Resource Efficiency in Plastics Technology

Univ.-Prof. Dr.-Ing. C. Bonten Dipl.-Wirt.-Ing. O. Kast Institut für Kunststofftechnik Stuttgart, Germany Universität Stuttgart ■ www.ikt.uni-stutt...
0 downloads 2 Views 6MB Size
Univ.-Prof. Dr.-Ing. C. Bonten Dipl.-Wirt.-Ing. O. Kast Institut für Kunststofftechnik Stuttgart, Germany

Universität Stuttgart



www.ikt.uni-stuttgart.de

Resource Efficiency in Plastics Technology

Muoviteollisuuden Resurssitehokkuuden Teemapäiva 15.01.2015, Helsinki

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

1

Institut für Kunststofftechnik

Universität Stuttgart



www.ikt.uni-stuttgart.de

Locations of the IKT Böblinger Str. 70 (approx. 2,500 m²)

Pfaffenwaldring 32 University Campus (approx. 2,100 m²)

Stuttgart

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

2

Institut für Kunststofftechnik www.ikt.uni-stuttgart.de

Professors

1963 to 1979

Prof. Eyerer

since 2010 since 2014

Prof. Busse

Universität Stuttgart



Prof. Wintergerst

1979 to about 2010

Prof. Bonten Prof. Kreutzbruck

Prof. Schenkel

Prof. Fritz

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

Prof. Wagner INSTITUT FÜR KUNSTSTOFFTECHNIK

3

Institut für Kunststofftechnik

 New and Further Development of Polymer Materials

Universität Stuttgart

 Extrusion (blown and flat film)

 Material Characterization

 Injection Molding

(certified testing laboratory acc. to DIN EN ISO/IEC 17025:2005)

 Injection Molding Compounding  Thermoforming  3D printing  Rheometry and Process Simulation



www.ikt.uni-stuttgart.de

Fields of Competencies

 CAD and Component Simulation

 Ageing and lifetime prediction  Component testing (destructive and non destructive), failure analysis Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

4



The Task of the 21st Century



Resource Efficiency Through Plastics Products



Resource Efficiency in Plastics Processing 

Energy Efficiency in Injection Molding



Energy Efficiency in Single-screw Extrusion



Material Efficiency in Single-screw Extrusion



New Extrusion Technologies for Higher Efficiency

Universität Stuttgart



www.ikt.uni-stuttgart.de

Table of Contents



Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

6



The Task of the 21st Century



Resource Efficiency Through Plastics Products



Resource Efficiency in Plastics Processing 

Energy Efficiency in Injection Molding



Energy Efficiency in Single-screw Extrusion



Material Efficiency in Single-screw Extrusion



New Extrusion Technologies for Higher Efficiency

Universität Stuttgart



www.ikt.uni-stuttgart.de

Table of Contents



Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

7

The Task of the 21st Century

“A great economic and social change is imminent!” “(…) We have generated immeasurable wealth, which we only could dream of a hundred years ago. The industrial revolution and the related growth in population have led to manhood occupying almost all of the habitable land and exploiting resources from the last corners of the world. (…)”

Universität Stuttgart



www.ikt.uni-stuttgart.de

A Great Change is at Hand

Ernst Ulrich von Weizsäcker German Physicist and Politician Club of Rome Co-President Co-Author of „Factor Four“ and „Factor Five“ Picture: Key-note speaker at the IKT Congress 2013

Source: Weizsäcker et al.: Factor Five, Taylor & Francis Ltd. (2009) Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

8

The Task of the 21st Century

“A great economic and social change is imminent!” “Consequences for the environment and society is used to be neglected. 20 years ago the communistic regime failed, because prices did not reflect the economic reality. Just like that the modern society might also fail, because prices today do not reflect the ecological reality. (…)”

Universität Stuttgart



www.ikt.uni-stuttgart.de

A Great Change Is at Hand

Ernst Ulrich von Weizsäcker German Physicist and Politician Club of Rome Co-President Co-Author of „Factor Four“ and „Factor Five“ Picture: Key-note speaker at the IKT Congress 2013

Source: Weizsäcker et al.: Factor Five, Taylor & Francis Ltd. (2009) Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

9

The Task of the 21st Century

“A great economic and social change is imminent!” “(…) Free markets are actually perfectly able to take care for an efficient usage of limited resources and spark innovation. However, consumption of natural goods is hardly ever priced in.”

Universität Stuttgart



www.ikt.uni-stuttgart.de

A Great Change Is at Hand

Ernst Ulrich von Weizsäcker German Physicist and Politician Club of Rome Co-President Co-Author of „Factor Four“ and „Factor Five“ Picture: Key-note speaker at the IKT Congress 2013

Source: Weizsäcker et al.: Factor Five, Taylor & Francis Ltd. (2009) Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

10

The Task of the 21st Century

Crude Oil – The Supply Outlook (2008) „The major result from this analysis is that world oil production has peaked in 2006. Production will start to decline at a rate of several percent per year. (...)”

“By 2020, and even more by 2030, global oil supply will be dramatically lower. This will create a supply gap which can hardly be closed by growing contributions from other fossil, nuclear or alternative energy sources in this time frame. (…)”

Universität Stuttgart



www.ikt.uni-stuttgart.de

Fossil Resources Will Run Out

“The world stands at the beginning of a structural change of its economic system. (…)”

Source: Energy Watch Group 2008 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

11

Universität Stuttgart

russian crude oil export

first oil boom

www.ikt.uni-stuttgart.de

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast INSTITUT FÜR KUNSTSTOFFTECHNIK

Asian financial crisis Iraq War supply worries financial crisis

Iraq assaults Kuwait

Yom Kippur War Revolution in the Iran

reconstrucion after World War II loss of Iranian oil production Suez crisis

new found reservoires in Texas

first supply worries in the U.S. begin of Venezuelan oil production

new found reservoires in Texas

begin of Sumatran oil production



The Task of the 21st Century Crude Oil Prices in $ (2010, inflation-adjusted, Source: BP) July 14

Jan. 15

12

Universität Stuttgart

Since 2006 more oil reservoirs run dry than new ones can be found. russian crude oil export

first oil boom

www.ikt.uni-stuttgart.de

The price of crude oil is dependent on supply but also speculation!

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast INSTITUT FÜR KUNSTSTOFFTECHNIK

Asian financial crisis Iraq War supply worries financial crisis

Iraq assaults Kuwait

Yom Kippur War Revolution in the Iran

reconstrucion after World War II loss of Iranian oil production Suez crisis

new found reservoires in Texas

first supply worries in the U.S. begin of Venezuelan oil production

new found reservoires in Texas

begin of Sumatran oil production



The Task of the 21st Century Crude Oil Prices in $ (2010, inflation-adjusted, Source: BP) July 14

Jan. 15

13

The Task of the 21st Century

WAKE UP! You are here! Actually here!

Universität Stuttgart



www.ikt.uni-stuttgart.de

More Reservoires Run Dry Than New Ones Can Be Found

Peak Oil The production of shale oil and gas may allow to stretch the time gate until a total outage of fossil resources. It is, however, suspected to be destructive to the environment. Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

14

The Task of the 21st Century

Universität Stuttgart



www.ikt.uni-stuttgart.de

Energy Mix of Selected Countries oil

gas

coal

nuclear

biomass

waterpower

renewable

other

EU 27 Germany France United Kingdom Finland Primary energy supply in Mio. t (oil equivalent) (supply = production + imports – exports + changes in stock) Source: Bundeszentrale für politische Bildung, Bonn, 2012 / International Energy Agency (IEA), 2011

CO2 equivalents per kWh:

100 %

USA: 0,52 kg/kWh OECD: 0,43 kg/kWh Germany: 0,46 kg/kWh Finland: 0,23 kg/kWh

Source: IEA Statistics; CO2-emissions from fuel combustion, 2012 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

15

The Task of the 21st Century

Universität Stuttgart



www.ikt.uni-stuttgart.de

Fossil Energy Consumption Creates CO2 Emissions

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

16

The Task of the 21st Century

If all countries produced as much fossil CO2 p. c. as the USA, Canada and Australia do, we would actually need as many planet earths:

Universität Stuttgart



www.ikt.uni-stuttgart.de

What If We Were All like the Anglo-Saxons?

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

17

The Task of the 21st Century

Deutschland entkoppelt BIP von CO2-Emissionen Countries like Germany and Finland successfully Current level of CO2 emissions: ≈0.2 kg per person and US-$ decorrelate GDP and CO2 emissions.

Annual CO2 emissions in kg per person

Universität Stuttgart



www.ikt.uni-stuttgart.de

CO2 Emissions and GDP

Source: International Energy Outlook 2007 (Energy Information Administration)

GDP (1995 US-$ per person and year) Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

18

The Task of the 21st Century www.ikt.uni-stuttgart.de

Energy Consumption and GDP Germany consumes less energy despite economic growth. Goals for Energy Consumption/GDP: until 2020: -20 % until 2050: -50 % (compared to 1990 levels) Energy Efficiency ■

Gross Domestic Product

Actions:

Universität Stuttgart

energy efficient buildings energy efficient vehicles Primary Energy Consumption

energy efficient production renewable energy sources

Source: Gesamtverband Steinkohle e.V. Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

19

The Task of the 21st Century www.ikt.uni-stuttgart.de

A Sixth Kondratiev Wave? resource efficiency? 6th wave

IT and biotech 5th wave

petrochemicals and automotive 4th wave

electricity, engineering and chemistry 3rd wave



railway and steel

Universität Stuttgart

2nd wave

steam engine and cotton 1st wave

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

20



The Task of the 21st Century



Resource Efficiency Through Plastics Products



Resource Efficiency in Plastics Processing 

Energy Efficiency in Injection Molding



Energy Efficiency in Single-screw Extrusion



Material Efficiency in Single-screw Extrusion



New Extrusion Technologies for Higher Efficiency

Universität Stuttgart



www.ikt.uni-stuttgart.de

Table of Contents



Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

21

Efficiency Through Plastics Products

Universität Stuttgart



www.ikt.uni-stuttgart.de

Renewable Energies: Wind Turbines Would Not Exist Without Plastics!

Quelle: Siemens Prof. Dr.-Ing. C. Bonten,Pressebilder Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

22

Efficiency Through Plastics Products

Universität Stuttgart



www.ikt.uni-stuttgart.de

Reinforced Plastics in Wind Turbines

A 75 m long rotor blade made of glass fibre reinforced epoxy and balsa wood Year

Hub Height

Rotor Diameter

Annual Energy Output

1980

30 m

15 m

0.35 GWh

1995

78 m

46 m

3.5 GWh

2010

92 m

126 m

5.0 GWh Source: Siemens press pictures INSTITUT FÜR KUNSTSTOFFTECHNIK

23

Efficiency Through Plastics Products www.ikt.uni-stuttgart.de

Plastics and Polymers in Fuel Cell Technology

Universität Stuttgart



Source: Bonten, Kunststofftechnik (2014)

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

24

Efficiency Through Plastics Products

Universität Stuttgart



www.ikt.uni-stuttgart.de

Renewable Energies: Polymers in Photovoltaics

World‘s largest photovoltaic power station in Templin, Berlin

Source: press picture Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

25

Efficiency Through Plastics Products

Universität Stuttgart



www.ikt.uni-stuttgart.de

Energy Efficiency in Transport Through Lightweight Design

BMW i3 and i8

Porsche 918 Spyder

CRP: about 50 % lighter than traditional designs

CRP-Monocoque Sources: BMW Group; Autobild Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

26

Efficiency Through The Task of the 21stPlastics CenturyProducts

Universität Stuttgart



www.ikt.uni-stuttgart.de

Energy Efficiency in Transport Through Lightweight Design

1 kg of reduced mass saves several tons of fuel over the lifetime of an airplane! Source: Airbus Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

27

Efficiency Through Plastics Products www.ikt.uni-stuttgart.de

Energy Savings Through Insulation PUR

Mineral Wool

670 MJ

230 MJ

Lifetime (10 years)

29.150 MJ

40.940 MJ

Disposal / End of life

-20 MJ

20 MJ

29.800 MJ

41.190 MJ

Production

Universität Stuttgart



In Total

Source: Liebherr Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

28

Efficiency Through Plastics Products www.ikt.uni-stuttgart.de

Energy Savings Through Insulation

Universität Stuttgart



Insulation Material

Source: JET Verpackungen Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

U-value in W/m²K

bricks

3,60

concrete

3,30

wood wool

0,42

rock wool

0,42

styrofoam (EPS)

0,37

EPS with graphite

0,30

INSTITUT FÜR KUNSTSTOFFTECHNIK

29

Efficiency Through Plastics Products Before insulation

After insulation

Universität Stuttgart



www.ikt.uni-stuttgart.de

Energy Savings Through Insulation

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

30

Efficiency Through Plastics Products

Universität Stuttgart



www.ikt.uni-stuttgart.de

Energy Efficiency In Light Generation

conventional bulb

Philips 7W Master LED

Source: Maxrev und Philips Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

31

Efficiency Through Plastics Products

Universität Stuttgart



www.ikt.uni-stuttgart.de

The Risk of Rebound and Backfire Direct Rebound: With light becoming cheaper, people will use more of it.

increase in efficiency

conventional bulb

Philips 7W Master LED

„backfire“

„rebound“

Source: Maxrev und Philips INSTITUT FÜR KUNSTSTOFFTECHNIK

32



The Task of the 21st Century



Resource Efficiency Through Plastics Products



Resource Efficiency in Plastics Processing 

Energy Efficiency in Injection Molding



Energy Efficiency in Single-screw Extrusion



Material Efficiency in Single-screw Extrusion



New Extrusion Technologies for Higher Efficiency

Universität Stuttgart



www.ikt.uni-stuttgart.de

Table of Contents



Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

33

Efficiency In Plastics Processing

𝑴𝒂𝒄𝒉𝒊𝒏𝒆 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =

𝑳𝒂𝒃𝒐𝒓 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =

𝑶𝒖𝒕𝒑𝒖𝒕 𝑴𝒂𝒄𝒉𝒊𝒏𝒆 𝒉𝒐𝒖𝒓𝒔

𝑶𝒖𝒕𝒑𝒖𝒕 𝑾𝒐𝒓𝒌𝒊𝒏𝒈 𝒉𝒐𝒖𝒓𝒔

𝑶𝒖𝒕𝒑𝒖𝒕 𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 = 𝑴𝒂𝒕𝒆𝒓𝒊𝒂𝒍 𝒊𝒏𝒑𝒖𝒕 𝑬𝒏𝒆𝒓𝒈𝒚 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =

𝑶𝒖𝒕𝒑𝒖𝒕 𝑬𝒏𝒆𝒓𝒈𝒚 𝒊𝒏𝒑𝒖𝒕

Universität Stuttgart



www.ikt.uni-stuttgart.de

Definition of Productivity and Efficiency

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

34

Efficiency in Plastics Processing www.ikt.uni-stuttgart.de

Share of Different Energy Types in German Plastics Processing

electricity 88 %

waste water 1 %

Universität Stuttgart



industrial water 1 %

heat from combustion 10 %



In plastics processing high-grade energy (electricity) has the largest share.



During processing it is converted to lower-grade energy (heat).

Source: Handbuch für Energiemanagement und Energiedienstleistungen in KMU, target GmbH, 2009 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

35

Efficiency in Plastics Processing

Electrical energy is more expensive than other types of energy, e. g. natural gas.

electricity costs in €/a gas costs in €/a

Universität Stuttgart



www.ikt.uni-stuttgart.de

Costs For Different Energy Types

USA

Germany

Saudi-Arabia

Source: Reifenhäuser Press Release 07/2013 INSTITUT FÜR KUNSTSTOFFTECHNIK

36



The Task of the 21st Century



Resource Efficiency Through Plastics Products



Resource Efficiency in Plastics Processing 

Energy Efficiency in Injection Molding



Energy Efficiency in Single-screw Extrusion



Material Efficiency in Single-screw Extrusion



New Extrusion Technologies for Higher Efficiency

Universität Stuttgart



www.ikt.uni-stuttgart.de

Table of Contents



Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

37

Energy Efficiency in Injection Molding

Pellets Waste heat

Product

Drive and hydraulic system

Universität Stuttgart



www.ikt.uni-stuttgart.de

Energy Flow Chart

Die heating or cooling

 

Electrical heating

All energy used during converting goes into conveying and melting the pellets, shaping and cooling the melt, as well as energy losses. The specific energy contents of the pellets and the final product are the same!

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

38

Injection Molding

end mold open / ejection part

start closing mold

infeed unit injection

Universität Stuttgart



www.ikt.uni-stuttgart.de

Cycle Steps

holding pressure phase plasticizing unit reverse Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

39

Energy Efficiency in Injection Molding

Financial burden of energy costs

costs of total lifespan of an injection molding machine in %

Universität Stuttgart



www.ikt.uni-stuttgart.de

Drive, Die Movements And Heating Have the Lion‘s Share

100

3,8

1,9 1,0

9,5

9,7

1,3 1,0

9,8

1,0

costs of purchase 80 38,1 (± 10)

38,8 (± 10)

39,1 (± 10)

60

other electrical costs

95,2

97,1

97,7

47,6 (± 10)

48,6 (± 10)

48,8 (± 10)

2000

4000

6000

40

20

0

costs of service and maintenance

plasticizing costs (screw drive & heating) costs of movements (electrical / hydraulic)

annual operating time in h Sources: Heinzler, in: Kunststoffe 6/2012; EuroMAP Study 2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

40

Injection Molding

drive energy movements heating energy drive heating others

specific energy in kWh/kg

Universität Stuttgart



www.ikt.uni-stuttgart.de

Drive, Die Movements And Heating Have the Lion‘s Share

closing

injection

holding pressure

screw drive

opening

ejection

heater

others

Source: Dimmler et al., in: Kunststoffe 02/2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

41

Injection Molding

heating energy in %

Universität Stuttgart



www.ikt.uni-stuttgart.de

Saving Potentials in Heating Energy Consumption

without insulation

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

with insulation

INSTITUT FÜR KUNSTSTOFFTECHNIK

42

Injection Molding

Universität Stuttgart



www.ikt.uni-stuttgart.de

Saving Potentials in Heating Energy Consumption intelligent mold concepts allow further savings.

Conventional mold

Mold temperature 75 °C

160 °C

Energy for heating up Energy during production

Locally heated mold

conv. mold

loc. heated

conv. mold

loc. heated

Source: Sambale, in: Kunststoffe 02/2010 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

43

Injection Molding

specific engery requirement in kWh/kg

Universität Stuttgart



www.ikt.uni-stuttgart.de

Hydraulic vs. Electrical Machines

3,5 3,0

fully hydraulic (efficiency: 86 %)

2,5

all-electrical (efficiency: 96 %)

2,0 1,5 1,0 0,5 0,0 15,4

55,0 shot weight in g

85,7

Source: Wortberg 2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

44

Injection Molding

Universität Stuttgart

partial load (low efficiency)

specific energy consumption in kWh/kg



www.ikt.uni-stuttgart.de

Hydraulic vs. Electrical Machines full load (high efficiency)

fully hydraulic (2 pumps) all-electrical

throughput in kg/h

 

Under-utilization of machines leads to less efficiency! Electrical machines are less sensitive to under-utilization, but still have a clearly higher specific energy consumption, when working under partial load.

Source: Arburg 2014 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

45

Injection Molding www.ikt.uni-stuttgart.de

Evolution of Hydraulic Machines Schematic view of hydraulic power loss optimization 3 kW

17 kW

? kW

2 kW

pressure loss volumetric loss

usable energy

40 kW 20 kW

? kW

Universität Stuttgart



18 kW

fixed displacement pump

 

variable displacement pump (hydraulic)

variable displacement pump (electro-hydraulic)

(further developement)

The progress in pump technology already allows savings of more than 50 %! The potentials for further development are not fully exploited yet.

Source: Dimmler et al. / Engel Austria GmbH, in: Kunststoffe 02/2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

46

Injection Molding

all-

fully hydraulic share in energy consumption in %

Universität Stuttgart



www.ikt.uni-stuttgart.de

Evolution of Hydraulic Machines

electrical

locking

movements

injection heating plasticizing controls emissions conduction revolve oil 2 pumps (standard)

1 pump

2 pumps optimized

1 pump optimized

Source: Arburg Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

47

Injection Molding

Technology (share) Efficiency development [%]

hydraulic pump with variable motor

Universität Stuttgart



www.ikt.uni-stuttgart.de

Technology Shifts in Europe Over the Last 20 Years and Expected

time Source: EuroMAP Study 2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

48

Injection Molding

  

A systematic analysis of heat sources and troughs in the process and the peripheral systems allows for recovery concepts. Waste heat could e. g. be used for heating up drying air. Waste heat recovery solutions can only be individual! Waste Heat

Pellets Dryer

Product Drive and Hydraulic System



www.ikt.uni-stuttgart.de

Waste Heat Recovery

Universität Stuttgart

Electrical Heating

Die Heating

Machine Cooling

Heat Exchanger Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

49

Injection Molding

  

A systematic analysis of heat sources and troughs in the process and the peripheral systems allows for recovery concepts. Waste heat could e. g. be used for heating up drying air. Waste heat recovery solutions can only be individual! Waste Heat

Pellets Dryer

Product Drive and Hydraulic System



www.ikt.uni-stuttgart.de

Waste Heat Recovery

Universität Stuttgart

Electrical Heating

Die Heating

Machine Cooling

Heat Pump Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

50

Injection Molding

Handling

Heating via IR-radiators

Forming and back injection molding

Handling

Universität Stuttgart



www.ikt.uni-stuttgart.de

Energy Savings Through Highly Integrated Processes

Thermoplastic CRP-prepreg

Source: Krauss Maffei Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

51

Injection Molding

Handling

Heating via IR-radiators

Forming and back injection molding

Handling

Universität Stuttgart



www.ikt.uni-stuttgart.de

Energy Savings Through Highly Integrated Processes

Reduction by two process steps

Handling and Joule heating

Forming and back injection molding

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

Handling

INSTITUT FÜR KUNSTSTOFFTECHNIK

52

Injection Molding

Voltage application

insulated clamping jaw

thermoplastic CRP-prepreg

electr. contacts

+

Universität Stuttgart



www.ikt.uni-stuttgart.de

Joule Heating of Fibre-reinforced Thermoplastics

20 °C

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

280 °C

53



The Task of the 21st Century



Resource Efficiency Through Plastics Products



Resource Efficiency in Plastics Processing 

Energy Efficiency in Injection Molding



Energy Efficiency in Single-screw Extrusion



Material Efficiency in Single-screw Extrusion



New Extrusion Technologies for Higher Efficiency

Universität Stuttgart



www.ikt.uni-stuttgart.de

Table of Contents



Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

54

Single-screw Extrusion www.ikt.uni-stuttgart.de

Energy Flow Chart Pellets Air Cooling

Dissipation Drive

Universität Stuttgart



Product Heating Water Cooling

Heating Water Cooling

Drive

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

Machine heating Product cooling and cooling and peripheral systems INSTITUT FÜR KUNSTSTOFFTECHNIK

55

Single-screw Extrusion

waste heat cooling

waste heat drive

frequency converter

waste heat

electric motor

waste heat

gear box

waste heat waste heat

screw melt

main power supply

fan/cooling barrel heating

fan/cooling cooling

waste heat die heating barrel cooling

waste heat



www.ikt.uni-stuttgart.de

Components of Energy Consumption

Universität Stuttgart

controls waste heat grooved bush cooling material handling

electrical energy mechanical energy

pellet drying

thermal energy Source: Bastian et al., in: Kunststoffe 10/2009 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

56

Single-screw Extrusion

Universität Stuttgart



www.ikt.uni-stuttgart.de

Setting Parameters

Drive

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

Machine heating and cooling

INSTITUT FÜR KUNSTSTOFFTECHNIK

Product cooling and peripheral systems

57

Single-screw Extrusion

100

costs of total life of a single-screw extruder in %

Universität Stuttgart



www.ikt.uni-stuttgart.de

Cost Factors in Extrusion

14,3

Electrical heating/cooling

80,7

Screw drive

80 60 40 20

3,5

1,5

Purchasing costs

Maintenance

0 Energy costs

Sources: Bastian, in: Kunststoffe 10/2009; EuroMAP study 2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

58

Single-screw Extrusion

 Pumping power = volume flow • pressure difference  The theoretical pumping power for a throughput of 100 kg/h and a die pressure of 200 bars is only 1 kW.  Pumping power is neglectable!

100

share in overall energy consumption in%

Universität Stuttgart



www.ikt.uni-stuttgart.de

Where Does The Drive Power Go?

Extruder A

Extruder B

Pumping power

10.1

20.2

38.4

6

20.2

38.5

drive speed in min-1 Source: Nijman, in: KGK 7/2000 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

59

Single-screw Extrusion

barrel

active flight

melt

leakage

𝑄𝑏𝑎𝑟𝑟𝑒𝑙

solid bed screw

passive flight

𝑄𝑠𝑐𝑟𝑒𝑤

Universität Stuttgart



www.ikt.uni-stuttgart.de

Where Does The Melting Heat Come From?

 The heat from the barrel is brought into the material via heat convection along the barrel wall and heat conduction within the material  The solid bed is surrounded by melt, which has an insulating effect  Shear stress causes a viscous dissipation within the melt film above the solid bed Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

 electrical heating

 screw drive 60

Single-screw Extrusion

Circumferential speed between material and barrel wall

X–X X

φ

Flow speed of material along the screw flight

active flight φ

Universität Stuttgart

Relative speed of the melt film

melt pool



www.ikt.uni-stuttgart.de

Where Does The Dissipation Come From?

X

solid bed

screw axis

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

 The difference between the circumferential speed at the barrel wall and the flow speed of the material causes a relative speed within the melt film.  The resulting shear rate causes dissipation in the melt film.  This energy has to be provided by the screw drive.

INSTITUT FÜR KUNSTSTOFFTECHNIK

61

Single-screw Extrusion

   

Dissipation = shear stress • shear rate Drive power = (pumping power + dissipation) / efficiency factor of the drive Most of the drive power is used to heat up the material! In most cases dissipated energy even has to be removed from the barrel!

100

share in overall energy consumption in%

Universität Stuttgart



www.ikt.uni-stuttgart.de

Where Does The Drive Power Go?

Extruder A

Extruder B

Barrel cooling Material heating Pumping power

10.1

20.2

38.4

6

20.2

38.5

drive speed in min-1 Source: Nijman, in: KGK 7/2000 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

62

Single-screw Extrusion www.ikt.uni-stuttgart.de

The Role of The Throughput Rate actual temperature autothermal (energy efficient) operating point

electrical heating

desired temperature

Universität Stuttgart



temperature

fan cooling necessary

screw speed / throughput





The point of autothermal extrusion is dependent from the throughput for every extruder and material. A „one fits all“-concept with one extruder used for different materials and a wide range of throughput rates always leads to an inefficient production.

Source: Fraunhofer ISI Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

63

Single-screw Extrusion

Universität Stuttgart



www.ikt.uni-stuttgart.de

How Can Dissipation Be Influenced? The role of different screw designs:

φ



Smaller flight angle φ  smaller relative speed  narrower screw channel  smaller shear rate, less shear time

φ



Wider flight angle φ  higher relative speed  broader screw channel  higher shear rate, longer shear time

The screw design determines how much mechanical energy is brought into the material or is dissipated! It should be adjusted to the respective material and process. Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

64

Single-screw Extrusion

specific energy consumption in kWh/kg

total energy consumption

energy consumption of the drive

Universität Stuttgart



www.ikt.uni-stuttgart.de

Screw Drive Energy Consumption

screw speed in min-1

 At higher speeds, heat conduction from the barrel to the pellets is too slow.  Dissipation becomes the dominant factor for the melting.  The share of energy provided by the screw drive increases.  Efficiency of the drive technology depends on the throughput rate! Source: Heidemeyer, SKZ 2012 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

65

Single-screw Extrusion

Universität Stuttgart

Without losses due to power electronics and gear box

efficiency



www.ikt.uni-stuttgart.de

Comparison Among AC und DC Drive Systems

AC DC nominal speed = 2200 min-1

screw speed in % of nominal speed Source: Heidemeyer, SKZ 2012 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

66

Single-screw Extrusion

Technology (share)

Assumption: substitution 1:1

Universität Stuttgart



www.ikt.uni-stuttgart.de

Technology Shifts Over the Last 20 Years and Expected

Source: EuroMAP Study 2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

67

Single-screw Extrusion

60 50

power consumption in kW

Universität Stuttgart



www.ikt.uni-stuttgart.de

Comparison With Direct Drive (DD) Systems

PP (DC)

PE (DC)

PP (AC)

PE (AC)

PP (DD)

PE (DD)

40

30

20

10

0

17–30 % less energy consumption 0

20

40

60

80

100

120

140

160

screw speed in min-1 Source: Cristiano, Baird, Davis Standard LLC, ANTEC 2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

68

Single-screw Extrusion

Universität Stuttgart



www.ikt.uni-stuttgart.de

Setting Parameters

Drive

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

Machine heating and cooling

INSTITUT FÜR KUNSTSTOFFTECHNIK

Product cooling and peripheral systems

69

Single-screw Extrusion

Universität Stuttgart



www.ikt.uni-stuttgart.de

Saving Potentials With Insulation

Thermocamera FLIR System FLIR SC600 Source: Heidemeyer, SKZ 2012 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

70

Single-screw Extrusion

Universität Stuttgart

10

8

Heating power in kW



www.ikt.uni-stuttgart.de

Saving Potentials With Insulation

Standard heating 6

Heating with insulation

4

2

0

Source: Reifenhäuser Press Release 09/2014 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

71

Single-screw Extrusion

Universität Stuttgart



www.ikt.uni-stuttgart.de

Savings With Alternative Heating Technologies

SmartHeat Coating: even temperature distribution

Conventional heater bands: occurence of hot spots

Source: Nordson Xaloy Europe GmbH Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

72

Single-screw Extrusion

natural gas heater

cooling air

Universität Stuttgart



www.ikt.uni-stuttgart.de

Alternative Heating Technologies

cooling air combustion gas Natural gas heating unit (WEMA GmbH, Lüdenscheid)

Sources: Körzel, Michels: Neuentwicklungen bei Zylinderheizungen, 2002; Reifenhäuser Press Release 07/2013 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

73

Single-screw Extrusion

Universität Stuttgart



www.ikt.uni-stuttgart.de

Setting Parameters

Drive

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

Machine heating and cooling

INSTITUT FÜR KUNSTSTOFFTECHNIK

Product cooling and peripheral systems

74

Single-screw Extrusion www.ikt.uni-stuttgart.de

It Doesn‘t End at The Die Exit 

Peripheral processes also consume a lot of energy.



Each of the peripheral machines may have a very small installed power, but when regarded together, they should not be neglected!



The providing of cooling water (chillers!) has the highest share among the peripheral processes. 120

Universität Stuttgart



Power in kW

100 80

Active power Apparent power Reactive power

60 40 20 0

Drive

Heating

Peripherals

Source: Wortberg et al., in: Plastverarbeiter 1/2010 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

75

Single-screw Extrusion

20 °C

chiller

15 °C

15 °C

15 °C

15 °C



Usually all cooling tanks are fed directly from the chiller.



Temperature differences between feed and return flow are less than 5 K.



However, due to slow heat conduction such a low temperature is ineffective.

Universität Stuttgart



www.ikt.uni-stuttgart.de

Example For A Modern Cooling Track

Source: Stieglitz / battenfeld-cincinatti, in: Kunststoffe 6/2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

76

Single-screw Extrusion

cooling tower 60 °C

45 °C

chiller 35 °C

15 °C 25 °C



Usually all cooling tanks are fed directly from the chiller.



Temperature differences between feed and return flow are less than 5 K.



However, due to slow heat conduction such a low temperature is ineffective.



By cascading several tanks, larger differences between feed and return flow are obtained without needing a longer cooling track.



This allows to use an energy saving cooling tower and relieves the chiller.

Universität Stuttgart



www.ikt.uni-stuttgart.de

Example For A Modern Cooling Track

Source: Stieglitz / battenfeld-cincinatti, in: Kunststoffe 6/2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

77

Single-screw Extrusion

 

Example: Waste heat could be used to drive an absorption refrigerator which regulates the temperature in a cleanroom. Waste heat recovery solutions can only be individual!

Cleanroom Calender Puller



www.ikt.uni-stuttgart.de

Potentials for Waste Heat Recovery

Universität Stuttgart

Extruder

Heat exchanger

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

78

Single-screw Extrusion

 

Example: Waste heat could be used to drive an absorption refrigerator which regulates the temperature in a cleanroom. Waste heat recovery solutions can only be individual!

Cleanroom Calender Puller



www.ikt.uni-stuttgart.de

Potentials for Waste Heat Recovery

Universität Stuttgart

Extruder Climating

Absorption refrigerator Heat exchanger

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

79



The Task of the 21st Century



Resource Efficiency Through Plastics Products



Resource Efficiency in Plastics Processing 

Energy Efficiency in Injection Molding



Energy Efficiency in Single-screw Extrusion



Material Efficiency in Single-screw Extrusion



New Extrusion Technologies for Higher Efficiency

Universität Stuttgart



www.ikt.uni-stuttgart.de

Table of Contents



Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

80

Single-screw Extrusion

Smooth bore extruder Drag flow (Couette)

Pressure flow (Hagen-Poiseuille)

Resulting flow

Universität Stuttgart



www.ikt.uni-stuttgart.de

Melt Flow Behavior

Grooved bush extruder

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

81

Single-screw Extrusion

  

Time, which a number of particles needs to fully pass the extruder Due to the different speeds in the flow channel, not all particles pass the extruder within the same time This results in a distribution function for the concentration c of the particles over time.

c(t)

The distribution is influenced by  the melt characteristics,  the process parameters.

Universität Stuttgart



www.ikt.uni-stuttgart.de

Residence Time Distribution

Residence time distribution

t

Mean residence time Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

82

Single-screw Extrusion

X

new material

commingling

flow direction old material

X

Example of an intersection through the melt strand

Universität Stuttgart



www.ikt.uni-stuttgart.de

Influence of Residence Time Distribution on Wastage

The narrower the residence time distribution, the quicker a material change! Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

83

Single-screw Extrusion www.ikt.uni-stuttgart.de

Flows With Wall Adhesion

Smooth bore extruder Drag flow (Couette)

Resulting flow

Grooved bush extruder



Universität Stuttgart

Pressure flow (Hagen-Poiseuille)

 

Shorter average residence time for groove feed extruders Narrower residence time distribution for groove feed extruders

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

84

Single-screw Extrusion www.ikt.uni-stuttgart.de

Flows With Wall Slip

Smooth bore extruder Drag flow (Couette)

Resulting flow

Grooved feed extruder



Universität Stuttgart

Pressure flow (Hagen-Poiseuille)

 

Longer average residence time for melts with wall slip behavior Narrower residence time distribution for melts with wall slip behavior

 Wall slip can be provoked for some materials (e. g. PE-HD) through high screw speed. It can be used for more efficient material or color changes. Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

85

Single-screw Extrusion

6

Wastage in kg

5 4

wastage from material change tendency

3

2

Universität Stuttgart



www.ikt.uni-stuttgart.de

Influence of Viscosity on Wastage From Material Changes

1 0 0

1

2 3 4 MFRprevious / MFRnew material MFR ratio material

5

6

The higher the viscosity of the new material in relation to the previous one, the more efficient is the change. Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

86

Single-screw Extrusion

Universität Stuttgart

12

12 Time for change

10

Wastage in kg 10

8

20 kg/h

8

6

40 kg/h

6

4

4

2

2

0 Change from

0

to

MFR1 PP1

MFR3,3 PP3,3 MFR3,3 MFR1 PP1 PP3,3

MFR3,3 MFR1

wastage in kg

time for change in min



www.ikt.uni-stuttgart.de

Influence of Throughput on Wastage From Material Changes

MFR3,3 PP3,3 MFR3,3 PP3,3

MFR3,3 MFR3,3 MFR1

MFR3,3

Even, if the amount of wastage is similar, higher throughputs reduce the time needed for a change and thus increase machine and labor productivity. Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

87



The Task of the 21st Century



Efficiency Through Plastics Products



Efficiency in Plastics Processing 

Energy Efficiency in Injection Molding



Energy Efficiency in Single-screw Extrusion



Material Efficiency in Single-screw Extrusion



New Extrusion Technologies for Higher Efficiency

Universität Stuttgart



www.ikt.uni-stuttgart.de

Table of Contents



Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

88

New Extrusion Technologies

Universität Stuttgart



www.ikt.uni-stuttgart.de

The „S-Truder“ (IPE, Duisburg-Essen University)

d

a) b) c) d)

c

co-axial feeding zone transition zone melting zone with sieve mixing zone

b

a

(6D) (3D) (7D) (6D)

Source: Großmann, 2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

89

New Extrusion Technologies







Additional feeding screw which is co-axial to the plasticizing screw with an own drive unit  individual feed stock for different materials Melt sieve with annular gap around the plasticizing screw to separate molten material from the solid bed without using a barrier screw  shorter screw length than with barrier screws High melting rate allows efficient high-performance extrusion.

Universität Stuttgart



www.ikt.uni-stuttgart.de

The „S-Truder“ (IPE, Duisburg-Essen University)

conventional extruder

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

„S-Truder“ with sieve and annular gap INSTITUT FÜR KUNSTSTOFFTECHNIK

90

New Extrusion Technologies

No pumping capacity of the system in the annular gap around the plasticizing screw



Only pressure flow, no drag flow  pressure profile determines the flow in the annular gap



Very broad residence time distribution  high amount of wastage for color or material changes

Source: Großmann, 2011 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

mixing zone



Melting zone

Universität Stuttgart



www.ikt.uni-stuttgart.de

The „S-Truder“ – Residence Time Distribution

Color change from black to clear (cross section through solidified material from melting zone) INSTITUT FÜR KUNSTSTOFFTECHNIK

91

New Extrusion Technologies

Combination of a barrier screw with a grooved plasticizing zone

melt channel



www.ikt.uni-stuttgart.de

The HELIBAR®-Extruder (IKT, Stuttgart University)

Universität Stuttgart

barrier flight

groove channel Solid bed channel

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

screw axis

92

New Extrusion Technologies

melt channel flight

barrier flight

Zylinder grooved barrel



www.ikt.uni-stuttgart.de

The HELIBAR®-Extruder

Universität Stuttgart

screw

Thinner melt film, because molten material enters the grooves  better heat transfer Q to the solid bed  higher melting rate

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

93

New Extrusion Technologies

Pressure profile of a conventional grooved bush extruder

feeding zone

Pressure profile of an HELIBAR®-Extruder

melting zone

mixing zone

die

Universität Stuttgart



www.ikt.uni-stuttgart.de

The HELIBAR®-Extruder

grooves

barrier screw

Due to the grooves, high pumping capacity along the whole solid bed channel, not only in the feeding zone  high conveying efficiency, no peak load for the drive. Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

94

New Extrusion Technologies

Universität Stuttgart



www.ikt.uni-stuttgart.de

The HELIBAR®-Extruder Processing advantages     

High melting capacity High pumping capacity Less wearout due to reduced pressure peaks No active cooling of the feeding zone low melt temperature, as single solid particles can enter the melt channel via the grooves and act like „ice cubes“

Economic advantages  good energy efficiency  around 30 to 50 % higher throughputs  High melting capacity

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

smaller machines can be used to obtain the same performance

INSTITUT FÜR KUNSTSTOFFTECHNIK

95

New Extrusion Technologies

Universität Stuttgart

80 mm grooved bush extruder 80 mm HELIBAR® extruder

600 500

throughput in kg/h



www.ikt.uni-stuttgart.de

The HELIBAR®-Extruder – Throughput Rates

90 mm grooved bush extruder 90 mm HELIBAR® extruder

400 PE-HD 300 200 100 0 0

20

40

60 80 100 screw speed in min-1

120

140

160

Source: Hoheiser / Rehau AG, 2008 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

96

New Extrusion Technologies

grooved bush extruder

HELIBAR® extruder

0.3

specific drive energy consumption in kWh/kg

Universität Stuttgart



www.ikt.uni-stuttgart.de

The HELIBAR®-Extruder – Energy Efficiency

0.2

0.1

0

PE-LD

PP (MFI 2.0)

PP (MFI 0.7)

Source: Hoheiser / Rehau AG, 2008 Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

97

New Extrusion Technologies

Impulse

ultrasound signal transition in V

Ultrasound signal (PE-HD) Fit (PE-HD)

Ultrasound signal (PE-LD)

Universität Stuttgart



www.ikt.uni-stuttgart.de

The HELIBAR®-Extruder – Residence Time Distribution

Fit (PE-LD)

time in s

 

Residence time distribution was measured by adding a small amount of chalk to the pellets and measure the effect on the ultrasound transition time The distribution is similar for different materials and comparably narrow, which shows a very good self-cleaning bevavior of the system.

Bonten Dipl.-Wirt.-Ing. Oliver Kast Prof. Dr.-Ing. C. Bonten,

INSTITUT FÜR KUNSTSTOFFTECHNIK

98



The Task of the 21st Century



Efficiency Through Plastics Products



Efficiency in Plastics Processing 

Energy Efficiency in Injection Molding



Energy Efficiency in Single-screw Extrusion



Material Efficiency in Single-screw Extrusion



New Extrusion Technologies for Higher Efficiency

Universität Stuttgart



www.ikt.uni-stuttgart.de

Table of Contents



Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

99



The availability of crude oil will dramatically decrease and will cause a drastic change in our economic system.



Some European countries have already made big steps in energy efficiency, de-correlating economic growth from fossil based energy consumption. However, countries like the USA, Canada and Australia continue to produce high CO2-emissions p. c.



Plastics Products already help to save energy – without plastics there would hardly be - cost-effective lightweight design, - efficient insulation, - wind turbines of that efficient size, - cost-effective photovoltaic, - fuel cell technology



One of the largest impacts to save energy is making industrial production more efficient. This is a challenge more urgent than ever!

Universität Stuttgart



www.ikt.uni-stuttgart.de

Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

100



Most of the used energy for production is needed for melting, conveying, shaping and solidifying the plastics.



The basic technologies and working principles of plastics converting remain unchanged since the 1980s or earlier. Most technological developments in recent years concerned efficiency of the drive and of the peripheral systems.



Modern drive concepts and insulation allow for a more economical use of energy, fewer losses and less waste heat.



In many cases, replacing old machines by state-of-the-art ones lead to significant energy savings.

Universität Stuttgart



www.ikt.uni-stuttgart.de

Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

101



“One-fits-all” machines for different materials and processing conditions are usually less energy efficient – especially when the machines in use are oversized!



Process analysis and energy monitoring are crucial for an optimization – concepts for a reduction in energy consumption or even waste heat recovery have to be individually adapted.



Waste heat from the main process can often be used for peripheral systems to (partly) replace electrical heating. Peripheral systems are often neglected but bear a lot of potential for energy savings!



New extrusion technologies like the “S-Truder” or the HELIBAR®-Extruder allow for a more energy efficient production with smaller machines.

Universität Stuttgart



www.ikt.uni-stuttgart.de

Concluding Remarks

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

102

Univ.-Prof. Dr.-Ing. C. Bonten Dipl.-Wirt.-Ing. O. Kast Institut für Kunststofftechnik Stuttgart, Germany

Universität Stuttgart



www.ikt.uni-stuttgart.de

Resource Efficiency in Plastics Technology

Muoviteollisuuden Resurssitehokkuuden Teemapäiva 15.01.2015, Helsinki

Prof. Dr.-Ing. C. Bonten, Dipl.-Wirt.-Ing. Oliver Kast

INSTITUT FÜR KUNSTSTOFFTECHNIK

103

Suggest Documents