Rare-Earth Plasma EUV Source at 6.7 nm for Future Lithography

Session 4, P5 Rare-Earth Plasma EUV Source at 6.7 nm for Future Lithography Takeshi Higashiguchi1,2 Takamitsu Otsuka1, Noboru Yugami1,2, Deirdre Kilb...
21 downloads 0 Views 2MB Size
Session 4, P5

Rare-Earth Plasma EUV Source at 6.7 nm for Future Lithography Takeshi Higashiguchi1,2 Takamitsu Otsuka1, Noboru Yugami1,2, Deirdre Kilbane3, Thomas Cummins3, Colm O’Gorman3, Tony Donnelly3, Padraig Dunne3, Gerry O'Sullivan3, Weihua Jiang4, and Akira Endo5 1Utsunomiya

University Science and Technology Agency 3University College Dublin 4Nagaoka University of Technology 5Waseda University 2Japan

2011 International Workshop on EUV Lithography Makena Beach Golf Resort , Maui, Hawaii, USA Wednesday, June15, 2011

Why 6.X nm EUV source? Beyond EUV (BEUV) source

From ASML presentation shows as follows: (1)  extensive (beyond 8 nm@~2017) (2)  6.X nm choice: Best transmission & Easier Manufacturing (3)  Source: New fuel is needed (4)  R ~ 80% (cal), R ~ 40% (exp)@La/B4C MLM (5)  Total throughput for 6.7 nm & 13.5 nm is comparable!!!

Why 6.X nm EUV source? 1,000

Wavelength (nm)

1,000

100

100

10

10 Present day

1 1990

2000

2010

2020

1 2030

Half-pitch feature size (nm)

Beyond EUV (BEUV) source

G. Tallents et al., NATURE PHOTONICS, 4, 809 (2010).

What’s new for high power and high CE

1064  nm 532  nm 355  nm

 250  200  150  100  50  0  5.5

 6

 6.5

 7

 7.5

 8

 8.5

Wavelength  (nm)

 9

 9.5

 10

Experiment Calculation

350

0.8

300

0.7

250

0.6 0.5

200

0.4

150

0.3

100

0.2

50 0 6

6.5

7

7.5

Wavelength  (nm)

0.1 0 8

Intensity  (arb.  units)

Intensity  (arb.  units)

 300

Intensity  (arb.  units)

n  Laser color dependence n  Resonant line appearance in low-density plasma n  Enhancement condition of the 6.7-nm emission

Introduction… from previous spectral reports 6.7 nm: Gd, Tb plasmas Mo/B4C mirror

6.7

6.9

7.1

Reflectivity

6.5

Reflectivity at 3 deg. inc. angle

0.4 N=23 N=200 0.3

0.2

0.1

0.0 6.2

6.4

6.6

6.8

6.7 nm

7.0

Wavelength, nm

Wavelength (nm) 6.3

6.5

6.7 S. S. Churilov et al.,Phys. Scr. 80, 045303 (2009).

Previous & recent observations We observed continuum due to satellite lines

Intensity  (arb.  units)

for absorption spectroscopy

for high power source by us  400  300  200  100  0  5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

Wavelength  (nm)

G. O’Sullivan & P. K. Carroll, JOSA 71, 227 (1981). T. Otsuka et al., APL 97, 111503 (2010).

Objective

We demonstrate the efficient BEUV source at 6.7 nm by rare-earth (Gd) LPP and DPP .

Ionic population of Gd ions We should produce 50-200 eV plasma.

9./:+0;.35)4,:./

!#" "#' "#& "#% "#$ " !

!"

!""

!"""

()*+,-./01*23*-4,5-*06*78 T. Otsuka et al., APL 97, 111503 (2010).

gf spectra of Gd ions We confirm the UTA resonant lines around 6.7 nm 70 70 70

gf

70 70 70 70

12+

35

13+

35

14+

35

15+

35

16+

35

17+

35

18+

35

Gd Gd Gd Gd Gd Gd Gd

Gd19+ Gd20+ 21+

Gd

22+

Gd

Gd23+ Gd24+ Gd25+

0 0 6.0 6.5 7.0 7.5 8.0 6.0 6.5 7.0 7.5 8.0 Wavelength  (nm) Wavelength  (nm) T. Otsuka et al., APL 97, 111503 (2010).

Experimental setup

Intensity  (arb.  units) Intensity  (arb.  units)

Spectra from Gd & Tb plasmas  400

Gd

 300  200  100  0  400

Tb

 300  200  100  0  5.5

 6

 6.5

 7

 7.5

 8

 8.5

Wavelength  (nm)

 9

 9.5

 10

Laser wavelength dependence n  Spot diameter: 50 um (FWHM) n  Laser energy: 320 mJ n  Laser intensity: 1.6 x 1012 W/cm2

Intensity  (arb.  units)

 300

EUV CEs (in 2% BW)

1064  nm 532  nm 355  nm

 250  200

1064 nm: 1.1% 532 nm: 0.7% 355 nm: 0.5%

 150  100  50  0  5.5

 6

 6.5

 7

 7.5

 8

 8.5

Wavelength  (nm)

 9

 9.5

 10

Laser wavelength dependence n  Spot diameter: 50 um (FWHM) n  Laser energy: 320 mJ n  Laser intensity: 1.6 x 1012 W/cm2

 250

UTA resonant lines

 200

Self-absorption

 150

Critical  surface  

1064  nm 532  nm 355  nm

ne

Electron  density

Intensity  (arb.  units)

 300

nc2

nc1 Laser

 100

0

z

Distance  

 50  0  5.5

nc3

Satellite emissions  6

 6.5

 7

 7.5

 8

 8.5

Wavelength  (nm)

 9

 9.5

 10

Dual laser pulse irradiation

In-­band-­EUV  energy  (arb.units)

Gd Tb  1.2  1.0  0.8  0.6  0.4  0.2  0 -­400

-­200

 0

 200

 400

 600

Pulse  separation  time  (ns)

 800

 1000

Trade off 1 Effective ions vs self-absorption Electron (ion) density decreases, but absorption length increases. For large opacity material (high-Z), such as Xe & Sn Electron density decreased: absorption effect decreased Density gradient increased: absorption effect increased

For small opacity material (low-Z), such as Li & low initial density target Electron density decreased: absorption effect more decreased Density gradient increased: large volume effect increased

Physical summary for high-Z plasmas from 13.5-nm Sn plasmas

Low density plasmas for reducing self-absorption effects Suppression of satellite emission & higher spectral purity Long wavelength (low critical density): CO2 laser@1019 /cc Short laser pulse duration: ~1-2 ns@YAG laser (1064 nm) Low density targets Discharge plasmas (low density plasmas)

Effective dual pulse scheme

We require the use of: low initial density target & DPP or

longer laser wavelength laser

in the self-absorption effect suppression point of view.

Discharge experiments To reduce the satellite lines for low density plasma

Discharge experiments To reduce the satellite lines for low density plasma  350

DPP plasma

7.8%  300

 250

Intensity  (arb.  units)

Intensity  (arb.  units)

 300

 200  150  100  50  0  5.5  6  6.5  7  7.5  8  8.5  9  9.5  10 Wavelength  (nm)

 250

LPP plasma

5.7%

 200  150  100  50  0  5.5  6  6.5  7  7.5  8  8.5  9  9.5  10

Wavelength  (nm)

Experiment Calculation

350

0.8

300

0.7

250

0.6 0.5

200

0.4

150

0.3

100

0.2

50 0 6

6.5

7

7.5

Wavelength  (nm)

0.1 0 8

Intensity  (arb.  units)

Intensity  (arb.  units)

Low density plasma by DPP

140

100 Experiment Calculation

120

80

100 60

800 600

40

400 20

200 0 6

6.5

7

7.5

0 8

Wavelength (nm)

calculated by Bowen Li & Gerry O’Sullivan (UCD)

Intensity (arb. units)

Low density plasma by use of low-initial density targets 10% 30% 100%

400 300 200 100 0 5.5

6

6.5

7

7.5

8

8.5

Wavelength (nm)

9

9.5 10

Conversion efficiency (%)

EUV CEs by use of low-initial density targets 10% 30% 100%

2.0 1.5 1.0 0.5 0 0

1

2

3

4

5

6

7

Laser intensity (x 1012 W/cm2)

8

Conversion efficiency (%)

Enhancement of EUV CE by use of dual laser pulse technique 30% 100%

2.0 1.5 1.0 0.5 0 -100

0

100

200

300

Pulse separation time (ns)

400

500

Question, problem, and definition… n  CO2 laser-produced plasma behavior? n  High temperature (30-50 eV to 50-150 eV): high energy particle generation n  CE bandwidth (2% to less than 0.1%?) n  Regenerative target supply method (melting point: 1313 OC)

Summary

We have demonstrated the efficient EUV source around 6.7 nm using Gd & Tb (rare-earth). -  Spectral behavior at different laser wavelength -  Low density target to suppress the self-absorption in plasma -  Conversion efficiency: ~ 1.8% before optimizing parameters -  Question, problem, and definition

Suggest Documents