Prof. dr. ir. Albert J.P. THEUWISSEN Philips Semiconductors Image Sensors, Eindhoven (NL) Technical University, Delft (NL)

CCD or CMOS image sensors for consumer digital still photography ? Prof. dr. ir. Albert J.P. THEUWISSEN Philips Semiconductors Image Sensors, Eindhove...
Author: Hannah Cain
0 downloads 0 Views 195KB Size
CCD or CMOS image sensors for consumer digital still photography ? Prof. dr. ir. Albert J.P. THEUWISSEN Philips Semiconductors Image Sensors, Eindhoven (NL) Technical University, Delft (NL) [email protected]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

Outline

- introduction - principle of imagers - imager requirements - overview CCD vs. CMOS - summary and conclusions

• • • •

Introduction Principle of CCD and CMOS imagers Imager requirements Overview CCD vs. CMOS : resolution, signal-to-noise ratio, angular response, dark current, dynamic range, linearity, pixel uniformity, architecture

• Summary and Conclusions  2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

1

- introduction - principle of imagers - imager requirements - overview CCD vs. CMOS - summary and conclusions

Introduction • CMOS is challenging CCD • Digital still is a continuously growing imaging market

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers - imager requirements - overview CCD vs. CMOS - summary and conclusions

Introduction • CMOS is challenging CCD • Digital still is a continuously growing imaging market • Today : almost exclusively CCD in DSC • Tomorrow : CCD or CMOS ?

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

2

Outline

- introduction - principle of imagers - imager requirements - overview CCD vs. CMOS - summary and conclusions

• • • •

Introduction Principle of CCD and CMOS imagers Imager requirements Overview CCD vs. CMOS : resolution, signal-to-noise ratio, angular response, dark current, dynamic range, linearity, pixel uniformity, architecture

• Summary and Conclusions  2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

CCD principle (1)

- CCD

- imager requirements - overview CCD vs. CMOS - summary and conclusions

0V

10 V

0V

0V

Φ

p-Si

0V

10 V

10 V

0V

Φ

p-Si

0V

0V

10 V

0V

Φ

p-Si  2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

3

- introduction - principle of imagers

CCD principle (2) photosensitive CCD array

- CCD

- imager requirements - overview CCD vs. CMOS - summary and conclusions

out

horizontal CCD output register

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

CMOS principle (1)

- CCD

vertical scan circuit

photodiode array + MOS switches

- CMOS

- imager requirements - overview CCD vs. CMOS - summary and conclusions

A/D horizontal scan circuit

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

4

CMOS principle (2)

- introduction - principle of imagers - CCD - CMOS

- imager requirements - overview CCD vs. CMOS - summary and conclusions

Photodiode APS

Photogate APS RST PG

p-Si

TX

RST RS n+

RS Col bus p-Si

n+ Col bus

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

Outline

- introduction - principle of imagers - CCD - CMOS

- imager requirements - overview CCD vs. CMOS - summary and conclusions

• • • •

Introduction Principle of CCD and CMOS imagers Imager requirements Overview CCD vs. CMOS : resolution, signal-to-noise ratio, angular response, dark current, dynamic range, linearity, pixel uniformity, architecture

• Summary and Conclusions  2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

5

- introduction - principle of imagers

Image Sensor Aspects (1)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - summary and conclusions

IMAGER PARAMETER resolution signal-to-noise ratio angular response dark current

CAMERA SPECIFICATION sharpness ISO speed min. F-stop max. exp. time

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Image Sensor Aspects (2)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - summary and conclusions

IMAGER PARAMETER dynamic range linearity pixel uniformity architecture

CAMERA SPECIFICATION latitude colour fidelity granularity features

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

6

Outline

- introduction - principle of imagers - CCD - CMOS

- imager requirements - overview CCD vs. CMOS - summary and conclusions

• • • •

Introduction Principle of CCD and CMOS imagers Imager requirements Overview CCD vs. CMOS : resolution, signal-to-noise ratio, angular response, dark current, dynamic range, linearity, pixel uniformity, architecture

• Summary and Conclusions  2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Resolution Requirements

- CCD

- resolution

- summary and conclusions

Print Resolution [pix/inch]

- CMOS

- imager requirements - overview CCD vs. CMOS

600

400

3.5"x5" 4"x6" 5"x7" 8"x10"

200

quality level

0 0

2

4

6

8

10

Image Size [Mpixels]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

7

- introduction - principle of imagers

Resolution Requirements

- CCD

- resolution

- summary and conclusions

Print Resolution [pix/inch]

- CMOS

- imager requirements - overview CCD vs. CMOS

600

400

3.5"x5" 4"x6" 5"x7" 8"x10"

200

quality level

0 0

disc

2

110

4

APS

6

8

35 mm

10

Image Size [Mpixels]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Resolution Requirements

- CCD

- resolution

- summary and conclusions

Print Resolution [pix/inch]

- CMOS

- imager requirements - overview CCD vs. CMOS

600 prof. CCD cons. CCD prof. CMOS cons. CMOS

400

3.5"x5" 4"x6" 5"x7" 8"x10"

200

quality level

0 0

disc

2

110

4

APS

6

8

35 mm

10

Image Size [Mpixels]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

8

Trend in Resolution

- introduction - principle of imagers - CCD - CMOS

- resolution

- summary and conclusions

10 Resolution [Mpixels]

- imager requirements - overview CCD vs. CMOS

2/3" (8.8mmx6.6mm)

8

1/2" (6.4mmx4.8mm) 1/3" (4.4mmx3.3mm)

6 decrease chip size

4 2 0 0

2

4

6

8

10

Pixel Size [um]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

Trend in Resolution

- introduction - principle of imagers - CCD - CMOS

- resolution

- summary and conclusions

10 Resolution [Mpixels]

- imager requirements - overview CCD vs. CMOS

lens limitation

2/3" (8.8mmx6.6mm)

8

1/2" (6.4mmx4.8mm) 1/3" (4.4mmx3.3mm)

6 decrease chip size

4 2

CCD

CMOS

0 0

2

4

6

8

10

Pixel Size [um]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

9

- introduction - principle of imagers

Signal-to-Noise ratio (1)

- CCD - CMOS

- S/N ratio

- summary and conclusions

dynamic range (68 dB)

- resolution

saturation (100k)

100k

Number of Electrons

- imager requirements - overview CCD vs. CMOS

10k signal

1k

photon shot

100

total (40)

10 0.001

dark read noise (20) shot (35)

0.01

0.1

1

10

100

Light Intensity (µ µW/cm2 )

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Signal-to-Noise ratio (2)

- CCD - CMOS

Photogate APS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio

RST PG

- summary and conclusions

p-Si

TX

Photodiode APS RST

RS n+

RS Col bus p-Si

n+ Col bus

FREE of reset noise

NOT FREE of reset noise

LOW light sensitivity

HIGH light sensitivity

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

10

- introduction - principle of imagers

Signal-to-Noise ratio (3)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS

ISO x =

- resolution

10 Hx

ISOx = ISO-speed @ S/N=x Hx = exposure to get S/N=x

- S/N ratio

- summary and conclusions

A = pixel area QE = quantum efficiency nr = read noise

ISO40 ∝ A ⋅ QE ISO10 ∝

A ⋅ QE nr

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Signal-to-Noise ratio (4)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - S/N ratio

- summary and conclusions

QE in green [%]

- resolution

100 80 60 40 20 0 0

1

2

3

4

5

6

7

8

9

10

Pixel Size [um]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

11

- introduction - principle of imagers

Signal-to-Noise ratio (4)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - S/N ratio

- summary and conclusions

QE in green [%]

- resolution

100 80 60 40

CCD CCD

20

CMOS

0 0

1

2

3

4

5

6

7

8

9

10

Pixel Size [um]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Improvement QE (1)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio

- summary and conclusions

microlens pixels

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

12

Improvement QE (2)

- introduction - principle of imagers - CCD - CMOS

- imager requirements - overview CCD vs. CMOS

lens

- resolution - S/N ratio

iris

- summary and conclusions

microlens pixels

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Angular Response (1)

- CCD - CMOS

- resolution - S/N ratio - angular resp.

- summary and conclusions

25 Incident Angle [deg.]

- imager requirements - overview CCD vs. CMOS

20 15 10 5 0 1.2

1.4

1.8

2

2.8

3.5

4

5.6

8

16

F-number

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

13

- introduction - principle of imagers

Angular Response (2)

- CCD - CMOS

- resolution - S/N ratio - angular resp.

- summary and conclusions

1 Rel. Imager Response

- imager requirements - overview CCD vs. CMOS

0.8 0.6 0.4 0.2 0 0

5

10

15

20

25

30

Incident Angle [deg.]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Angular Response (3)

- CCD - CMOS

- resolution - S/N ratio - angular resp.

- summary and conclusions

25 Incident Angle [deg.]

- imager requirements - overview CCD vs. CMOS

micro-lens limit

20 15 10 5 0 1.2

1.4

1.8

2

2.8

3.5

4

5.6

8

16

F-number

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

14

- introduction - principle of imagers

Dark Current (1)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp. - dark current

• prof. CCD • cons. CCD • standard CMOS

1...3 pA/cm2 @ RT 5...10 pA/cm2 @ RT 200...500 pA/cm2 @ RT

- summary and conclusions

Dark current doubles every 6…8oC. Example : @ 60oC : 32 times higher ! @ -100oC : 32,000 times lower !

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Dark Current (2)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS

• Compensation for dark current is possible !

- resolution - S/N ratio - angular resp. - dark current

- summary and conclusions

• Compensation for dark-current nonuniformities is possible ! • Compensation for dark-current shot-noise is NOT possible !

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

15

Dynamic Range (1)

- introduction - principle of imagers - CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution

DR =

Nsat − Ndark 2 nr2 + ndark

- S/N ratio - angular resp. - dark current - dyn. range

DR = dynamic range Nsat = saturation signal [e-] Ndark = dark signal [e-] nr = read noise [e-] ndark= dark shot noise [e-]

- summary and conclusions

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

Dynamic Range (2)

- introduction - principle of imagers - CCD

- resolution - S/N ratio - angular resp. - dark current - dyn. range

- summary and conclusions

Charge Handling [ke/um2]

- CMOS

- imager requirements - overview CCD vs. CMOS

3

Nsat = 30 ke-

2.5 2 1.5 1 0.5 0 2

3

4

5

6

7

8

9

10

Pixel Size [um]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

16

Dynamic Range (2)

- introduction - principle of imagers - CCD

- resolution - S/N ratio - angular resp. - dark current - dyn. range

- summary and conclusions

Charge Handling [ke/um2]

- CMOS

- imager requirements - overview CCD vs. CMOS

3

Nsat = 30 ke-

2.5 2 1.5

CCD

1

CMOS

0.5 0 2

3

4

5

6

7

8

9

10

Pixel Size [um]

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

Linearity (1)

- introduction - principle of imagers - CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio

RAW data

- angular resp. - dark current

R 1.424 -0.500 0.076 R G = -0.046 1.431 -0.491 x G B 0.090 -0.390 1.302 B

γ = 1.8

- dyn. range - linearity

- summary and conclusions

interpolation

white balance

colour matrixing

R = R x 1.40 G = G x 1.00 B = B x 1.46

gamma curve

RGB data

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

17

- introduction - principle of imagers

Linearity (2)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp. - dark current - dyn. range

• Due to sampling in colour space : Interpolations, • Filters do not match perfectly : Colour corrections.

- linearity

- summary and conclusions

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Linearity (2)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp. - dark current - dyn. range

• Due to sampling in colour space : Interpolations, • Filters do not match perfectly : Colour corrections.

- linearity

- summary and conclusions

• Linearity CCD : • Linearity CMOS :

99 % (for 70 % of Nsat), 97 % (for 85 % of Nsat).

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

18

- introduction - principle of imagers - CCD

Pixel Random NonUniformity

- CMOS

- imager requirements - overview CCD vs. CMOS - resolution

• PRNU CCD : • PRNU CMOS :

- S/N ratio - angular resp.

< 0.7 … 1.0 %, < 2.0 … 5.0 %, (column + pixel FPN)

- dark current - dyn. range - linearity - p.r.n.u.

- summary and conclusions

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers - CCD

Pixel Random NonUniformity

- CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp.

• PRNU CCD : • PRNU CMOS :

< 0.7 … 1.0 %, < 2.0 … 5.0 %, (column + pixel FPN)

- dark current - dyn. range - linearity - p.r.n.u.

- summary and conclusions

• Can be corrected by means of LUT, • To be non-visible : PRNU and FPN < photon shot noise (0.5 % for 40 ke-).

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

19

- introduction - principle of imagers

Architecture

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution

• CCD : parallel integration/reset • CMOS : rolling integration/reset

- S/N ratio - angular resp. - dark current - dyn. range - linearity - p.r.n.u. - architecture

- summary and conclusions

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Architecture

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution

• CCD : parallel integration/reset • CMOS : rolling integration/reset

- S/N ratio - angular resp. - dark current - dyn. range - linearity - p.r.n.u. - architecture

- summary and conclusions

• Can be solved by 1 T and 1 C extra in every pixel extra … • Costs sensitivity, charge capacity, noise, ...

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

20

Outline

- introduction - principle of imagers - CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp. - dark current - dyn. range - linearity - p.r.n.u. - architecture

- summary and conclusions

• • • •

Introduction Principle of CCD and CMOS imagers Imager requirements Overview CCD vs. CMOS : resolution, signal-to-noise ratio, angular response, dark current, dynamic range, linearity, pixel uniformity, architecture

• Summary and Conclusions  2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Summary (1)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp. - dark current - dyn. range - linearity - p.r.n.u. - architecture

- summary and conclusions

• Resolution : pixel size of CCD smallest • Noise : CMOS pixels suffer from reset noise • Quantum efficiency : CMOS and CCD can be similar • Angular response : limits set by micro-lenses • Dark current : CCD outstanding

- summary

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

21

Summary (2)

- introduction - principle of imagers - CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp. - dark current - dyn. range - linearity - p.r.n.u. - architecture

- summary and conclusions

• • • • •

Saturation level can be similar Dynamic range of CCD is higher Linearity of CCD is better Pixel uniformity of CCD is better Device architecture of CCD gives more flexibility

- summary

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

Conclusions (1)

- introduction - principle of imagers - CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp.

CCD or CMOS image sensor for consumer digital still photography ?

- dark current - dyn. range - linearity - p.r.n.u. - architecture

CCD ?

YES !

- summary and conclusions - summary - conclusions

CMOS ? YES, provided that noise and dark current problems can be solved !!!  2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

22

- introduction - principle of imagers

Conclusions (2)

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp. - dark current - dyn. range - linearity - p.r.n.u. - architecture

- summary and conclusions - summary - conclusions

• Main issue : S/N performance • Then benefit from : – low power of CMOS, – low driving voltages of CMOS, – on-chip functionality, – selective read-out mechanism, – cost advantage.

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

- introduction - principle of imagers

Important Remark

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp. - dark current - dyn. range - linearity - p.r.n.u. - architecture

- summary and conclusions - summary

This presentation was about digital still photography. For video applications the situation changes completely !!!

- conclusions - remark

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

23

- introduction - principle of imagers

References

- CCD - CMOS

- imager requirements - overview CCD vs. CMOS - resolution - S/N ratio - angular resp. - dark current - dyn. range - linearity - p.r.n.u. - architecture

- summary and conclusions - summary

• R. Baer : IEEE workshop on CCD & AIS, Karuizawa, 1999, • J. Bosiers et.al. : IEDM, San Francisco, 1998, • M. Kriss : ICPS, Antwerp, 1998, • A. Theuwissen : “Solid-state imaging with ChargeCoupled Devices”, 1995 • E. Fossum : “Camera-on-a-chip”, IEEE-ED, Oct., 1997.

- conclusions - remark - references

 2001 Albert J.P. Theuwissen, Philips Semiconductors Image Sensors

24