Siemens Transformers Power Transformers Nuremberg

Siemens Transformers Power Transformers Nuremberg HVDC Transformer Technology for Voltages ≥ 800 kV Recent Projects and Future Trends Dr. Mario Schen...
Author: Megan Byrd
68 downloads 1 Views 6MB Size
Siemens Transformers Power Transformers Nuremberg HVDC Transformer Technology for Voltages ≥ 800 kV Recent Projects and Future Trends

Dr. Mario Schenk Frank Trautmann Transformer Factory Nuremberg, Germany

Copyright © Siemens AG 2006.©All Siemens rights reserved. AG 2010 Energy Sector

Agenda

Introduction System and Transformer Design – 800 kV HVDC Dielectric Stress and Insulation Design Projects, Developments and Trends

Page 2

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Introduction China Project Overview

1. Hami – C. China 800 kV, 6400 MW, 2018

13. Humeng – Tianjiang 800 kV, 6400 MW, 2016

2. Xijaba – Shanghai 800 kV, 6400 MW, 2011

14. Hulunbeir – Shenyang 3000 MW, 2009

3. Xiluodu – Hanzhou 800 kV, 6400 MW, 2015

15. BtB NE-North (Gaoling) 1500 MW, 2007

Jilin

4. Xiluodu – Hunan 800 kV, 6300 MW, 2013

Liaoning

5. Jinsha River II – East China 800 kV, 6400 MW, 2016

16. Humeng – Jinan (Shandong) 800 kV, 6300 MW, 2015

Heilongjiang

12

23 14

13

16

Xinjiang Beijing

Inrfar Mongolia Gansu

Shandong

Shanxi

22

Henan

Jiangsu

Shaanxi

Anhuj

Shanghai

2 Hubai

Sichuan & Chongqing

Xizang

3

4

Jiangxi Hunan

7

Guizhou

Yunnan

9

8 11

7. Jinsha River II – East China 800 kV, 6400 MW, 2019

18

19

Qinghai

16

Hebei

17 Ningxia

6. Jingping – East China 800 kV, 7200 MW, 2012

Tianjin

21

1

15

Zheijang

5

Fujian Taiwan Guangdong

Guangxi

Page 3

25.10.2010

11. Yunnan – Guangdong 800 kV, 5000 MW, 2009 12. Humeng – Liaoning 800 kV, 6400 MW, 2018

10 Bangkok

9. Nuozhadu – Guangdong 800 kV, 5000 MW, 2015 10. Jinghong – Thailand 3000 MW, 2013

6

20

8. Jinsha River II – Fujian 800 kV, 6400 MW, 2018

Hainan

Dr. Mario Schenk, Frank Trautmann

17. North Shaanxi – Shandong 3000 MW, 2011 18. BtB Shandong – East 1200 MW, 2011 19. BtB North – Central 1000 MW, 2012 20. Goupitan – Guangdong 3000 MW, 2016 21. Ningxia – Tianjing 3000 MW, 2010 22. NW – Sichuan 3000 MW, 2010 23. Irkutsk (Russia) – Beijing 800 kV, 6400 MW, 2015

Introduction HVDC (High Voltage Direct Current) Transmission is more efficient for Long Distances (>600km) or Cable Links (>50km) than HVAC (HV Alternating Current)

AC

HVDC is efficient for: - Overhead lines (>1000MW, >600km) - Cable Links (about 50km, for >80km or different frequencies the only technical solution)

DC AC line cost

[$]

HVDC line cost

cost benefit AC transmission Page 4

25.10.2010

cost benefit DC transmission

[miles]

Dr. Mario Schenk, Frank Trautmann

Advantages of HVDC: - Low Line Cost, but Converter Cost - No capacitive charging currents less losses and CO2 emissions - Firewall function for grids - Load flow regulation (HVDC Plus) - Connection for different frequencies - High Transmission Power density (usage of less land or space) - Offshore connections for wind parks or oil rigs (substitution of CO2 emissions from diesel generators)

Introduction HVDC at 800 kV for economical, long-distance electricity transfer

= HVDC ±800 kV

Very high power capacity (5,000 MW and higher) of a single system 25% lower transmission cost compared to 500 kV HVDC Smaller footprint and lower overhead transmission line costs as only one bipole is needed

Page 5

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Introduction 800 kV DC Overhead Line Towers

Page 6

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Introduction Clear economical advantage of an ±800 kV HVDC solution

Total transmission cost (5,000 MW over 1,400 km; 30 year lifetime) 100 % 83 % 64 % Losses Line costs Station costs

AC 765 kV

Page 7

25.10.2010

DC ±500 kV

DC ±800 kV

Dr. Mario Schenk, Frank Trautmann

System Design Comparison of schematics of 500 kV and 800 kV HVDC systems

500kV HVDC single phase 3 winding transformers

or

single phase 2 winding transformers

800 kV single phase 2 winding transformer

+250 kV +500 kV +250 kV

-500 kV -250 kV

25.10.2010

+200 kV +200 kV +800 kV +200 kV +200 kV

-250 kV

Page 8

800kV HVDC

Dr. Mario Schenk, Frank Trautmann

-200 kV -200 kV

System Design Insulation Coordination - Insulation Levels BIL / SIL: 1800 kV / 1600 kV

BIL / SIL: 1900 kV / 1600 kV

BIL / SIL: 1175 kV / 950 kV BIL / SIL: 1550 kV / 1300 kV BIL / SIL: 1300 kV / 1050 kV

BIL / SIL: 450 kV / 325 kV

BIL / SIL: 950 kV / 750 kV Page 9

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Receiving Station Yunnan - Guangdong - 800 k

- 400

+ 400

+ 80

Page 10

25.10.2010

Dr. Mario Schenk, Frank Trautmann

0 kV

DC

k V DC

kV D

C

V DC

Transformer Design

1.3 Lower Yoke

Insulating system is to design both for AC and DC Page 11

25.10.2010

1.1

2.1

Valve Winding

2.2

Tap

HV Winding

1.1

Valve Winding

Core

2.1

HV Winding

Upper Yoke

Tap

Upper Yoke

Core

Valve Winding outside

Return limb / window

Valve Winding inside

1.3

2.2

Return limb / window

Typical Winding Arrangements

Lower Yoke

Insulating system is to design only for AC

Insulating system is to design only for AC

Dr. Mario Schenk, Frank Trautmann

Insulating system is to design both for AC and DC

Dielectric Stress and Insulation Design Dielectric Tests (Test Voltages) for AC Transformers

AC Voltage

Switching Impulse 0

1.0 Spannung voltage U(t)/Û

Spannung voltage U(t)/Û0

1.0 0.5 0 -0.5 -1.0 0

10

20

Zeit t time

30

ms

0.2 0.5

1.0

1.5

2.0 2.5 Zeit t time

3.0

ms

4.0

1.0 Spannung voltage U(t)/Û0

0

Spannung voltage U(t)/Û

0.4

Lightning Impulse (Chopped Wave)

1.0 0.8 0.6 0.4 0.2

Page 12

0.6

0 0

50

Lightning Impulse (Full Wave)

0 0

0.8

10

20

30

25.10.2010

40 50 Zeit t time

60

µs

80

0.8 0.6 0.4 0.2 0 0

Dr. Mario Schenk, Frank Trautmann

1

2

3

4 Zeit t time

5

6

µs

8

Dielectric Stress and Insulation Design Special Dielectric Tests for Valve Windings

Long Time AC / DC Voltage Test

 Applied AC voltage duration 1 h, PD-measurement

0

voltage U(t)/Û

 Applied DC voltage duration 2 h, positive polarity, PD-measurement

1.0 0.8 0.6 0.4 0.2 0

0

30

60 time t

min

120

Polarity Reversal (PR) Test according to the IEC standard 1.0 0.5

0

voltage U(t)/Û

 Usual cycle: 90min(-)  PR 90min(+)  PR  45 min(-)  Applied DC voltage duration 90 min, negative polarity  First PR within 1min…2min 90 min positive polarity  Second PR within 1min..2min 45 min negative polarity

0 -0.5 -1.0

 PD-measurement Page 13

25.10.2010

Dr. Mario Schenk, Frank Trautmann

0

40

90

135 time t

min

225

Dielectric Stress and Insulation Design Equipotential Lines for AC and DC electric field

Equipotential Lines for an AC Field

Equipotential Lines for a DC Field

Dominant for the field distribution:  Electrostatic displacement field

Dominant for the field distribution:  Stationary Flow Field

D  0 r  E

J  E

Permittivity pressboard / oil r ratio = 2

Page 14

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Conductivity pressboard / oil  ratio > 50

Dielectric Stress and Insulation Design Parameter which influence the Oil Conductivity

10-16

10 -1 2 1 0 -12

10

-1 3

10

-13

Pressboard

10-18

O il

-1 Conductivity Leitfähigkeit [S m[S ] m-1]

1 0 -11

-1

-1

Conductivity Leitfähigkeit [S m[S]m ]

10 -1 1

Pressboard RIP RIP

10-13

Öl

P res sb o ard , H P re s sb o a rd , H

-15

10

10-10

10 -1 4 1 0 -14

10 -1 5

P res sb o ard , T

1 0 -15

P re s s b o a rd , T

10-12

Oil Öl

Porzellan

10-7 1 1

10

1 00

Field S tre n1gth 10 00 F el ds tä r ke

1 00 0

[k1V /m m ] 00 0

20 10-9

40

20

40

[k V / m m ]

Quelle: „DC Flashover voltage characeteristics...“, A. Kurita et.al, IEEE Transactions on Power Delivery, Vol. PWRD-1,No.3, July

Page 15

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Porcelain 60

80

100

120

60 80 Temperature [°C]100

120

Temperatur [°C]

Dielectric Stress and Insulation Design Polarity Reversal (PR) Change of the Field Strength during and after PR

Applied Voltage

Equipotential Lines

Electrical Field Distribution E mag in kV/mm max

1.00

Page 16

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends Long time DC or DC polarity reversal test with PD measurement – Test setup 800kV HVDC Transformer

Page 17

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends Active Part and Leads Assembly – 800kV HVDC Transformer

Page 18

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends Barrier System for the 800 kV Bushing of the Valve-Winding

Page 19

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends The World’s first 800 kV UHV DC in China Southern Power Grid

Commercial Operation:  2009 – Pole 1 1,418 km

5,000 MW

 2010 – Pole 2

+/- 800 kV DC

Yunnan-Guangdong Quelle: Prof, Retzmann

Page 20

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends Sending Station Chuxiong

Page 21

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends Converter Transformer at Suidong

Page 22

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends UHV DC Transformers arriving

Page 23

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends UHV DC Transformers arriving

Page 24

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends UHV DC logistics – a crucial task

Page 25

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends Yunnan-Guangdong – UHV DC Valve Halls

800 kV DC

800 kV DC 2 x 400 kV DC

Page 26

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends Yunnan-Guangdong – UHV DC Valve Hall

800 kV DC

Page 27

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Yunnan-Guangdong – UHV DC Converter

400 kV DC Page 28

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Yunnan-Guangdong – UHV DC Converter

Inauguration first pole on 28.12.2009

Page 29 29

02-2010 25.10.2010

800 kV DC

Dr. MarioESchenk, T PS SL/Re Frank Trautmann

Power Transmission Division

Yunnan-Guangdong – UHV DC Converter

800 kV DC Page 30

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends World’s biggest and longest 800 kV UHV DC Transmission Project State Grid Corporation of China

Xiangjiaba-Shanghai Shanghai Leshan

Sichuan Power Grid

Chongqing

Xiangjiaba Xiluodu left Xiluodu right

Nanhui

Wuhan

Xiangjiaba Xiluodu-Zh uzhou Xiluodu left Xiluodu rightXiluodu-Zhe xi

Zhexi

Changsha 970km

Zhuzhou

km 1728

2,071 Km

6,400 MW +/- 800 kV DC Guangdong Quelle: Prof, Retzmann, Siemens

Page 31

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Projects, Developments and Trends HVDC Transformers

3000 MW, 500KV TSQ-GBJ

5000 MW, 800kV Yunnan-Guangdong 250 MVA

2000

2008

in operation

in operation

Page 32

25.10.2010

6400 MW, 800kV Xiangjiaba-Shanghai 321,1 MVA 2009

in operation

Dr. Mario Schenk, Frank Trautmann

7200 MW, 800kV Study 360 MVA 2010

Study

Projects, Developments and Trends Jinping ± 800 kV UHV DC Transmission Project

Sunan Leshan Chongqing To Sichuan Power Grid Jinping Plant I Jinping Plant I I Guandi Linping Xichang

Wuhan

Changsha

2,237 km

* 6.4 GW initially * 7,200 MW +/- 800 kV DC Planned for 2013 Guangdong

For Comparison: Germany Source: “Brazil-India-China Summit Meeting on HVDC & Hybrid Systems – Planning and Engineering Issues”, July 2006, Rio de Janeiro, Brazil Page 33

25.10.2010

Dr. Mario Schenk, Frank Trautmann

840 km

Shanghai

Projects, Developments and Trends HVDC Transformers – Technical Data

1. 800 kV Yunnan Guangdong

2. 800 kV Xiangjiaba Shanghai

3. 800 kV Study

1. 1100 kV Study

5000 MW 250 MVA li0 525 kV/√3 168.85 kV/√3

6400 MW 321 MVA li0 530 kV/√3 170.3 kV/√3

7200 MW 360 MVA li0 530 kV/√3 170.3 kV/√3

?

Rated Power System Transformer

Vectorgroup Ratio Weights Total Oil

Insulationlevel Line (HV) Valve (LV) AC (60min) LI SI Potential DC (2h) PR -/+/(90/90/45)min Page 34

25.10.2010

512 t 142 t 909 kV 912 1254 kV 969 kV

551.8 t 148.8 t 912 kV 912 kV LI 1550 kV SI 1175 kV AC 680 kV 912 1800 kV 1600 kV 1258 kV 970 kV

Dr. Mario Schenk, Frank Trautmann

912 1258 kV 970 kV

Transforming know-how into solutions. Siemens Transformers.

Thank you for your attention ! Page 35

25.10.2010

Dr. Mario Schenk, Frank Trautmann

Information about the Presenter

Mario Schenk Director Engineering and R&D, Power Transformers Nuremberg 1991 till 1997 1997-2002 2002 11/2002-10/2007 2004-2006 since 11/2007

Page 36

25.10.2010

Electrician Electrical Engineering (HV and High Current) (Dipl.-Ing. TU Dresden and Virginia Tech) Doctorate, Scientific Assistant (Dr.-Ing. TU Dresden) Thermal Design of High Voltage Equipment ABB Switzerland AG R&D, Design of Generator Circuit Breakers SGB Regensburg (SGB/SMIT Group) Director R&D, Director Engineering Executive MBA (Northwestern University Chicago, WHU Koblenz) Siemens AG, Power Transformers Nuremberg Director Engineering and R&D responsible for R&D, Electrical Design Mechanical Design and Production Technology

Dr. Mario Schenk, Frank Trautmann