RELIABILITY OF MEMS & MEMS TESTING

07.06.2014 RELIABILITY OF MEMS & MEMS TESTING DOCTORAL SCHOOL EPFL Alex Dommann Neuchâtel, 13.06.2014 RESEARCH & DEVELOPMENTS AND SERVICES IN ACADE...
Author: Barry Summers
14 downloads 0 Views 10MB Size
07.06.2014

RELIABILITY OF MEMS & MEMS TESTING DOCTORAL SCHOOL EPFL

Alex Dommann Neuchâtel, 13.06.2014

RESEARCH & DEVELOPMENTS AND SERVICES IN ACADEMIC PARTNERSHIPS:

Microcity

1

07.06.2014

Materials meet Life

Materials

meet

Life

Materials meet life M AT E R I A L S

MEET

LIFE

nm

S U R FA C E µm

STRUCTURE mm

FUNCTION / INTERACTION

m

07.06.2014

4

2

07.06.2014

Reliability Science and Technology

PHOTONICS

InP splitter

R A M - A N A LYS I S

FOS

Microlens

interferometry

Bragg grating cladding

DFT: gate oxide

PH YSIC S O F FA ILU RE

MEASUREMENTS THz Image IR image of PCB chip

Au wire

ELECTRICITY

FIBs

NANO-STRUCTURING E L E C T R O N I C M AT E R I A L S

MICRO-ELECTRONICS

CMOS

ps-laser

Cell culture

UT sensing

CNT

MEDTECH 07.06.2014

5

Defect Analysis in SiSC MEMS

X-ray Diffraction

• HRXRD (global defect analysis)

Microscopy

•AFM (surface defects) •FIB + TEM (defect profile in cross section)

| doae | Page 6

3

07.06.2014

ELECTRON MICROSCOPY CENTER EQUIPMENT 

2 TEMs  



2 SEMs  



FEI XL30 ESEM FEI NovaNanoSEM

Sample preparation   



Philips CM30 Jeol JEM 2200FS (analytic STEM/TEM)

2 Ion mills Polishing machine Coater (etc.)

JEM-ARM200F microscope

Analysis 

2 Mac Workstations    



MacTempas CrystalKit Exit-wave reconstruction for in-line holography Simulations (xHREM, EMS, own programs)

Tomography workstation

Surface Analytics @ Empa TEM/STEM

FIB

He-SEM

3D NanoChemiscope

HRSEM

HRXRD

ToF-SIMS 7.5 x 7.5 mm2

AFM

| doae | Page 8

4

07.06.2014

Our tools: Selected instruments for characterization, testing & qualification

| doae | Page 9

ELECTRON MICROSCOPY CENTER EQUIPMENT 

2 TEMs  



2 SEMs  



FEI XL30 ESEM FEI NovaNanoSEM

Sample preparation   



Philips CM30 Jeol JEM 2200FS (analytic STEM/TEM)

2 Ion mills Polishing machine Coater (etc.)

Analysis 

2 Mac Workstations    



MacTempas CrystalKit Exit-wave reconstruction for in-line holography Simulations (xHREM, EMS, own programs)

Tomography workstation

5

07.06.2014

Micro- and Nano-Characterization

24.5°C

479°C

High-Temperature Nanoindenter Commercialization start in 2013 (CSM instruments, CH)

Graphene Monolayer PRL, 108 (2012) 047601 Nano, 6 (2012) 7077 Nature, 470 (2011) 374

3D NanoChemiscope

Ag NP (748 atoms)

Adv. Mat., 22 (2010) 4467 Nature Chem., 4 (2012) 287 Angw. Chem. (int. ed.) 48 (2010) 8890

IBM/Empa joint venture

(EU-FP 7 project)

JEOL ARM 200

Operation of a High-end TEM Start: 1.2.2013

ToF-SIMS 7.5 x 7.5 mm2

PCBM/CyI polymer blend AFM

 

PCBM (yellow) CyI (blue)

EMPA- ACCELERATE PROGRESS BY SHARING KNOW HOW Interfacial design of nanostructured materials

Materials

Simulations

Multi-layer and system fabrication

Materials Processing

AnalyticalServices (Microscopy XRays AFM usw…)

Model simulations of joining processes

Materials behavior by in-situ studies

6

07.06.2014

Center for X-ray analytics

We develop novel X-ray technologies from nanometer to meter scale

Building materials

XCT / XPCI / SAXS

Medical technology

Sustainable building

Polymers and fibres Advanced materials Image Analysis

Alloys

XRD Services

Reliable electronics & energy storage systems

Nanomaterials

X-ray diffraction 07.06.2014

13

PLLA screw to join nonloaded bone fragments

PHBV ear Ti alloy dental implant with special surface treatment

Locking compression plate w/ locking screws for 12-B2/12B3 AO classification fracture

Cell-seeded polymer graft to regenerate the myocardium after an infarction Rolled EAP actuator

MedTech

Stacked EAP actuator DLC coated CCM motionpreserving spinal disk prosthesis DLC coated hip joint head (failure case) hip joint stem with special surface treatment

DLC coated knee implant (failure case)

Internal TAN pedicular fixation system (over 3 vertebrae)

Combining the expertise of more than 10 Empa laboratories

ZrO2 hip joint head Carbon fibre reinforced hip protector POM bone rongeur with compliant joint Locking compression plate with standard screws for 42A2 AO classification fracture

Tendon bicomponent fibre with P3HBV core & PLA sheath

| doae | Page 14

7

07.06.2014

Dental implant Gingiva coloured coatings

Cool-Pad Cooling Vest 2 ultra-thin membranes provide cooling with water evaporation

MedTech Flexible textile patch for light therapy

Combining the expertise of more than 10 Empa laboratories

Incontinence Pants using a reusable pad that works according to the «waterfall principle».

Smart Stockings a surgical stocking for the gerontology market

| doae | Page 15

TEXTILE SENSORS AND BODY MONITORING Polymer Optical Fibers (POF) POFs drawn at Empa

Cladding (low refractive index) Core (high refractive index) Light source

8

07.06.2014

www.empa.ch/lpp

FLEXIBLE OPTICAL FIBERS - APPLICATIONS

Therapy

Lighting

Sensing

PHOTONIC TEXTILES FOR PHOTOPLETHYSMOGRAPHY Monitoring Measuring Sp O2

Heart rate Breathing Hypovolemia Wound healing Light source Black ring 3D-embroidery Embroidered POFs

9

07.06.2014

OPTICAL FIBERS FOR BIOSENSING IN LIQUID Wound healing monitoring pH sensitive optical fibers

FORCE SENSOR BASED ON ELASTIC OPTICAL FIBERS Principle Out coupled light

Applied pressure

Light intensity I1

Light intensity I0 Out coupled light

Measurement setup Applied pressure

Light source

www.empa.ch/lpp

Optical fibers

Detector 20

10

07.06.2014

Pressure [mbar]

AIR PRESSURE STOCKING

9850 9800

Markus, waking, trial 2

9750 9700 9650 9600 400

420

440

460

480

500

Time [sec]

DYNASUIT

Force N

500 450 400 350 300 250 200 150 100 50 0 0

100

200

300

400 500 pressure mbar

600

700

800

11

07.06.2014

Accelerometer

| doae | Page 23

Characterization, Testing & Reliability - The area of MEMS characterization, testing & reliability is generally data collection leading to model validation or predictive model development. - Our focus is on a science-based understanding of failure mechanisms, material properties, and surface interactions. - Methods are used to develop acceleration factors for MEMS device lifetime prediction. - The greatest challenge in MEMS reliability is that failure mechanisms are device dependent. For this reason, devices are classified: - Class I – no moving parts - Class II – moving parts with no contact - Class III – moving with impacting surfaces - Class IV – moving with rubbing surfaces

| doae | Page 24

12

07.06.2014

MEMS classes :

Class - 1

Class -2

Class 3

Class - 4

No moving parts

Moving parts with contacts

Moving with impacting surfaces

Moving with rubbing surfaces

- Accelerometers - Pressure sensors - Strain gauges

-

Gyros Comb drives Resonators Filters

- Relays - Valves - Switches

- Switches - Shutters - Scanners

| doae | Page 25

Reliability topics:

Lifetime predictions

• Failure mechanism  Physics of failure  Acceleration models  Acc. Testing (Weibull probability) •

Failure modes Root cause & failure analysis MEMS testing & qualification Continuous improvement & design for reliability

• •

Design phase failure modes : Functional & MEMS materials failure modes & non-analyzed conditions Manufacturing failure modes : Front & Back end In-use failure modes

• FMEA  Analytical methods • Testing  MEMS classes  Equipment  Quality standards (Mil) and qualification • Yield reliability  Yield improvement (design for test (DfT), process & packaging integration) • Reliability enhancement (reproducibility & product qualification)  Design for reliability (DFR) | doae | Page 26

13

07.06.2014

Mechanical failure modes

In-use failure modes : Charging

Fracture Mech. shock resistance

Electrical breakdown & ESD

Electrical failure modes

Electromigraion

Reliable MEMS

Vibration

Radiation

Anodic oxidation & galvanic corrosion of Si

Creep Metal corrosion

Fatigue

Environmental | doae | Page 27

Structural properties addressed by X-ray diffraction techniques during process development

Grainboundries Grain Size Texture Mosaicity

Polytypes Stress Strain

Phases

Composition

14

07.06.2014

QUALITY CONTROL / MATERIALS CHARACTERISATION Techniques available for materials characterization: XRF / XPS

Ultrasounds Eddy currents

Powder diffraction

Thermography

X-ray reflectivity

AFM / STM

X-ray diffraction (XRD / HRXRD)

Optical microscopy

X-ray small angle scattering (SAXS)

X-rays

X-ray imaging

TEM / SEM / ESEM …

Bragg Equation z

A

C B

Bragg Equation: n  = 2d sin  This extra distance must be an integral (n) multiple of the wavelength () for the phases of the two beams to be the same. | doae | Page 30

15

07.06.2014

Interference of waves

Δλ = nλ

n = 0, 1, 2, ...

When a number of waves of the same wavelength propagating in the same direction interfere with each other under continuous phase shift, only the coherent among them will be amplified. In total, the rest will almost completely cancel each other out.

| doae | Page 31

STOE Powder Diffraction System

Information obtained from diffraction patterns:

Diffraction pattern

80.0

Relative Intensity (%)

1) Peak positions: - refer to geometrical parameters: (unit cell, space group) - influenced by stresses

28-Mar-2010

100.0

60.0

40.0

20.0

0.0 20.0

30.0

40.0

50.0

60.0

70.0 2Theta

2) Peak intensities: - refer to electron density distribution within the unit cell - influenced by preferred orientation / texture in thin films and manufactured materials (rolling processes,…)

3) Peak shape: - refers to the quality (defects) in single crystal materials (broadness) - refers to the crystallite size in polycrystalline materials (broadness) - strain (asymmetry) - (influenced by diffractometer setup) | doae | Page 32

16

07.06.2014

Diffractometer setup: Texture Measurement:

| doae | Page 33

Diffractometer setup: Measurement of Lattice Strain

Determination of the variations in lattice parameter as a function of the offset. | doae | Page 34

17

07.06.2014

MEMS fabrication and integration: Application of High Resolution X-ray Diffraction (HRXRD) :

Design: - components - device - packaging level

Fabrication

Assembly

Components characterization: Packaging: - structural analysis: - defect + strain analysis phases, texture, strain, … - defect and strain analysis related to MEMS parts in fabrication processes

MEMS

Product

Strain dynamics and mobility of Defects by XRD: - in-situ testing: structural + mechanical - aging studies: T, radiation, high cycle fatigue

HRXRD ON SCSI MEMS

PANalytical X’Pert PRO MRD

Detector 1: RSM setup Detector 2: RC setup

18

07.06.2014

Omega 34.36000 2Theta 68.72000

004

Phi 0.00 Psi 0.00

X -17.00 Y 27.85 Z 0.000

Omega

Si-RSM_4N_200um.xrdml

Si

1.2 1.5

Structural

2.0 2.6

0.06

3.4

Characterization 4.5

0.04

5.8 7.6 9.9

0.02

HRXRD

12.9

OPX/CPX: Nouvelles têtes étroites Functional://// electrical, mechanical Diamant

16.9 22.0

0.00

2xU

28.7

2xU

U U

U=46.5mm

37.5

-0.02

49.0 63.9 83.4

-0.04

108.9 142.1

-0.06

185.5 242.1

+

-0.08 -0.06

-0.04

-0.02

0.00

0.02

0.04 0.06 Omega/2Theta

Reliability in MEMS

Nano-Indentation Nano-Scratch

Mechanical: Bending + tensile tests Simulations

Testing

Materials Research Diffractometer (MRD) (Perfect) epitaxial layer, stressed and textured samples highly textured layers

Detector 1

Ge[220] 4 - Crystal monochromator Symm. or Asymm.

X-ray mirror

Triple Axis Section

X-ray tube (line focus) Soller slits Divergence slit (optional)

Optical slit Detector 2

+ all kinds of applications + interchangeable optics

19

07.06.2014

DEVELOPMENT FOR IN-SITU TESTING: 1) 2) 3) 4) 5) 6) 7) 8)

Two point bending test:

Actuator motor Moving support (16 mm) Static support Force sensor (2 N) Manual position adjustment Fixation force sensor Support frame Probe holder

Tensile test:

cross-section: 50 x 50mm cross-section: 50 x 50mm

LOGARITHMIC PLOT OF EXPERIMENTAL FORCEDISPLACEMENT

Specimen used as obtained by DRIE (no post treatment): Strongest Fracture strain observed: Strongest Fracture stress observed

 = 1.785%  = 7.0 GPa

20

07.06.2014

Tensile test: set-up In-situ mechanical testing : strain and defect analysis

HRXRD ON SCSI MEMS

Mechanical Test Instrument with the sample also positioned with respect to the diffractometer setup:

Detector 1: RSM setup Detector 2: RC setup

PANalytical X’Pert PRO MRD

21

07.06.2014

X-ray Rocking Curve (RC) measurements square-long-line Omega 34.56320 Phi 0.00 2Theta 69.12640 Psi 0.00

Omega 34.56320 Phi 0.00 2Theta 69.12640 Psi 0.00

X 8.00

0Y00.00 4

square-long-line_I13.xrdml

counts/s

counts/s

square-long-line_I6.xrdml

X 0.00 Y 0.00

reference

004_test_10_Ar-sample.xrdml

1M

100K

100K

10K

1K

10K

100

1K -100

-50

0

50 100 Omega/2Theta (s)

-100

1. Strain

-50

0

50 100 Omega (s)

2. Curvature

3. Defects from diffused scattering

 = d/d = -/tan =E

 scan | doae | Page 43

DEFECTS IN A CRYSTAL

from: I.F. Mercer: "Crystals", The Natural History Museum, London 1994

+ surface defects (roughness, …) + sample size effect

22

07.06.2014  (tilt)

a) RSM

 / 2 (strain) Intensity

b) RC Strain layers HRXRD for Lattice strained

Lattice Tilt

 (tilt)

a) RSM



c) Lattice planes (real space)

d2

dgradient

d1

d1

d1 d1

d1 d1

 / 2 (strain)

Intensity

b) RC

 d1

dgradient d1

Lattice Tilt

d1

d1

d1 d1

 (tilt)

c) Lattice planes a) (real RSMspace)

Lattice Strain d2

 / 2 (strain) b) RC

Intensity

| doae | Page 45

 c) Lattice planes (real space)

d2

dgradient

d1

d1

d1 d1

d1 d1

Study of materials properties: fracture toughness

When SCSi structures break ? Why SCSi structures break ?

23

07.06.2014

What is a reciprocal space? (1) real space

reciprocal space



1/a

a

1/b b

010

110 100

origin points represent atomic positions

200

points represent reflections

| doae | Page 47

BRAGG’S LAW AND THE EWALD DIAGRAM

, d

k,q  d

1 d



origin Bragg's Law  = 2d sin

Ewald Sphere r=1/ = k

24

07.06.2014

WHAT IS A RECIPROCAL SPACE MAP?







dhkl

1/dhkl

INFORMATION IN THE RECIPROCAL SPACE • position • shape

kh

1/d

2

Ewald Radius



ki 50

25

07.06.2014

HRXRD X-ray Rocking Curve (RC):

Reciprocal Space Mapping (RSM): 004

Omega 34.56320 Phi 0.00 2Theta 69.12640 Psi 0.00

X 0.00 Y 0.00 Z 0.000

X-ray scattering can be separate into distinct features: Intensity (counts)

Omega

2-Diced-Si004_RSM_2.xrd

1.4 2.3

Wafer surface: polished diced

3.7

0.3

5.9 9.4

0.2

15.1

0.1

24.1 38.5

-0.0

61.5

-0.1

157.4

98.4

34.40

34.45

34.50 34.55

34.60

34.65

34.70 Omega (°)

251.7

-0.2 -0.3 -0.2

 = strain = d/d = -/tan  = stress = E  E = Young’s Modulus

402.5 643.6

-0.1 0.0 0.1 Omega/2Theta

1. Strain 2. Curvature 3. Defects from diffused scattering

1029.2 1645.8 2631.8 4208.6 6730.1 10762.3 17210.3

| doae | Page 51

Mechanical Testing: In-situ Tensile Tests on SiSC micro-beams Example of a tensile test on SCSi (single crystal, 50mm beam) Omega 34.36000 2Theta 68.72000

004

Phi 0.00 Psi 0.00

X -17.00 Y 27.85 Z 0.000

Omega

Si-RSM_4N_200um.xrdml

1.2 1.5

A

0.06

B

2.0 2.6 3.4 4.5

0.04

5.8 7.6 9.9

0.02

12.9

A

B

16.9

0.00

Lattice Tilt 22.0

C

28.7 37.5

-0.02

49.0 63.9 83.4

-0.04

108.9 142.1

-0.06

185.5 242.1

-0.08 -0.06

-0.04

-0.02

0.00

0.02

0.04 0.06 Omega/2Theta

= strain = d/d  = stress =  x E

C (RSM) and (FEM): divergence of 0.01-5% | doae | Page 52

26

07.06.2014

Mechanical Testing: In-situ Tensile TestsOmega 34.60460Phi 0.00 2Theta 69.21640 Psi 0.00 004

Omega 34.56320 Phi 0.00 2Theta 69.12640 Psi 0.00

X 0.00 04 Y0 -0.31 Z 10.135

Omega 34.36000Phi 0.00 2Theta 68.72000Psi 0.00

X -17.00 Y 27.85 Omega Si-RSM_0N_d=200.xrdml Z 0.000

Omega

Omega

0.06

0.04

0.04

0.02

0.02 0.00

0.00

2.9

0.05

2.7

2.6

3.6

4.5

20.9

46.0

-0.06

-0.06

68.2

31.0

-0.05

101.1 149.8 -0.06-0.04-0.02 0.00 0.02 0.04 0.06 Omega/2Theta 222.0 329.0

722.5

1587.0

6.2

-0.10

7.6

8.1

9.9

10.7

12.9

14.1

16.9

18.6

22.0 28.7

24.4

37.5

32.2

49.0

42.4

63.9

-0.10-0.08-0.06-0.04-0.02-0.000.020.040.060.08 83.4 Omega/2Theta 108.9

487.5

1070.8

4.7

5.8

0.00

14.1

-0.04

0N

2.0

6.4

-0.04

-0.08

2.1

3.4

-0.02

1.6

1.5

4.3

9.5

4N

Si-RSM_6N_200um.

1.2

1.2

1.3

-0.02

-0.06-0.04-0.020.000.02 0.040.06 Omega/2Theta

Si-RSM_4N_200um.xrdml

0.10 2.0

0.06

X -17.00 Y 27.54 Z 0.000

55.8 73.5

142.1

96.7

185.5

127.3

242.1

6N

167.7

2352.0

220.8

3485.7

290.7

| doae | Page 53

RSM Simulation

| doae | Page 54

27

07.06.2014

Mechanical Testing: In-situ Tensile Tests

Omega 34.56320Phi 0.00 2Theta 69.12640Psi 0.00

004

X -17.00 Y 28.02 Z 0.000

Omega

Omega 34.56320Phi 0.00 2Theta 69.12640Psi 0.00

Si-RSM_1N_200_2.xrdml

X -17.00 Y 27.84 Z 0.000

Omega

1.2

1.2 1.6

1.7 2.3

0.06

2.1

0.06

2.9

3.1

0.04

0.04

4.1 5.6

0.02

3.8 5.1

0.02

6.8

7.6

0.00

0.00

10.4 14.1

Loading to 6N

-0.02

19.1 25.9

-0.04

9.1 12.2

-0.02

16.3 21.8

-0.04

29.2

35.2

-0.06

+ Relaxation

47.7

-0.06

39.0 52.1

64.8

-0.06-0.04-0.02 0.00 0.02 0.04 0.06 Omega/2Theta

-0.06-0.04-0.02 0.00 0.02 0.04 0.06 Omega/2Theta

88.0 119.4

69.6 93.0 124.2

162.0

Initial load: 1N

Si-RSM_d=200_1N.xrdml

219.9

Final load: 1N

298.5

166.0 221.8

405.1

296.4

549.9

396.0

| doae | Page 55

55

Technology support: Qualification of subcomponents, components and devices Concept Phase

Consulting

Design Phase

Components Fabrication

Components Assembly & Packaging

Characterization / Testing Quality Control Reliability Studies

Microsystem

Reports & Consulting

Microstructural Properties Mechanical Behavior Stresses and Defects | doae | Page 56

28

07.06.2014

RELIABILITY CHALLENGES IN SPACE – OTHER

Space hazards Temperature cycling Eclipses (Power management) Vacuum and outgassing Space debris Images: http://www.esa.int http://www.grc.nasa.gov

MEMS investigations : Strain distribution in pressure sensors

HRXRD strain gradient measurement Bonding stress gradient  Defect mobility, aging Effect on quality factor Effect on hermeticity

29

07.06.2014

MEMS investigations : Strain distribution in pressure sensors Wafer level encapsulation of micro-systems.

Cap wafer & Resonator wafer

Bonding Strain Profile

Resonator MEMS: - Functional & packaged - Hermeticity evaluation - Packaging strain - Environmental testing

Silicon test device

| doae | Page 60

30

07.06.2014

Mechanical Testing

| doae | Page 61

Mechanical Testing: High Cycle Fatigue b) counts

Omega ( )

a)

Omega/2Theta ( )

Omega/2Theta ( )

Accelerated aging of MEMS by high cycle fatigue.

| doae | Page 62

31

07.06.2014

Radiation Damage

| doae | Page 63

Aging: Radiation Damage

a)

b)

Normalized intensity (rel. units)

1

c)

0.1

0.01

0.001

0.0001

1E-005

1E-006 -500

b)

-400

-300

-200

-100

-120''

3

Omega/2Theta ( )

Omega/2Theta ( )

Wide TCD-spectra obtained at positions of the specimen = -120” (solid line) and = 120” (dashed line).

200

300

400

500

120'' MP

PP

Intensity (pps)

b)

100

PP

MP

a)

0

 (sec. of arc)

The experimental (dots) and fitted (solid line) TCD intensity curves. Dashed line is the double-crystal rocking curve (for comparison).

c) counts

Omega ( )

RSMs a)

2

DP

DP 1

0 -300

-200

-100

0

 (sec. of arc)

100

200

300

| doae | Page 64

32

07.06.2014

Nexray

RTD 2009

HRXRD analysis: 50 μm Ge towers XRD reciprocal space maps of 50 mm high Ge towers, including Si substrate

Si

Detailed scan of Ge(004) reflection

~ 50 mm Ge SEM picture of 50 mm high Ge towers, no fusion occurring

HRXRD around Ge (004) peak HRXRD measurements on 50 mm Ge towers show that they are fully relaxed

Nexray

RTD 2009

Eleastic relaxation of thermal strain

 The relaxation of the thermal strain in Ge pillars is explained by FEM simulations.

33

07.06.2014

Nexray

RTD 2009

Submicron diffraction experiments at ESRF ID01 beamline    

3D RSM (sliced)

Focused beam: ~300x500 nm (Fresnel Zone Plates, FZP) X-ray energy: 11.07 keV 2D pixel detector was used  3D reciprocal space maps Reflections investigated: Si, Ge  (004), (115), (206)

2D Pixel Detector X-rays

FZP  Measurements of strain and tilt in single Ge towers.

Nexray

Sample

RTD 2009

Scanning X-ray nanodiffraction of arrays of epitaxial Ge

ID01 beamline of ESRF Mapping lattice bending close to the interface | doae | Page 68

34

07.06.2014

Nexray

RTD 2009

Quality Control 2: X-ray Nanodiffraction

X-ray FWHM indicates perfect single crystal far away from the interface!

Three-dimensional X-ray nanodiffraction of a perfect epitaxial Ge crystal.

| doae | Page 70

35

07.06.2014

COATING CENTER @ EMPA Private Public Partnership Coating Center @ Empa

Swiss Industry Polytype  R&D in Coating Technologies  Advanced Surface Analytics

QUALITY CONTROL / MATERIALS CHARACTERISATION Techniques available for materials characterization: XRF / XPS

Ultrasounds Eddy currents

Powder diffraction

Thermography

X-ray reflectivity

AFM / STM

X-ray diffraction (XRD / HRXRD)

Optical microscopy

X-ray small angle scattering (SAXS)

X-rays

X-ray imaging

TEM / SEM / ESEM …

 Metrology  Defect detection, failure mode analysis

36

07.06.2014

QUALITY CONTROL TECHNIQUES Quality Control

Mechanical testing

e- Microscopy

XRF Bulk Analysis

Soft Materials

Phase Analysis

Electrical Testing

GI-XRF NanoParticles

X-ray

XPS Thin films

Imaging

Phase Contrast Imaging

The Joint Reliability Team EUCEMAN – EUROPEAN CENTER FOR MICRO AND NANORELIABILITY

37

07.06.2014

Standardization, validation and robustness of in vitro testing for nanosafety - a bridge to industry

Nexray

RTD 2009

AKNOWLEDGEMENT

A. DommannB, H. von KänelC, P. GröningB, A. NeelsA,B, T. BandiA, S. BeerA, R. BergamaschiniD, C. BosshardA, F. CardotA, D. ChrastinaD, S. CecchiC, H. ElsenerB, C. FalubC, J. FrigerioC, S. GiudiceA, A. GonzalezC, F. IsaD, G. IsellaD, R. Jose JamesA, R. KaufmannB, C. KottlerA, T. KreiligerC, R. LongtinB, L. NeumannA, A. MarzegalliD, L. MiglioD, S. MouazizA, P. NiedermannA, A. PezousA, J. SanchezB, G. Spinola DuranteA, F. Mancarella,E J. Fompeyrine,E B. Alén,E Y. ZhaA, , A. Schifferle, H. Shea, J. Hérran, G. Bourban, E. Mukhamadzhanv, A. FlischB, U. SennhauserB, E. MazzaB, R. ErniB A: CSEM B: EMPA

C: ETHZ, E: IBM D: L-NESS, Politecnico di Milano, Como, Italy

38