S parameter at non-zero temperature and chemical potential

S parameter at non-zero temperature and chemical potential Ulrik Ishøj Søndergaard February 2012 Søndergaard, Pica, Sannino: Phys. Rev. D 84, 075022 ...
Author: Leslie Mills
2 downloads 2 Views 4MB Size
S parameter at non-zero temperature and chemical potential Ulrik Ishøj Søndergaard

February 2012 Søndergaard, Pica, Sannino: Phys. Rev. D 84, 075022 (2011)

Electroweak Precision Observables

α

Electron anomalous magnetic moment

GF

Muon lifetime

�Z

Resonance

Classic review: M. E. Peskin and T. Takeuchi, Phys. Rev. D 46, 381 (1992)

At Lagrangian level �

� = �(�� � � �)

2 �H

λ

Classic review: M. E. Peskin and T. Takeuchi, Phys. Rev. D 46, 381 (1992)

At Lagrangian level �

Broken phase:

� = �(�� � � �)

� = �(�0 � �0 � �)

2 �H

λ

Experimental setup: External fermions are light

Experimental setup: External fermions are light =⇒ =⇒

µ ν

� � -term in propagators suppressed

‘direct’ BSM corrections suppressed

Experimental setup: External fermions are light =⇒ =⇒

µ ν

� � -term in propagators suppressed

‘direct’ BSM corrections suppressed

Oblique corrections dominate

Tree-Level expression Example: Charged Current

�W W =

2 �0 I 2 + 2 2�0 �

1 I − 2 − ���0

Tree-Level expression Example: Charged Current

�W W =

2 �0 I 2 + 2 2�0 �

1 I − 2 − ���0

All Orders Vacuum Polarization

*

�W W =

2 �∗ ZW �∗ I I + − 2 2 2 2�∗ � − ���∗ 2

‘ed quantities depend on q

Tree-Level expression Example: Charged Current

�W W =

2 �0 I 2 + 2 2�0 �

1 I − 2 − ���0

All Orders Vacuum Polarization

*

�W W =

2 �∗ ZW �∗ I I + − 2 2 2 2�∗ � − ���∗ 2

‘ed quantities depend on q

+ Most SM corrections can be absorbed into these variables (including direct corrections)

Choosing a scheme

�� ≡?

M. Awramik et al., Phys. Rev. D69, 053006 (2004), hep-ph/0311148 ← SM mW calc. + others

Choosing a scheme

�� ≡?

2 � 2 W sin θ = 1 − W ‘On shell’ �2Z

M. Awramik et al., Phys. Rev. D69, 053006 (2004), hep-ph/0311148 ← SM mW calc. + others

Choosing a scheme

�� ≡?

2 � 2 W sin θ = 1 − W ‘On shell’ �2Z

Better:

sin 2θ� =



4πα��∗ (�2Z ) √ 2GF �2Z

M. Awramik et al., Phys. Rev. D69, 053006 (2004), hep-ph/0311148 ← SM mW calc. + others

Choosing a scheme

�� ≡?

2 � 2 W sin θ = 1 − W ‘On shell’ �2Z

Better:

sin 2θ� =



4πα��∗ (�2Z ) √ 2GF �2Z

We can now compute any EW observable as an expression of �� � α� GF and �Z Up to corrections from new physics!

M. Awramik et al., Phys. Rev. D69, 053006 (2004), hep-ph/0311148 ← SM mW calc. + others

Choosing a scheme 2 � 2 W sin θ = 1 − W ‘On shell’ �2Z

�� ≡?

Better:

sin 2θ� =



4πα��∗ (�2Z ) √ 2GF �2Z

We can now compute any EW observable as an expression of �� � α� GF and �Z Up to corrections from new physics!

Ex:

�2W 2 − cos θ� 2 �Z α�2 = 2 � − �2





2 2  1 � � � 2 4π � � � � − � � � − 16π Π33 (0) − Π3Q (0) +� (Π11 (0) − Π33 (0)) + 16π Π11 (0) − Π33 (0)   2� 2 2 2 2 � � �� 4� � �� � �� � � �� �

≡S

≡T

≡U

M. Awramik et al., Phys. Rev. D69, 053006 (2004), hep-ph/0311148 ← SM mW calc. + others

T

0.5 B SM

Aug 10

0.4

G fitter preliminary

0.3 0.2 0.1 0 MH D [114,1000] GeV mt = 173.3! 1.1 GeV

-0.1 MH

-0.2 -0.3

68%, 95%, 99% CL fit contours (M =120 GeV, U=0) H

-0.4 -0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S

GFITTER

Definitions Peskin-Takeuchi

S = 16π =



� Π33 (0)



� −16πΠ3Y (0)

� Π3Q (0)



Definitions Peskin-Takeuchi �2 → 0

He-Polonsky-Su

S = 16π =



� Π33 (0)



� −16πΠ3Y (0)

� Π3Q (0)



� Π3Y (� ) − Π3Y (0) � S = −16π � �2 =�2Z �2 2

We will not do this

Definitions S = 16π

Peskin-Takeuchi �2 → 0

He-Polonsky-Su T →0 µ→0

=



� Π33 (0)



� −16πΠ3Y (0)

� Π3Q (0)

� Π3Y (� ) − Π3Y (0) � S = −16π � �2 =�2Z �2 2

We will not do this

Π3Y (�2 � �� T � µ) − Π3Y (0� �� T � µ) S = −16π �2

�0 = �|q|�



2

� =

2 �0

−q

2

� = coth η ≥ 1

S at zero T and μ Degenerate technifermions: No Y dependence � � 6 �� 2 4 � 1 � 1 � � 2 2 S(� /�T F ) = 1+ + +� 2 4 6π 10 �T F 70 �T F �6T F

� = �[�]NT F /2

fund:

= NT C NT F /2

S at zero T and μ Degenerate technifermions: No Y dependence � � 6 �� 2 4 � 1 � 1 � � 2 2 S(� /�T F ) = 1+ + +� 2 4 6 6π 10 �T F 70 �TCP � 3 - Origins F TF

� = �[�]NT F /2

= NT C NT F /2

3.0 2.5 2.0 6ΠS��

fund:

Particle Physics & Origin of Mass

1.5 1.0 0.5 0.0 0

1

2

4

q2 �m2

8

16



FIG. 1: Real (blue-solid) and imaginary (red-dashed) parts for 6πS the normalized parameter as function of increasing q2 /m2 �

Bo no ke lim the be

S at zero T and μ Degenerate technifermions: No Y dependence � � 6 �� 2 4 � 1 � 1 � � 2 2 S(� /�T F ) = 1+ + +� 2 4 6 6π 10 �T F 70 �TCP � 3 - Origins F TF

� = �[�]NT F /2

= NT C NT F /2

� S(0) = 6π sxc.hu:1128191

3.0 2.5 2.0 6ΠS��

fund:

Particle Physics & Origin of Mass

1.5 1.0 0.5 0.0 0

1

2

4

q2 �m2

8

16



FIG. 1: Real (blue-solid) and imaginary (red-dashed) parts for 6πS the normalized parameter as function of increasing q2 /m2 �

Bo no ke lim the be

CP 3 - Origins Particle Physics & Origin of Mass

1.3

1

� >1.1 6π 6ΠS��

1.2

1.1

10

11

12

13

14

15

16

Nf (a) SU(3) with fundamental fermions.

1.2

1

1.3

1.3

1.2

1.2

6ΠS��

6ΠS��

2-loop perturbation

6ΠS��

1.3

1.1

1

7

8

(b) SU(2)

1.1

2.0

2.2

2.4

2.6

2.8

3.0

1

3.2

2.0

2.1

2.

Nf (c) SU(3) with 2-index symmetric fermions.

(d) SU

FIG. 2: Normalized conformal S-parameter near the perturbative upper bound of the co

to consider the 2-loops β-function to determine α at the

with

CP 3 - Origins Particle Physics & Origin of Mass

1.3

1.2

1.1

1

� >1.1 6π 6ΠS��

2-loop perturbation

6ΠS��

1.3

10

11

12

13

14

15

16

Nf (a) SU(3) with fundamental fermions.

1

1.3

1.3

1.2

1.2

� � 1.1 S(0) � 1�57 > 6π 6π 1

2.0

2.2

2.4

6ΠS��

WSR + vector dominance + Large N rescaling 6ΠS��

1.2

7

8

(b) SU(2)

1.1

2.6

2.8

3.0

1

3.2

2.0

2.1

2.

Nf

(c) SU(3) with 2-index symmetric fermions.

(d) SU

FIG. 2: Normalized conformal S-parameter near the perturbative upper bound of the co

Peskin, Takeuchi, Phys. Rev. D 46, 381 (1992)to consider the 2-loops β-function to determine α at the

with

CP 3 - Origins Particle Physics & Origin of Mass

1.3

1.2

1.1

1

� >1.1 6π 6ΠS��

2-loop perturbation

6ΠS��

1.3

10

11

12

13

14

15

16

Nf (a) SU(3) with fundamental fermions.

1

1.3

1.3

1.2

1.2

� � 1.1 S(0) � 1�57 > 6π 6π 1

2.0

2.2

2.4

6ΠS��

WSR + vector dominance + Large N rescaling 6ΠS��

1.2

7

8

(b) SU(2)

1.1

2.6

2.8

3.0

1

3.2

2.0

2.1

WSR + more sophisticated approx + Large N rescaling Nf

(c) SU(3) with 2-index symmetric fermions.

� � S(0) � 1�88 > 6π 6π Peskin, Takeuchi, Phys. Rev. D 46, 381 (1992)

2.

(d) SU

FIG. 2: Normalized conformal S-parameter near the perturbative upper bound of the co

to consider the 2-loops β-function to determine α at the

with

Calculation For a degenerate technifermion doublet: 1 loop µν ΠLH = T

∞ �

�=−∞



Π3Y

1 = ΠLR 2

� � �/ + � ν �/ + �/ + � �p µ Tr γ PL 2 γ PH 3 2 (2π) � −� (� + �)2 − �2 3

�0 = �(2� + 1)πT + µ

ΠLR (�� �2 � T � µ) − ΠLR (�� 0� T � µ) S = −8π �2

Results Cold (βm >> 1):

√ � � �� � cosh(βµ) sech (η) 3 2π −β� 1 S+ = − � · 1+� � �2 3/2 6π (β�) β� �/� 1 − 2 cosh η 4

Results Cold (βm >> 1):

√ � � �� � cosh(βµ) sech (η) 3 2π −β� 1 S+ = − � · 1+� � �2 3/2 6π (β�) β� �/� 1 − 2 cosh η 4

Hot (βm > 1):

√ � � �� � cosh(βµ) sech (η) 3 2π −β� 1 S+ = − � · 1+� � �2 3/2 6π (β�) β� �/� 1 − 2 cosh η 4

Hot (βm

Suggest Documents