SEISMIC BEHAVIOR OF STEEL BUILDING STRUCTURES WITH COMPOSITE SLABS

; ..• .. ft~ I~' \ . SEISMIC BEHAVIOR OF STEEL BUILDING STRUCTURES WITH COMPOSITE SLABS by Seung Joon Lee A Dissertation Presented to the Gradu...
Author: Donna Griffith
1 downloads 1 Views 7MB Size
;

..• ..

ft~ I~'

\

.

SEISMIC BEHAVIOR OF STEEL BUILDING STRUCTURES WITH COMPOSITE SLABS

by Seung Joon Lee

A Dissertation Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Doctor of Philosophy in Civil Engineering

FRITZ ENGINEERING U\BOAATORY L!BRARV: Lehigh University Bethlehem, Pennsylvania

1987

'

To Sun- Woo for her patience and love and Daniel and Allen for the joys they bring

ACKNOWLEDGEMENTS The

research

described

herein

was

conducted

at

Fritz

Engineering

Laboratory, Department of Civil Engineering, Lehigh University, Bethlehem, Pa. Dr. Irwin J. Kugelman is chairman of the department. research sponsored

The work was part of

projects on "U.S.-Japan Cooperative Earthquake Research Program" by

the

National

Science

PFR-8008587 and CEE-8207712.

Foundation

under

NSF

Grant

Nos.

Drs. S. C. Liu and John B. Scalzi of NSF

provided valuable comments and support for these projects.

The supervisiOn, encouragement, and critical review of this work by Dr. Le- Wu Lu, Professor in charge of the dissertation are sincerely appreciated.

The

interest of Professors Ti Huang, J Hartley Daniels, Dean P. Updike and Irwin J. Kugelman, members of the special committee directing the author's doctoral work

IS

gratefully

acknowleded.

The

concern

of,

criticisms

and

helpful

suggestions made by various members of the faculty are greatly appreciated. Especially the help of Drs. Lynn S. Beedle, Roger G. Slutter, George C. Driscoll and Peter Mueller are quite valuable.

Appreciation is also extended to the author's many associates at Fritz Laboratory for their day and night assistance during the many phases of the experiments.

Messrs. Gab-Jo Lee, C. C. Chen, Kai Yu and Jin Jian helped m

the tests. Mr. C. F. Hittinger and the technicians prepared the experiments.

The author wishes to express his special thanks to his wife Sun- Woo who provided encouragement, understanding and active help during his graduate study at Lehigh University. lll

Table of Contents

b) (kN-M) EJ-WC

EJ-FC STRENGTH (P) (kN) EJ-WC

Table 3.2

ANALYTICAL VS. EXPERIMENTAL OF COMPOSITE PANEL ZONES

ITEMS

A

GENERAL YIELDING STRENGTH (P : kN)

SPECilofEN

. ANALYTICAL

POS.

108.0

124.0

NEG.

77.0

87.0

136.0

162.0

EJ-FC IJ-FC

POST-ELASTIC STIFFNESS (LlM/'rp) (kN-M)

EXPERilofENTAL

POS.+ NEG. POS.

8277.

6873.

NEG.

6244.

4719.

11086.

8992.

EJ-FC IJ-FC

POS.+ NEG.

145

Table 4.1

"

TEST STEEL SPECIMEN SECTION

SLAB DEPTH (mm)

SU.MMARY OF TEST DATA RIB HEIGHT

COLUMN WIDTH

f'c

uyf

uyw

(mm)

(mm)

(MPa)

(MPa)

(MPa)

REF.

A1

W12X27

101.6

304.8

23.46

379.5

405.0

32

A2

W12X27

101.6

304.8

23.46

379.5

405.0

32

B1

W12X27

101.6

304.8

24.50

379.5

405.0

32

B2

W12X27

101.6

304.8

24.50

379.5

405.0

32

C1

W12X27

101.6

304.8

30.98

379.fj

405.0

32

C2

W12X27

101.6

304.8

30.98

379.5

405.0

32

D1

W12X27

101.6

304.8

31.46

379.5

405.0

32

D2

W12X27

101.6

304.8

31.46

379.5

405.0

32

E1

W12X27

63.5

38.1

304.8

28.91

373.3

383.6

32

E2

W12X27

63.5

38.1

304.8

28.91

373.3

383.6

32

F1

W12X27

63.5

38.1

304.8

28.98

373.3

383.6

32

F2

W12X27

63.5

38.1

304.8

28.98

373.3

383.6

32

G1

W12X27

101.6

304.8

42.44

373.3

383.6

32

H1

W16X40

101.6

304.8

25.81

379.5

390.5

32

H2

W16X40

101.6

304.8

25.81

379.5

390.5

32

B44

W12X27

101.6

457.2

21.94

396.1

403.7

31

B64

W12X27

101.6

457.2

22.91

396.1

403.7

31

B84

W12X27

101.6

457.2

17.25

396.1

403.7

31

J1

W16X40

101.6

406.4

27.60

251.2

276.0

25

J2

W16X40

101.6

406.4

27.60

251.2

277.4

25

Cll

W10X19

88.9

165.1

20.49

255.3

299.5

79

C12

W10X19

88.9

205.5

20.49

255.3

299.5

79

JA1

W33X152

400.0

24.36

254.2

293.5

45

120.0

80.0

146

Table 4.2

COMPUTATION OF K AND 4K

\.

TEST SPECIMEN

STEEL SECTION

ULTIMATE MOMENT (kN-M)

K

4K

A1

W12X27

384.6

1.67

1.49

A2

W12X27

371.8

1.48

1.41

B1

W12X27

369.9

1.46

1.37

B2

W12X27

372.2

1.46

1.38

C1

W12X27

387.8

1.44

1.30

C2

W12X27

383.6

1.41

1.28

D1

W12X27

396.2

1.48

1.33

D2

W12X27

400.9

1.61

1.36

E1

W12X27

362.0

1.44

1.41

E2

W12X27

341.1

1.36

1.33

F1

W12X27

347.8

1.40

1.37

F2

W12X27

366.6

1.47

1.44

G1

W12X27

411.3

1.47

1.27

H1

W16X40

698.0

1.61

1.47

82

W16X40

692.0

1.49

1.46

B44

W12X27

461.3

1.69

1.63

B64

W12X27

464.0

1.68

1.61

B84

W12X27

438.9

1.78

1.68

J1

W16X40

666.1

1.38

1.26

J2

W16X40

676.3

1.44

1.31

Cll

W10X19

164.6

1.67

1.63

C12

W10X19

173.7

1.62

1.46

JA1

W33X162

3427.

1.62

1.47

1.601

1.406

AVERAGE

147

Table 6.1 \

NO

SCALE FACTORS OF MODEL PARAMETERS SYMBOL

PARAMETER

DIMENSION

S.F.

1

Strain

f

2

Stress

(J

F L-2

1

3

Length(•)

D

L

N

4

Moment of Inertia.

I

L4

~

6

Displa.cememt

t:..

L

N

6

Plastic Moment

Mp

F L

N3

7

Lateral Force

pl

F

N2

8

Stiffness

K

F L-1

N

9

Elastic llodulus(•)

E

F L-2

1

10

Weight

w

F

N2

11

Time

t

T

vN

12

Frequency

w

T-1

11.JN

13

Acceleration(•)

g

L T-2

1

14

Mass

m

F L-1 T2

N2

16

Velocity

v

L T-1

vN

Table 6.2 MATERIAL

1

MATERIAL PROPERTIES OF STEEL FOR W SHAPES STATIC YIELD STRESS (MPa.)

DYNAMIC YIELD STRESS (MPa.)

ULTIMATE STRESS (MPa.)

Gage #7

198.8

208.4

316.8

Gage #10

196.9

210.4

322.0

Gage #11

234.9

251.7

343.0

Gage #12

206.6

222.1

323.2

Plate 1/4

272.4

286.5

462.1

Plate 6/18

289.0

302.1

489.0

Plate 3/8

298.8

311.7

441.0

148

Table 6.3 MEMBER

MATERIAL PROPERTIES OF BRACE MEMBERS

STATIC YIELD STRESS

DYNAMIC YIELD STRESS

ULTIMATE STRESS

STUB COL. STRESS

(.MPa.)

(.MPa.)

(.MPa.)

(.MPa.)

4x4x3/16

301.1

321.7

480.0

349.7

5x5x3/16

301.1

321.7

480.0

349.7

5x5x1/4

413.1

430.3

554.7

412.4

6x6x1/4

413.1

430.3

564.7

403.5

6x6x1/2

327.6

344.8

499.7

269.0

Table 6.4 FLOOR

7 DAYS

CONCRETE PROPERTIES 28 DAYS

TEST DAYS

(MPa)

(MPa)

(MPa)

ROOF FL.

11.95

15.72

16.68

6TH

FL.

11.38

15.38

15.82

5TH

FL.

13.24

17.65

20.48

4TH

FL.

17.93

24.00

28.41

3RD

FL.

15.86

21.72

23.00

2ND

FL.

17.53

24.41

29.86

.I

149

Table 6.5

'

SECTION PROPERTIES OF MODEL STEEL MEMBERS

Section

Member

D

B

tw

tf

A

r*

(in)

(in)

(in)

(in)

(in 2 )

(in 4 )

W10x33

c2,c3,c4 2.97

2.43

0.100

0.130

0.903

1.441

W10x39

c3

3.02

2.43

0.100

0.162

1.0o7

1.773

W10x49

c1

3.06

3.00

0.100

0.17o

1.339

0.828

W10x60

c4

3.11

3.07

0.130

0.20o

1.610

2.873

W12x40

co

3.68

2.14

0.100

0.17o

1.082

2.610

W12xo0

c3

3.71

2.68

0.119

0.17o

1.492

3.73o

W12xo3

c2

3.68

3.0o

0.100

0.175

1.401

3.589

W12x6o

c2,c3 c1

3.68 3.68

3.66 3.66

0.119 0.119

0.175 0.175

1.677 1.677

4.304 1.430

W12x72

co

3.73

3.67

0.130

0.205

1.836

5.076

W12x79

c1 c4

3.82 3.77

3.48 3.68

0.130 0.130

0.250 0.225

2.177 2.088

5.965 o.606

W12x87

c2 c1

3.82 3.82

3.70 3.70

0.157 0.175

0.250 0.250

2.371 2.431

6.383 6.438

W12x106 c4,c5

3.95

3.73

0.175

0.320

2.868

8.413

W12x136 co

4.07

3.78

0.250

0.390

3.771

10.76

W16x31

G1 G2

4.84 4.84

1.68 1.68

0.100 0.130 0.084 -0.130

0.895 0.822

3.224 3.088

W18x35

G1 G2

5.40 5.40

1.76 1.76

0.100 0.092

0.130 0.130

0.972 0.830

4.310 4.218

W18x40

G1,G2

1.84

0.100

0.17o

1.085

o.122

1.0 inche• * I

= 25.4

-

o.48

value for c1 i• for weak axis bending

150

PROPERTIES OF BRACE MEMBERS

Table 6.6 Section

B

t

D

A

I

r

(in)

(in)

(in)

(in 2 )

(in 4 )

(in)

4x4x3/16

1.30

1.20

0.069

0.282

0.067

0.489

6x6x3/16

1.69

1.61

0.068

0.346

0.126

0.606

6x6x1/4

1.67

1.63

0.076

0.460

0.161

0.698

6x6x1/4

1.86

1.83

0.076

0.647

0.283

0.719

6x6x1/2

1.63

1.68

0.173

0.962

0.313

0.670

1.0 inches = 26.4 mm

Table 6.7

EXPERIMENTAL FLEXIBILITY MATRIX OF MODEL Unit:

Floor

Roof

6th

6th

4th

inches/kips

3rd

2nd

Roof

0.0290

0.0226

0.0163

0.0113

0.0072

0.0033

6th

0.0230

0.0217

0.0161

0.0113

0.0071

0.0034

6th

0.0167

0.0161

0.0160

0.0107

0.0089

0.0032

4th

0.0113

0.0110

0.0106

0.0098

0.0084

0.0030

3rd

0.0071

0.0068

0.0087

0.0082

0.0069

0.0030

2nd

0.0032

0.0032

0.0031

0.0028

0.0029

0.0026

1.0 inches/kips = 6.710 mm/kN

151

Table 6.8

'

Story

STORY DRIFT OF MODEL AND PROTOTYPE Model Drift(index)

Prototype Drift(index)

6th

0.183in(0.0045)

0.143in(0.0035)

5th

0.78Qin(0.01Q3)

0.256in(0.0063)

4th

0.828in(0.0203)

0.361in(0.0088)

3rd

0.062in(0.0127)

0.666in(0.0163)

2nd

0.338in(0.0083)

0.72lin(0.0177)

1st

0.36lin(0.0065)

0.56Qin(0.0104)

1.0 inches = 25.4 mm

Table 6.9

BUCKLING STRENGTH OF BRACES

Brace

Story North

South

AISC(K=0.66)

5th

18.27kips

17.23

14.65

4th

1Q.63

23.41

21.70

3rd

26.71

25.36

27.80

2nd

34.07*

1st

25.36

27.80 21.82

* Connection of the brace was reinforced 1.0 kips= 4.448 kN

152

Table 6.10 Story

DISTRIBUTION OF STORY SHEAR

Model Test Moment Braced Frame Frames

Predicted Braced Moment Frames Frame

6th

16.3%

83.7

17.0

83.0

5th

15.9

84.1

14.0

86.0

4th

14.6

86.4

14.0

86.0

3rd

11.4

88.6

15.0

85.0

2nd

11.5

88.5

14.0

86.0

let

16.2

84.8

24.0

76.0

Table 6.11 FUNDAMENTAL PERIODS let

2nd

3rd

Model

0.353 sec.

0.119

0.071

Prototype

0.338

0.123

0.072

153

Table 6.12

STORY FLEXIBILITY OF MODEL AND PROTOTYPE unit:

Story 6th

6th

model proto. ratio

Roof 1.833 1.886 0.970

5th

model proto. ratio

1.921 1.730 1.110

1.717 1.564 1.098

4th

model proto. ratio

1.656 1.340 1.236

1.547 1.327 1.166

1.261 1.216 1.037

3rd

model proto. ratio

1.272 1.139 1.117

1.323 1.160 1.160

1.166 1.106 1.045

1.037 1.040 0.997

2nd

model proto. ratio

1.178 0.904 1.303

1.096 0.927 1.181

1.096 0.938 1.167

1.037 0.926 1.121

let

model proto. ratio

0.988 0.714 1.384

0.949 0.769 1.260

0.949 0.768 1.260

0.866 0.872 0.782 0.769 1.107 . 1.149

1.0 inches/kips --

Force at 5th 4th

inches/kips

= 6.71

mm/kN

_)

154

3rd

2nd

0.921 0.827 1.114

--

0.769 0.738 1.028

FIGURES

155

I

~

II

-----.

)

/

Icomp /

/

H

'I

Icomp

I

/

--------

.L

------

----

./ ./

I

L

/~ /

.£.

~f-+

II

~

L, Fig. 1.1

STEEL FRAME WITH COMPOSITE SLAB UNDER SEISMIC FORCES

Fig. 1.2

COMPOSITE BEAM-TO-COLUMN JOINT

)

156

,'I

cp

1500

~-

7500

500

...1'------------· -----------lc-----------G G 1 c, 1c2 1

3

1

II

I

I

~--------JL----------.J ~--------,~----~~-·

1~00 lL=====~====jl=====-L;?, ~~ ~~

J_ )

I

ft M

I

II

Gz

II

ftl

II II

~

I

I

.I C• ===========•==! ==========· BRACE II c. G. I ..

_,_,

5

~

I I

L: ---.l.L---J~=----=p:-=1 --------,r ----- -, I "II - I '-....-.~ 7500 ,., I .L--------~~----=-Jc:=~1 ~ I . r-------- 11 ---:-- -

C•

I

~ ::'=====G~===J;~=~-==--= I e, UNIT:mm

Fig. 2.la

PROTOTYPE STRUCTURE (FLOOR PLAN)

157

............"""!~~

z

-....

0

u

~

~

,

' § fl'i

!.;.

t-

vJQJNT

._,...-

!... § ...

EJ-,wc a..

"'

vJOJNT

~J

! )

-

! J

r1

T l

.,

1.mD

... UNlT:mm

Fig. 2.lb

PROTOTYPE STRUCTURE (FRAMES A &: C)

153

r

,



UNIT:mm Fig. 2.lc

PROTOTYPE STRUCTURE (FRAME B)

159

./

\ f'

I Fig. 2.2

At = Ac• Ab•llpl

COMPONENTS OF STORY DRIFT

160

r

1200

~

0

X 0

0

r-. -

....-4

3

Wl8x35

] p

0

0

r-.

SPECIMEN EJ-FC

UNIT:mm

f. Fig. 2.3

2300

DIMENSION OF SPECIMEN EJ-FC

161

• 1200

i

Wl8x35

t-' 0'1 I'V

0 0

£"-,

:t

t: p

p

SPECIMEN JJ-FC UNIT:mm

150~1 Fig. 2.4

2300 DIMENSION OF SPECIMEN JJ-FC

r

1200

0

0

c:-.

Wl8x35

I p

0

-

c:-.

SPECIMEN

EJ~WC

I I

UNIT :mm

~'~~~~~-------2_3_oo_______..,....j.J1so Fig. 2.5

DIMENSION OF SPECIMEN EJ- WC

163

300

·....

I

.

.

.

.

.

.

1

:i

.

. . .

.

.

.

. ..

.

_1

0

_____ -·-.~~~----:-" --,a:M . .' . ·.. •. . . . . . ~ . . ·· . . : . . . . . . . . .• . . ·.. I

---~_.

.. . .

.

L Fig. 2.6

. .

J

900

DIMENSION OF METAL FLOOR DECK

-

\\

II ~h :I

)

N

I

,- --

-~-·

H

,~ I

-

UNfT:mm

-I

I

---------~~-----

-- -

-

--

-

'

'

......lo, - -

!--

I

II -~ I

I ii

Fig. 2.7

!

L

........

\

1

dI

I~

44-44 WELDED WlRE MES H

,

I 11 I I dI 0 0

.

2300

LAYOUT OF REINFORCING WIRE

164

-- ,._ _ _ - - -.i . -

~~

..:..... -

--

~· -

/

SPECIMEN +-LOAD CELL .--·MECHANICAL JACK HINGE

Fig. 2.8

TEST SETUP

PEDESTAL

6

5 >-4

~

P

/ll!4·full

250

I

+ ---r---,-- -----Mp.com I "---- PREDICTED I

(kN)

I I I

I

15

I

/ 1

NEGATIVE EXPERIMENTAL

I

I I

I

-0.02

-0.01

0.01

0.02

a (rod) I

Mp.com------

-100

___ LI __ _ I

I

lcom -200 Fig. 2.27 SKELETON CURVE OF COMPOSITE BEAM ROTATION (SPECIMEN EJ-FC)

p

f ll./4, full -J-,-- --------Mp.com

250

( kt-\)

I "'---.. PREDJCTEU

I

200

I I

POSITIVE

I

I I

150

I

-----~-NEGATIVE

I I

I I

-QOS

-0.04

-o.Ol

. -0.02

-0.01

EXPERIMENTAL

0.01

0.02

-50 NEGATIVE----..

-100

I

Mp,com--- ----- -·----- --1--/

-150

Icom -200 Fig.: 2.28 SKELETON CURVE OF COMPOSITE BEAM ROTATION (SPECIMEN EJ-WC)

0.03

e (rod)

Q-

Mb( Db orE

Q-

Fig. 2.29


(POS.)

NEGATIVE EXPEHIMENTAL

50

0.05

0.05

0.02

\p (rod)

NEGATIVE

-100

-200 Fig. 2.30

SKELETON CUHVE OF COMPOSITE BEAM-TO-COLUMN PANEL ZONE DEH>HMATION (SPECIMEN EJ-FC)

'

J

F!g. '.! .31

FO R\1ATIO~ OF A PLASTIC HI\"GE \1ECHA:\IS\t .\ T COL L"\.[\" F L.\\"G E:,

189

"

)

p

nth CYCLE

Fig. 2.32

DEFINITIONS OF DUCTILITY FOR CYCLIC LOADING

190

r

-6.0

4.5 (X 10-5)

~ (rod)

Fig. 2.33

MOMENT(M)- CURVATURE(•) OF COMPOSITE BEAM AT 10.2" FUOM COLUMN FACE (SPECIMEN .EJ-FC)

'

j

X

Fig. 2.34

EQUIVALENT VISCOUS DAMPING .

I

192

\

I

20

p

~ I

;Z ~

~ >-

~

,.,za:

,.,

10

Q

~ a:

~

CD ~

-POs. ---NEG.

50 Fi~.

2.35

150.

fl

200

(mm)

ENERGY ABSORPTION OF SPECIMENS -EJ-FC ·AND EJ- WC

20 )

100 DEFLECTION

p

~ I '% ~

~ >-

,.,z ,., ,.,,_ ~

a:

10

Q

~ Vi

EJ-WC

-"" Q

-POS. ---NEG.

50

100 DEFLECTION

150

ll

200

Cmm)

Fig. 2.36 ENERGY DISSIPATION OF SPEC:IMENS EJ-FC AND EJ-WC

193

p

250

(kN)

150

so 1-' 1.0

""'

-100

so

-so

100

11

-100

(mm)

~

COLUMN

~

BEAM

m

PANEL

ZONE

-200 Fig. 2.37a. COMPONENTS OF TOTAL DEFLECTION (SPECIMEN EJ-FC)

...... \0

1.11

-150

-100

so

-50

100

150

A -100

(mm)

~

COLUMN

~

BEAM

ill

PANEL

ZONE

-200

-300 Fig. 2.37b COMPONENTS OF TOTAL DEFLECTION (SPECIMEN IJ-FC)

p

250

( k~)

-so

-100

50

100 ~

------ _-....

---

(mm)

~

COLUMN

~

PANEL

m

BEAM

BUCKLING OF BEAM FLANGE

-200 Fig. 2.37c COMPONENTS OF TOTAL DEFLECTION (SPECIMEN EJ-WC)

ZONE

1000 ~

p

:r ..:..:

0

:::>

w z

750

-~

0

.....

Vl Vl

i3 >~ a=

IJJ

z

IJJ

500

IJJ

> ;:::

< ....J

~

~

~

u u

Suggest Documents