Renewable Energies in the Canary Islands: Present and Future

Renewable Energies in the Canary Islands: Present and Future Gonzalo Piernavieja Izquierdo Director – Energy, Water & Bioengineering Division Canary I...
Author: Sherilyn Dennis
20 downloads 0 Views 6MB Size
Renewable Energies in the Canary Islands: Present and Future Gonzalo Piernavieja Izquierdo Director – Energy, Water & Bioengineering Division Canary Islands Institute of Technology (Instituto Tecnológico de Canarias – ITC)

European RE Islands Conference, Brussels, 21 September 2005

1

ENERGY CONTEXT OF THE CANARIAN ARCHIPELAGO Socioeconomic considerations Total population: 2 Millions (+ approx. 250.000 equiv. permanently living tourists = 12 Million per year!!)) 7 islands with different dimensions and features (total area: 7.500 km2) Significant economic development in the last 15 years, GDP based on tertiary sector (tourism)

Energy Total external energy dependence Constant (significant) increase of energy demand Electricity generation based on fossil fuels (oil), relatively small power stations) (5) insular electrical systems, very difficult to interconnect (volcanic origin of the islands) Low heating energy demand, decentralized heat production 2

ENERGY CONTEXT OF THE CANARIAN ARCHIPELAGO Recent entry in force of national legislation concerning insular and extrapeninsular eletrical systems, and entry of the system operator (Red Eléctrica de España) Will to diversify energy sources (combined cycle power plants already installed, waiting for LNG introduction) Historical lack of water resources and big experience in the search of artificial water production systems (desalination market began in the 60’s) - Importance of the water-energy binomial Important weight of the transport sector

Renewable Energies Excellent potentials (particularly wind and sun), but still low contribution to the energy balance Still lack of information, at all levels, about energy saving technologies, demand management and RE Very favourable normative framework for RE deployment (National Royal Decree 436/2004 and future Building Technical Code) Existence of qualified research groups and technology centres with know-how in this field 3

CANARY ISLANDS ENERGY CONTEXT Fuel-oil/DieselFuel-oil/DieselOil Oil 47,39% 47,39%

Gas-oil Gas-oil 30,78% 30,78%

Structure Structure of of the the internal internal market market by by fuel fuel type type

Kerosene Kerosene 0,01% 0,01% Gasoline Gasoline 17,05% 17,05%

Reffin. Reffin. Gas Gas 1,84% 1,84% LPG LPG 2,93% 2,93%

Automotion Automotion 29,9% 29,9%

Electricity Electricity 55,6% 55,6%

Water Water ++ Electricity Electricity 2,4% 2,4%

Others Others 12,1% 12,1%

Structure of the internal market by sector 4

CANARY ISLANDS ENERGY CONTEXT Consumption of fossil fuels (2003) LA PALMA Internal Market

101

Navigation

CANARIAN TOTAL Internal Market

3.432

Navigation*

3.594

Total

7.026

Navigation

0,1

Total

Internal Market

1.433

Navigation

1.223

Total

2.656

130

Total

409

FUERTEVENTURA

Internal Market

26

Navigation

0,5

Total

26, 5

GRAN CANARIA Internal Market

1.373

Navigation

2.125

Total

3.498

14,1

In 1000 Metric Tons 5

Navigation

TENERIFE

LA GOMERA

14

279

*Air and Sea

113

Internal Market

Internal Market

12

Total

EL HIERRO

LANZAROTE

Internal Market

206

Navigation

103

Total

309

CANARY ISLANDS ENERGY CONTEXT Technology

MW

Steam Turbine

714,5

Diesel Motor

438,8

Gas Turbine

508,8

Combined Cycle

371,1

Steam Turbine

25,9

Steam Turbine

24,2

Diesel Motor

9,1

Gas Turbine

38,0

Unelco Endesa

MW

Primary Energy Source Oil products Unelco-Endesa Thermal Power Stations

Other Power Stations

2,125 Cogeneration

Other conven. Thermal Power Stations Cogeneration

25,900 71,284

Electricity Electricity generation generation technologies technologies

Renewable Sources Wind

136,4

Minihydro

1,3

PV

0,4

Primary Primary energy energy sources sources (1) (1) Only Only grid grid connected connected installations installations 6

CANARY ISLANDS ENERGY CONTEXT CANARIAN TOTAL Power

2.116 MW

Energy

8.223 GWh

78,6

Energy

226

Energy

180,9 796

TENERIFE Power

795,8

Energy

3.249

GRAN CANARIA

LA GOMERA Power

Power Energy

LA PALMA Power

LANZAROTE

16,2 63

Power

905,3

Energy

3.391

FUERTEVENTURA Power

EL HIERRO

Energy Power Energy

7

10,1 30

Insular Electrical Systems: Installed Power and Energy Produced (2003)

128,9 468

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

C an ar ia s

o El

H

ie

rr

a G om er La

Pa lm a La

rt ev en tu ra

Fu e

La nz ar ot e

ar an C n ra G

Unelco-Steam

Te ne rif e

0% ia

Percentage of of total total production production Percentage

CANARY ISLANDS ENERGY CONTEXT

Unelco-Diesel

Unelco-Gas

Unelco-CC

Contribution of the different sources and technologies to total production, by island

8

CANARY ISLANDS ENERGY CONTEXT 9.000 8.000 7.000 Production (GWh) (GWh) Production

6.000 5.000 4.000 3.000 2.000 Reneewables

Cogeneration and other thermal plants

Unelco-Endesa Power Stations

1.000 0 1995

1996

1997

1998

1999

2000

2001

2002

Total electrical production by origin

9

2003

CANARY ISLANDS ENERGY CONTEXT YEAR

Gran Canaria

Tenerife

Lanzarote Fuerteventura La Palma

La Gomera

El Hierro

Total

1985

1139,5

945,4

64,2

154,2

83,4

13,6

6,7

2407,0

1990

1739,0

1470,5

318,9

149,9

111,1

23,6

11,3

3824,2

1995

2237,6

1937,7

407,7

242,7

157,4

35,0

17,2

5035,4

1996

2328,5

2039,0

426,6

274,3

154,6

35,4

18,1

5276,6

4,79%

1997

2490,6

2179,4

469,2

289,0

166,0

38,1

20,0

5652,4

7,12%

1998

2618,1

2329,7

509,2

310,7

181,4

42,4

21,9

6013,4

6,39%

1999

2778,3

2492,0

566,1

327,3

193,6

46,2

23,2

6426,8

6,87%

2000

2959,0

2666,4

617,7

357,0

209,1

48,7

23,4

6881,3

7,07%

2001

3131,8

2860,5

628,1

438,4

206,7

52,4

26,6

7344,6

6,73%

2002

3223,1

3006,0

718,8

444,5

208,1

56,2

27,8

7684,3

4,63%

2003

3391,2

3249,3

795,8

467,7

227,3

63,5

30,0

8224,9

7,03%

Yearly increase

Evolution of yearly electrical energy production, by island (GWh)

Power (MW)

2.200 2.000

Evolution of installed electrical power

1.800 1.600 1.400 1995

10

1997

1999

2001

2003

CANARY ISLANDS ENERGY CONTEXT Energy intensity intensity (kWh/€) (kWh/€) Energy

0,500

0,450

0,418

0,400

0,383

0,375

0,399

0,389

0,402 Canarias España

0,342 0,350

0,316

0,308

0,322

0,293

0,291 0,300

Evolution Evolution of of energy energy intensity intensity

0,250 1998

1999

2000

2001

2002

2003

51,5 39,2 33,3 24,7 15,3 7,2

26,6

32,0 Canarias España

20,1

13,5

6,6 1998

11

1999

2000

Cumulative Cumulative demand demand increase increase

39,9

2001

2002

2003

CANARY ISLANDS ENERGY CONTEXT %

100

77

75 62 58

55

52

51

50 46

50

46

43

41

41

38

37

Spanish Average 37%

29

26

23

25

20 14

0

Canarias

Baleares

C. Valenciana Madrid

Murcia

Melilla

Andalucía

Extremadura La Rioja

Ceuta

Navarra

Cantabria C. La Mancha

Galicia

Cataluña

Aragón

Castilla y León

País Vasco

Asturias

GHG-Emissions increase in the Spansih Regions 1990-2002

12

CANARY ISLANDS ENERGY CONTEXT

16.000.000

15.000.000

14.000.000

Tn

13.000.000

12.000.000

+75% 11.000.000

+30%

10.000.000

9.000.000

8.000.000 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

CO2 Emissions trend of the current model

13

Kyoto Kyoto treshold treshold Canary Canary Islands Islands

CANARY ISLANDS ENERGY CONTEXT EMIS ION ES TOTA L ES DE CO2 , CA N A RIA S . 14.000.000

13.000.000

Tn

12.000.000

11.000.000

10.000.000

9.000.000

19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11

8.000.000

AÑ O

escenario medidas

Expected evolution of CO2 Emissions with the new framework

14

LEGAL FRAMEWORK - ENERGY PLANNING Energy Plan of the Canary Islands (PECAN 2006) Motivation Changes in the energy sector: Liberalization of electrical and hydrocarbon sectors Development of RE technologies Introduction of new electricity generation technologies: combined cycles Increasing concern about quality and guarantee of energy supply

Increasing environmental concern: Need to promote energy efficiency and saving Commitment to Kyoto Protocol Minimization of environmental effects of energy and energy installations

15

LEGAL FRAMEWORK - ENERGY PLANNING

PECAN 2006 PRINCIPLES 1. To guarantee energy supply 2. To reduce energy consumption and its environmental impact 3. To promote RE use

OBJECTIVES Improvement of storage security Improvement of service quality Competitive energy prices Reduction of CO2 Emissions Reduction of energy intensity Promotion of energy saving and cogeneration Reduction of the environmental impact of energy installations Increase in the contribution of Renewable Energies 16

Objectives related to energy saving, environmental protection and RE promotion Reduction of CO2 emissions

Reduction energy intensity and promotion of energy saving and cogeneration

•Introduction of natural gas in order to partially replace oil use - The necessary installations will be available in 2007 for Gran Canaria and in 2009 for Tenerife

•Dissemination campaigns and actions aimed at reducing energy consumption in public buildings, trasnport, housings and public lighting •Incentives to cogeneration by means of a stability guarantee of the fuel purchase price •Measures in order to achieve 800 MW wind power in 2012

Increase of RE contribution

17

•Flexible financing program for solar thermal systems (275.000 m2 in 2012) •Program for promotion of Solar PV in public buildings of the Canary Islands Regional Government (1 MWp/year in the short term)

LEGAL FRAMEWORK - ENERGY PLANNING

ENERGY EFFICIENCY AND SAVING, DEMAND MANAGEMENT

Creation of the Canarian Energy Agency Elaboration of Energy Atlas Energy Efficiency and Saving Plan Promotion of low consumption electric appliances and water saving devices Energy audits Bioclimatic construction Promotion of collective transport

18

INTRODUCTION OF LNG FORESEEN INFRASTRUCTURES Two plants for reception, storage and regasification of LNG: Gran Canaria Æ Polígono Industrial de Arinaga Tenerife Æ Polígono Industrial de Granadilla Gas pipes for gas transport from the plnats to the power stations Capacity for gas ships up to 150.000 m3.

GASCAN

19

INTRODUCTION OF LNG

CARACTERISTICAS DE LAS PLANTAS DE GNL

145.000 m3 - 61.000 Ton

Capacidad Barcos Metaneros Capacidad de Almacenamiento Capacidad de Gasificación Nominal

20

Ciclo combinado de Gran Canaria

Fase I

150.000 m3 250.000 Nm3/h

INTRODUCTION OF LNG VAPORIZADORES

TANQUE DE ALMACENAMIENTO

METANERO Y BRAZOS DE DESCARGA

21

INTRODUCTION OF LNG Depósito

Suministro a 46 bar

Vaporizadores Compresor

Relicuador

Bombas de alta presión

22

RENEWABLE ENERGIES ENORMOUS POTENTIALS Solar Energy Sun hours: Radiation:

2500 - 3000 h/año 5 - 6 kWh/m22 día

Wind Energy Average wind speeds: (coastal areas): 7 – 8 m/s (trade winds, constant character) Production: 3.000 – 4.500 (!!) equivalent hours

23

RENEWABLE ENERGIES ITC CANARY ISLANDS INSTITUTE OF TECHNOLOGY R&D in Renewable Energies Production of electricity, hydrogen, heat and cold Water desalination (using RE)

POZO IZQUIERDO (Gran Canaria)

24

Energy, Energy, Water Water & Bioengineering Division Division -- ITC ITC

25

Pozo Pozo Izquierdo Izquierdo Facilities Facilities

Annual mean wind speed: 7,8 m/s (10 m.a.s.l) Solar irradiation on an horiz. Surface: 5,7 kWh/m² day Annual mean temperature: 23,5 Cº Annual mean humidity: 65-70 % Annual rain fall: 105 mm (5-10 rainy days/year)

26

RENEWABLE ENERGIES - ITC

Renewable Renewable Energies Energies & & Water Water Technologies Technologies R R& &D D Lines Lines (I) (I) Electricity production by renewable energy sources Fresh Water production (water desalination) using renewable energy systems Cold and ice production using renewable energy systems Application of renewable energy systems in buildings and agriculture Development of small to medium size wind energy systems (incl. wind-diesel)

27

RENEWABLE ENERGIES - ITC

Renewable Renewable Energies Energies & & Water Water Technologies Technologies R R& &D D Lines Lines (II) (II) Testing of solar thermal collectors and systems Penetration of renewable energy systems in weak electrical grids Development and evaluation of (non conventional) desalination and water treatment systems Production of hydrogen by renewable energy systems Sustainable energy and water management

28

Renewable Renewable Energies Energies & & Water Water Technologies Technologies

Developed Products (I)

Drinking water supply with stand alone systems CONTEDES - Water desalination container (stand alone, grid connection not necessary) DESSOL - Reverse osmosis desalination plant driven by a stand alone photovoltaic system DESALPARQ - Modular reverse osmosis desalination plant driven by an off-grid wind farm AEROGEDESA - Sea water desalination plant directly driven by a wind turbine

Electricity supply to isolated areas MORENA - Container with hybrid system (wind-photovoltaic-diesel) for electricity supply in small rural villages SISTEMAS HÍBRIDOS - Hybrid systems for electricity supply (wind-photovoltaic-diesel) to isolated villages

29

Renewable Renewable Energies Energies & & Water Water Technologies Technologies

Developed Products (II)

Ice and cold supply with stand alone systems AEROFRIGO - Cold-storage plant driven by a small wind turbine AEROHIELO - Modular ice maker driven by a small wind turbine FOTOHIELO - Ice maker driven by a stand alone solar photovoltaic system

Integrated systems for electrical energy, water, cold and ice supply in isolated areas PUNTA JANDIA – Wind –diesel system for the production of electricity, water, cold and ice in remote villages MORENA CONTEDES - Hybrid system (wind-photovoltaic-diesel) easily transportable in container for the supply of electrical energy, water, cold and ice

30

Wind-Diesel Wind-Diesel system system for for electricity, electricity, water, water, cold cold and and ice ice supply supply in in Punta Punta Jandía Jandía (Fuerteventura (Fuerteventura

31

SDAWES SDAWES RO desalination plant powered by an off-grid wind farm

32

Installed power (2004) : 136 MW Produced Energy (2004): 330 GWh

WIND ENERGY

LANZAROTE Power (kW) LA PALMA

Energía (MWh)

Power (kW) Energy (MWh)

5.580

13.448

% penetration

1.7

11.145 4.9

% penetration*

TENERIFE Power (kW)

30.730

Energy (MWh)

62.657

% penetration

1.9

GRAN CANARIA Power (kW)

75.045

Energy (MWh)

227.983

% penetration

6.7

FUERTEVENTURA

LA GOMERA Power (kW)

360

Energy (MWh)

252

% penetration

0.4

Power (kW)

11.610

Energy (MWh)

26.341

% penetration

5.6

EL HIERRO Power (kW)

100

Energy (MWh)

334

% penetration

1.1

33

6.405

*: *: Wind Wind energy energy penetration penetration in in relation relation to to electrical electrical energy energy produced produced

Kilovatios (kW)

WIND ENERGY

150.000 140.000 130.000 120.000 110.000 100.000 90.000 80.000 70.000 60.000 50.000 40.000 30.000 20.000 10.000 0

Evolution of installed power

1995

1996

1997

1998

1999

Megavatios hora (MWh)

Total

2001

Gran Canaria

2002

2003

2004

Tenerife

375.000 350.000 325.000 300.000 275.000 250.000 225.000 200.000 175.000 150.000 125.000 100.000 75.000 50.000 25.000 0

Evolution of produced energy

1995

1996

1997

1998

Total

34

2000

1999

2000

Gran Canaria

2001

Tenerife

2002

2003

2004

Gran Canaria

WIND ENERGY

Tenerife

45.000 40.000

Megavatios hora (MWh)

35.000 30.000

Evolution of produced energy in 2004

25.000 20.000 15.000 10.000 5.000 0 Enero

Febrero

M arzo

Abril

M ayo

Junio

Julio

Agosto

Septiembre

Octubre

Noviembre

Diciembre

4750 4500 4250 4000

Horas equivalentes (h)

3750

3500

3500 3250 3000 2750 2500 2250 2000 1750

Gran Canaria wind farms

1500 1250 1000 750 500 GRAN CANARIA

TENERIFE

LANZAROTE

FUERTEVENT.

LA PALMA

LA GOMERA

Equivalent hours in 2004 35

EL HIERRO

WIND ENERGY

Barriers Barriers Availability Availability of of space space (approx. (approx. 45% 45% of of the the Canarian Canarian territory territory is is protected protected Grid Grid penetration penetration is is limited limited due due to to weak weak character character of of the the insular insular electrical electrical networks networks

Measures Measures for for further further deployment deployment R&D R&D focused focused on on maximising maximising grid grid penetration penetration (prediction, (prediction, dynamic dynamic grid grid studies, studies, adaptation adaptation of of technologies technologies to to weak weak grids, grids, etc.) etc.) and and development development of of stand-alone stand-alone systems systems Management Management of of wind wind resources resources Regional Regional legislation legislation Technical-administrative Technical-administrative conditions conditions Tenders: Tenders: Repowering Repowering Wind Wind power power dedicated dedicated to to specific specific consumers consumers (industries, (industries, desalination desalination plants, plants, etc) etc) (Wind (Wind power power for for R&D R&D activities activities

36

WATER-ENERGY BINOMIAL 20% of the energy production is dedicated to: Desalination, and pumping (wells, elevation to consumption points).

Uses of desalinated water: Urban & Touristic

374.000 m³/d

153 plants

Irrigation

146.000 m³/d

100 plants

1 kg of fuel is needed to desalinate 1 m3 of seawater For 522.000 m³/d (current desalination capacity in the Canary Islands) this is equivalent to import 150.000 Tons of fuel per year

37

AGRAGUA AGRAGUA –– Parque Parque Eólico Eólico Montaña Montaña Pelada Pelada (Gáldar) (Gáldar)

CONSUMOS (kWh)

PRODUCCIÓN PARQUE EOLICO (kWh)

1.221.355

6.128.080

-------------------

1999

4.763.621

24.959.620

-------------------

2000

4.979.812

25.708.620

-------------------

2001

4.910.820

15.987.179

10.275.528

2002

4.782.721

14.119.484

12.264.045

2003

4.691.509

13.987.581

11.907.931

2004

3.615.784

10.289.804

8.656.732

FECHAS

15.000

m3/d

4.62 MW 5.1 kWh/m3 (extracción + desalación + bombeo)

38

PRODUCCIÓN

(m3)

4º trim- 1998

SOSLAIRES SOSLAIRES CANARIAS CANARIAS S.L. S.L. –– Vargas Vargas (Gran (Gran Canaria) Canaria)

5.000 m3/d 2.64 MW

Producción parque eólico 2003:

10.210.109 kWh

Autoconsumo de la planta 2003:

1.547.244 kWh

Consumo planta de red 2003: Total consumo 2003:

39

681.101 kWh 2.228.345 kWh

SOSLAIRES SOSLAIRES CANARIAS CANARIAS S.L. S.L. –– Vargas Vargas (Gran (Gran Canaria) Canaria)

Tarifa Energía de red Precio medio año 2003: Precio venta agua desalada: Precio medio venta electricidad (2003):

Agrícola R.1. Aprox. 6,85 cent€ /kWh 60 cent€ /m3 7 cent€ /kWh

PRODUCCIÓN

CONSUMO ALIMENTACIÓN

CONSUMO PROCESO

CONSUMO ELEVACIÓN

CONSUMOS AUXILIARES Y ASOCIADOS

TOTAL

5000 m3/d

0,4 kWh/m3

1,9 kWh/m3

0,3 kWh/m3

0,2 kWh/m3

2,8 kWh/m3

Variadores de frecuencia en todos los procesos, salvo elevación 40

SOLAR ENERGY

LANZAROTE Solar thermal (m2)

4.598

Solar PV (kWp)

LA PALMA Solar thermal (m2)

95

1.889

Sola PV (kWp)

60

TENERIFE Solar thermal (m2) Solar PV (kWp)

24.377 136

GRAN CANARIA Solar thermal (m2)

19.031

Solar PV (kWp)

LA GOMERA

FUERTEVENTURA

Solar thermal (m2) Solar PV (kWp)

Solar PV (kWp)

41

1.182 11

EL HIERRO Solar thermal (m2)

223

325 12

Solar thermal (m2) Solar PV (kWp)

1.428 34

SOLAR THERMAL ENERGY Aprox. 70.000 m2 installed Goal (2012): 275.000 m2 (?) ITC has accredited solar collector testing lab (first one in Spain, adscribed to European Solar Keymark label) Enormous potential in the touristic sector Regional Government promotion program PROCASOL, managed by ITC

42

SOLAR PV Installed power: Aprox. 600 kWp (stand-alone systems) and 400 kWp (grid-connected systems) Production: 1300 – 1700 hours Goal: ????? 2.000 1.900 1.800 1.700

40.000

Horas equivalentes (h)

1.600 35.000

30.000 27.752 24.594

24.106

25.000

24.673

(kWh)

1.300 1.200 1.100 1.000

800 700

20.000 17.545

600

16.457 15.000

14.285

13.652

500 GRAN CANARIA

12.193

TENERIFE

FUERTEVENTURA

LA PALMA

9.049

Equivalent hours in 2004

5.000

0 Enero

Febrero

Marzo

Abril

Mayo

Junio

Julio

Agosto

Septiembre

Octubre

Noviembre

Evolution of produced energy in 2004 (total: 227 MWh)

43

1.400

900 21.576

21.016

10.000

1.500

Diciembre

RENEWABLE ENERGIES Energy Energy Saving, Saving, Bioclimatic Bioclimatic projects projects Bioclimatic Bioclimatic project project in in 355 355 VPO VPO Energy Energy audits audits Mini-hydro Mini-hydro Installed Installed power: power: 1.263 1.263 MW MW (2 (2 plants), plants), production production 2004: 2004: 2.846 2.846 MWh MWh Possible Possible increase increase of of installed installed power power up up to to 77 MW MW El El Hierro Hierro project project Other Other Renewables Renewables Biomass Biomass exploitation exploitation possibilities: possibilities: biogas biogas from from waste, waste, WWTP WWTP sludge, sludge, biodiesel biodiesel (very (very small small scale) scale) Geothermal Geothermal potential potential still still to to explore explore Interesting Interesting wave wave potential potential (2000 (2000 equiv. equiv. Hours Hours in in northern northern areas, areas, 40-80 40-80 MW?) MW?) R&D R&D in in sustainable sustainable hydrogen hydrogen production production technologies technologies

44

RENEWABLES ENERGIES (& WATER) FOR DEVELOPING COUNTRIES: Technology transfer to Africa ITC cooperation projects in the Northwest African Coast (Morocco, Mauritania, Senegal, Cape Verde, Tunisia)

Elaboration of a feasibility study for the electrification and water supply (using renewable energy systems) of 32 villages in the province of Essaouira (Morocco) (finished 2000)

45

Installation of a MORENA unit (hybrid PV-wind-diesel system) for the electrification of common areas of the village Ouassen (province of Essaouira, Morocco) (in operation since 2001) Active participation in the Energy and Water Seminar organised by CDER/Resing in Marrakech (April 2002) Organisation of the 1-week Seminar “Desalination and Renewable Energies”, held at ITC (July 2003), with attendance of researchers/scientists/personnel from energy and water bodies coming from Mauritania, Morocco, Algeria, Egypt, Jordan, Palestinian Territories, etc. Total electrification of the village Talate Ourgane (Morocco), including water pumping and ice production demonstration system (on-going)

46

Elaboration of the wind atlas of Northern Mauritania (2000) Creation of the Thematic Parc “Canary Islands” on Renewable Energies, Desalination and Drip Irrigation at the Faculty of Sciences and Technology of the University of Nouakchott, Mauritania (including maintenance, training activities; on-going)

Installation 4 RO desalination plants (20-40 m3/d) at the National Parc Banc d’Arguin (Mauritania) (sent by the Canary Islands’ Government through ITC; finished)

47

Supply of the 4 Mauritania RO plants with Renewable Energies (starting)

Participation in EC SMADES and ADU-RES projects (on-going) Technical assistance to spanish PV company ISOFOTON: feasibility of supplying 15 small RO sea- and brackish water desalination plants with PV in Senegal (finished) Elaboration of a Plan for the Promotion of Energy Efficiency and Renewable Energies in Morocco (finished) Brackish water desalination plant powered by a PV system in Ksar Ghilène (Tunisia) (on-going)

48

OUTSTANDING PROJECTS

RE-H2 BINOMIAL Hydrogen (produced by RE) could represent a promising energy storage solution for islands Islands could be excellent showcases for the introduction of the hydrogen economy

49

OUTSTANDING PROJECTS HYDROBUS

INTERREG IIIB Project coordinated by ITC: Feasibility studies for the instalación of Windhydrogen systems in Azores and Canary Islands

50

RES2H2 (EC FP5)

OUTSTANDING PROJECTS

Design and installation, at ITC Pozo Izquierdo premises, of a wind-hydrogen integrated system for the controlled production of electricity and water

HYDROHYBRID HYDROHYBRID (ITC (ITC project) project)

Small scale hydrogen production driven by a hybrid wind-PV system (installation on-going)

51

El Hierro Wind-Hydro Power Station (partially EC funded)

OUTSTANDING PROJECTS

Upper Reservoir Population

Mini-hydro Power Station Lower Reservoir

Pumping Station Wind farm

Grid Desalination Plant

52

Diesel Power Station

OUTSTANDING PROJECTS

El Hierro Wind-Hydro Power Station

Upper Reservoir Valverde Hydro Power Station Lower Reservoir Wind Farm Control

53

Pumping Station

Desalination Plant

Puerto de La Estaca

Thank you very much

Gonzalo Piernavieja ITC

54