ) = φ ( x ) for all x ∈  ∞ .

If x = ( xk ) , where= Tx

Txk ) (=

( x ( ) ) . It can be shown that σ k

{

}

Vσ = x ∈  ∞ : lim tkn ( x ) = l , uniformly in n k

l= σ − lim x, where tkn ( x ) =

xn + xσ 1 ( n ) + x

σ 2( n )

k +1

++ x

σ k(n)

[9].

In the case σ is the translation mapping n → n + 1 , σ -mean is often called a Banach limit and Vσ the set of bounded sequences of all whose invariant means are equal is the set of almost convergent sequence [10]. By Lacunary sequence = θ (= kr ) , r 0,1, 2,  where k0 = 0 we mean an increasing sequence of non negative integers h= I r [ kr −1 − kr ] k − k → ( r r −1 ) ∞ ( r → ∞ ) . The intervals determined by θ are denoted by = r kr and the ratio will be denoted by qr . The space of lacunary strongly convergent sequence Nθ was dekr −1 fined by Freedman et al. [11] as follows:  Nθ =  x = 

( xi ) : rlim →∞

1 hr



k = Ir

 xk − l = 0 for some   . 

An Orlicz function is a function M : [ 0, ∞ ) → [ 0, ∞ ) which is continuous, non-decreasing and convex with = M ( 0 ) 0, M ( x ) > 0 for x > 0 and M ( x ) → ∞ as x → ∞.

2603

M. Aiyub

It is well known that if M is convex function and M ( 0 ) = 0 then M ( λ x ) ≤ λ M ( x ) , for all λ with 0 ≤ λ ≤ 1. Lindenstrauss and Tzafriri [12] used the idea of Orlicz function and defined the sequence space which was called an Orlicz sequence space  M such as

  M=  = x 



 xk    < ∞, for some ρ > 0    ρ 

( xk ) : ∑M  k =1

which was a Banach space with the norm ∞   x   x => inf  ρ 0 : ∑M  k  ≤ 1 k =1  ρ   

which was called an Orlicz sequence space. The  M was closely related to the space  p which was an Orlicz p sequence space with M ( t ) = t , for 1 ≤ p < ∞ . Later the Orlicz sequence spaces were investigated by Prashar and Choudhry [13], Maddox [14], Tripathy et al. [15]-[17] and many others. A sequence of function M = ( M k ) of Orlicz function is called a Musielak-Orlicz function [18] [19]. Also a Musielak-Orlicz function Φ = ( Φ k ) is called complementary function of a Musielak-Orlicz function M if

Φ k (= t ) sup { t s − M k ( s ) : s ≥ 0} , for= k 1, 2,3, . For a given Musielak-Orlicz function M , the Musielak-Orlicz sequence space lM and its subspaces  M are defined as follow:

lM=

{ x=

 M=

xk ∈ ω : I M ( cx ) < ∞, for some c > 0}

{ x=

xk ∈ ω : I M ( cx ) < ∞, for all c > 0}

where I M is a convex modular defined by

I M (= x)



, x ( xk ) ∈ lM . ∑M k ( xk )= k =1

We consider lM equipped with the Luxemburg norm  x = inf k > 0 : I M 

 x    ≤ 1 k 

or equipped with the Orlicz norm 0 1  inf  (1 + I M ( kx ) ) : k > 0  . x = k 

The main purpose of this paper is to introduce the following sequence spaces and examine some properties of the resulting sequence spaces. Let M = ( M k ) be a Musielak-Orlicz function, ( X , .,. ) is called a 2-normed space. Let p = ( pk ) be any sequences of positive real numbers, for all k ∈  and u = ( uk ) such that uk ≠ 0 ( k = 1, 2,3, ) . Let s be any real number such that s ≥ 0 . By ω ( 2 − X ) we denote the space of all sequences defined over ( X , .,. ) . Then we define the following sequence spaces: ∞

( )

ωθ , M , p, u , s, .,.  ∆ vm σ   x = =  

1 ( xk ) ∈ ω ( 2 − X ) : sup r , n hr

(

)

  tkn ∆ vm xk −s   ,z ∑ k uk  M k  ρ k ∈I r  

2604

   

pk

  < ∞ ρ > 0, s ≥ 0   

M. Aiyub

( )

ωθ , M , p, u , s, .,.  ∆ vm σ

 1  = x =( xk ) ∈ ω ( 2 − X ) :: lim r h r   0

(

)

   

pk

  =0 for some l , ρ > 0, s ≥ 0   

(

)

   

pk

  =0 ρ > 0, s ≥ 0   

  tkn ∆ vm xk   ,z ∑ k uk  M k  ρ k ∈I r   −s

( )

ωθ , M , p, u , s, .,.  ∆ vm σ

 1  = x =( xk ) ∈ ω ( 2 − X ) :: lim r h r  

  tkn ∆ vm xk ,z ∑ k − s uk  M k  ρ k ∈I r  

Definition 1. A sequence space E is said to be solid or normal if (α k xk ) ∈ E whenever ( xk ) ∈ E and for all sequences of scalar (α k ) with α k ≤ 1 [20]. Definition 2. A sequence space E is said to be monotone if it contains the canonical pre-images of all its steps spaces, [20]. Definition 3. If X is a Banach space normed by . , then ∆ m ( X ) is also Banach space normed by

x= ∆

(

m

∑ xk

)

+ f ∆m x .

k =1

Remark 1. The following inequality will be used throughout the paper. Let p = ( pk ) be a positive sequence G , D = max 1, 2G −1 . Then for all ak , bk ∈  for all k ∈  . We of real numbers with 0 < pk ≤ sup pk = have

(

ak + bk

pk

)

(

≤ D ak

pk

+ bk

pk

).

(1)

2. Main Results Theorem 1. Let M = ( M k ) be a Musielak-Orlicz function, p = ( pk ) be a bounded sequence of positive real ∞

( )

( )

number and θ = ( kr ) be a lacunary sequence. Then ωθ , M , p, u , s, .,.  ∆ vm , ωθ , M , p, u , s, .,.  ∆ vm σ σ 0

( )

and ωθ , M , p, u , s, .,.  ∆ vm σ

are linear spaces over the field of complex numbers.

( )

Proof 1. Let x = ( yk ) ∈ ωθ , M , p, u, s, .,. σ ∆ vm ( xk ) , y = need to find some ρ3 such that, 0

(

and α , β ∈ C . In order to prove the result we

)

  t ∆ m (α x + β y ) nk v k k 1 −s  lim ∑ uk k M k  ,z   r →∞ h ρ3  r k ∈I r  

Since

     

pk

= 0, uniformly in n.

( xk ) , ( yk ) ∈ ωθ , M , p, u, s, .,. σ ( ∆ vm ) , there exist positive ρ1 , ρ2 0

1 lim r →∞ h r

∑ uk k

k ∈I r

−s

  t ∆m x  M  kn v k , z  k ρ  

(

)

   

pk

(

)

   

pk

such that

= 0 uniformly in n

and

1 lim r →∞ h r

  tkn ∆ vm xk −s  ,z ∑ uk k  M k  ρ k ∈I r  

Define ρ3 = max ( 2 α ρ1 , 2 β ρ 2 ) . Since

(Mk )

= 0 uniformly in n.

is non decreasing and convex

2605

M. Aiyub

(

)

  tnk ∆ vm (α xk + β yk ) 1 −s  u k M ,z ∑ k  k  hr k∈I r ρ3   1 ≤ hr 1 ≤ hr

∑ uk k

−s

∑ uk k

−s

k ∈I r

k ∈I r

(

   

)

pk

(

)

  t ∆ m (α xk ) tnk ∆ vm ( β yk )  M  nk v + z , ,z  k ρ3 ρ3  

(

)

(

)

(

)

  t ∆m x t ∆m y  M  nk v k , z + nk v k , z  k ρ1 ρ2  

  tnk ∆ vm xk D −s  ≤ ,z ∑ uk k  M k  ρ hr k∈I r   → 0, as r → ∞, uniformly in n.

   

pk

   

   

pk

pk

(

)

  tnk ∆ vm yk D −s   + ∑ uk k M k ,z   ρ hr k∈I r  

   

pk

( )

So that (α xk ) + ( β yk ) ∈ ωθ , M , p, u , s, .,.  ∆ vm . This completes the proof. Similarly, we can prove that σ 0

( )

ωθ , M , p, u , s, .,.  ∆ vm and ωθ , M , p, u , s, .,.  ( ∆ vm ) are linear spaces. σ σ Theorem 2. Let M = ( M k ) be a Musielak-Orlicz function, p = ( pk ) be a bounded sequence of positive ∞

( )

real number and θ = ( kr ) be a lacunary sequence. Then ωθ , M , p, u , s, .,.  ∆ vm is a topological linear σ space totalparanormed by pk 1 H      tnk ∆ vm xk   m  p H  1   −s  r  , z   ≤ 1 for some ρ , r = 1, 2,  g∆ ( x ) = ∑ xk + inf  ρ :  h ∑ uk k  M k   ρ k 1 =    r k ∈I r         0

(

)

Proof 2. Clearly g ∆ (= x ) g ∆ ( − x ) . Since M k ( 0 ) = 0 , for all k ∈  . we get g ∆ (θ ) = 0 , for x = θ . Let

( )

x = ( xk ) , y = ( yk ) ∈ ωθ , M , p, u, s, .,. σ ∆ vm 0

and let us choose ρ1 > 0 and ρ 2 > 0 such that

(

)

   

pk

(

)

   

pk

  tnk ∆ vm ( xk ) −1 −s  sup hr ∑ uk k M k  ,z   ρ1 r k ∈I r  

≤1 r = 1, 2,3, 

and

  tnk ∆ vm ( yk ) sup hr−1 ∑ uk k − s  M k  ,z   ρ2 r k ∈I r  

≤1 r = 1, 2,3, 

Let ρ= ρ1 + ρ 2 , then we have

(

)

  tnk ∆ vm ( xk + yk ) −1 −s  sup hr ∑ uk k M k  ,z   ρ r k ∈I r  

(

   

pk

)

  tnk ∆ vm ( xk ) −1 −s  ≤ sup hr ∑ uk k M k  ,z   ρ1 + ρ 2 r ρ1 k ∈I r  

ρ1

(

)

   

  tnk ∆ vm ( yk ) + sup hr−1 ∑ uk k − s  M k  ,z   ρ1 + ρ 2 r ρ2 k ∈I r  

ρ1

2606

pk

   

pk

≤ 1.

M. Aiyub

Since ρ > 0 , we have g∆ ( x + y ) =

m



= k 1

m

≤∑

= k 1

pk 1 H     m     ∆ + t x y  pr H  1  nk v ( k k) −s  ≤ 1 for some ρ > 0, r= 1, 2,  xk + yk + inf  ρ uk k  M k  : , z   hr k∑    ρ  ∈I r          H 1 pk      tnk ∆ vm ( xk )     pr H  1  −s  1, 2,  ≤ 1 for some ρ1 > 0, r = xk + inf  ρ1 uk k  M k  : , z   hr k∑    ρ1  ∈I r         

m

+∑

= k 1

  yk + inf  ρ 2pr  

 1 :  hr 

H

  t ∆m ( y ) ∑ uk k − s  M k  nk ρv k , z  k ∈I r 2 

   

pk

1H

   

  ≤ 1 for some ρ 2 > 0, r = 1, 2,  .  

g∆ ( x + y ) ≤ g∆ ( x ) + g∆ ( y ) .

Finally, we prove that the scalar multiplication is continuous. Let λ be a given non zero scalar in  . Then the continuity of the product follows from the following expression.   pr inf g ∆ ( λ x= x λ + ) ∑ k ρ k 1 =   m

 1 :  hr 

H

 p  λ ∑ xk + inf ( λ ζ ) r = k 1 =   m

where = ζ

ρ > 0. Since λ λ

pr

g ∆ ( λ x ) = max (1, λ   pr + inf  ρ  

H

 1 :  hr 

H

∑ uk k

k ∈I r

 1 :  hr 

   

  t ∆m ( x ) ∑ uk k − s  M k  nk vζ k , z k ∈I r  

≤ max (1, λ

)

  t ∆ m ( λ xk )  M k  nk v ,z  ρ  

−s

)

sup pr

pk

  r 1, 2,  ≤ 1 for some ρ > 0, =  

1H

   

   

pk

1H

   

  ≤ 1 for some ζ > 0, r = 1, 2,   

,

sup pr

(

)

  tnk ∆ vm xk −s   ,z ∑ uk k  M k  ρ k ∈I r  

   

pk

1H

    

  ≤ 1, for some ρ > 0, r = 1, 2,  .  

This completes the proof of this theorem. Theorem 3. Let M = ( M k ) be a Musielak-Orlicz function, p = ( pk ) be a bounded sequence of positive real number and θ = ( kr ) be a lacunary sequence. Then ∞

( )

( ) ( ∆ ) ⊂ ω

( ) ( ∆ ) is obvious. Let 0

ωθ , M , p, u , s, .,.  ∆ vm ⊂ ωθ , M , p, u , s, .,.  ∆ vm ⊂ ωθ , M , p, u , s, .,.  ∆ vm . σ σ σ 0

m θ m Proof 3. The inclusion ωθ , M , p, u , s, .,.  , M , p, u , s, .,.  v v σ σ xk ∈ ωθ , M , p, u , s, .,.  ∆ vm . Then there exists some positive number ρ1 such that

σ

( )

1 lim r →∞ h r

∑ uk k

k ∈I r

−s

(

)

  t ∆ m x − le  M  nk v k ,z  k ρ1  

   

pk

→0

as r → ∞ , uniformly in n . Define ρ = 2 ρ1 . Since M k is non decreasing and convex for all k ∈  , we have

2607

M. Aiyub

1 hr

∑ uk k

−s

k ∈I r

(

)

  t ∆m x  M  nk v k , z  k ρ  

pk

   

(

)

  tnk ∆ vm xk − le D −s  ≤ u k M ,z ∑ k  k  hr k∈I r ρ1     le D + ∑  M k  ,z hr k∈I r   ρ1

    

(

(

)

where G = sup k (= pk ) , D max 1, 2G − 1 Thus xk ∈ ωθ , M , p, u , s, .,.  ∆ vm . σ

( )

pk

pk

)

  t ∆ m x − le D  M  nk v k ≤ ,z ∑ k  hr k∈I r  ρ1      le  + D max 1,  M  ,z ρ    1

   

    

G

   

pk

   

by (1).

Theorem 4. Let M = ( M k ) be a Musielak-Orlicz functions. If sup k  M k ( z )  ∞ ωθ , M , p, u , s, .,.  ∆ vm ⊂ ωθ , M , p, u , s, .,.  ∆ vm . σ

( )

σ

( )

Proof 4. Let xk ∈ ωθ , M , p, u , s, .,.  ∆ vm σ

( )

(

)

   

)

   

(

  t ∆ m x − le D  M  nk v k ≤ ,z ∑ k  hr k∈I r  ρ     le D + ∑ M k  ,z  ρ hr k∈I r  

pk

pk

pk

   .  

Since sup k  M ( z )  < ∞ , we can take the sup k  M ( z )  xk ∈ ωθ , M , p, u , s, .,.  ∆ vm . pk

σ

< ∞ for all z > 0 , then

by using (1), we have

  tnk ∆ vm xk −s  ,z ∑ uk k  M k  ρ k ∈I r  

1 hr

pk

pk

( )

= K . Hence we can get

This complete the proof. Theorem 5. Let m ≥ 1 be fixed integer. Then the following statements are equivalent: ∞

( ) ( ∆ ) ⊂ ω ( ∆ ) ⊂ ω



( ) (∆ ) , ( ∆ ).

1) ωθ , M , p, u , s, .,.  ∆ vm −1 ⊂ ωθ , M , p, u , s, .,.  ∆ vm , σ σ θ

2) ω , M , p, u , s, .,.  σ 0

3) ωθ , M , p, u , s, .,.  σ

m −1 v

θ

, M , p, u , s, .,.  σ

m −1 v

θ

, M , p, u , s, .,.  σ

0

0

(

m v

m v

)

Proof 5. Let xk ∈ ωθ , M , p, u , s, .,.  ∆ vm −1 . Then there exist ρ > 0 such that σ

1 lim r →∞ h r

(

)

  tnk ∆ vm xk ,z ∑ uk k − s  M k  ρ k ∈I r  

Since M k is non decreasing and convex, we have

2608

   

pk

→ 0.

M. Aiyub

1 hr

∑ uk k

(

)

  t ∆m x  M  nk v k , z  k 2ρ  

−s

k ∈I r

   

pk

(

)

     

1 + hr

∑ uk k

  t ∆ m −1 x − ∆ m −1 x nk v k k +1 1 −s  ,z = u k M ∑ k  k  2 ρ hr k∈I r    1 ≤ hr

∑ uk k

−s

k ∈I r

(

)

  t ∆ m −1 x  M  nk v k , z  k 2ρ  

   

pk

(

   

pk

)

  tnk ∆ vm −1 xk D −s  ≤ ,z u k M ∑ k  k  hr k∈I r ρ   Taking lim r →∞ , we have

1 hr 0

(

∑ uk k

−s

k ∈I r

pk

(

)

   

(

)

  .  

  t ∆ m −1 x  M  nk v k +1 , z  k 2ρ  

−s

k ∈I r

  tnk ∆ vm −1 xk +1 D + ∑ uk k − s  M k  ,z   hr k∈I r ρ  

(

)

  t ∆m x  M  nk v k , z  k ρ  

   

pk

pk

pk

= 0,

)

i.e. xk ∈ ωθ , M , p, u , s, .,.  ∆ vm −1 . The rest of these cases can be proved in similar way. σ Theorem 6. Let M = ( M k ) and T = (Tk ) be two Musielak-Orlicz functions. Then we have ∞

( ) ( ∆ )  ω ( ∆ )  ω



( ) ( ∆ ) ⊂ ω ( ∆ ) ⊂ ω



( ) ( ∆ ). ( ∆ ).

1) ωθ , M , p, u , s, .,.  ∆ vm  ωθ , T , p, u , s, .,.  ∆ vm ⊂ ωθ , M + T , p, u , s, .,.  ∆ vm . σ σ σ θ

2) ω , M , p, u , s, .,.  σ 0

3) ωθ , M , p, u , s, .,.  σ

m v

θ

, T , p, u , s, .,.  σ

m v

θ

, T , p, u , s, .,.  σ

0



m v

θ

, M + T , p, u , s, .,.  σ

m v

θ

, M + T , p, u , s, .,.  σ

( )

0



m v

m v

( )

Proof 6. Let xk ∈ ωθ , M , p, u , s, .,.  ∆ vm  ωθ , T , p, u , s, .,.  ∆ vm . Then σ σ

(

)

   

(

)

   

(

)

1 sup r , n hr

  tnk ∆ vm xk −s  ,z ∑ uk k  M k  ρ k ∈I r  

1 sup r , n hr

  t ∆m x nk v k −s  ,z u k ∑ k Tk  ρ k ∈I r  

pk

Suggest Documents