Predictors of dysplastic and neoplastic progression for Barrett s esophagus

        Predictors  of  dysplastic  and  neoplastic   progression  for  Barrett’s  esophagus   Saleh  Alnasser   Supervisors  :  Dr.Lorenzo  Ferri  ...
Author: Sharlene Hunter
7 downloads 0 Views 3MB Size
       

Predictors  of  dysplastic  and  neoplastic   progression  for  Barrett’s  esophagus   Saleh  Alnasser   Supervisors  :  Dr.Lorenzo  Ferri  ,  Dr.Eduardo  Franco   Experimental  surgery    McGill  University,  Montreal                                                                                                                                      Quebec,  Canada   June  2012         A  thesis  submitted  to  McGill  University  in  partial  fulfillment  of  the  requirements  of  the   degree  of  master  in  experimental  surgery.   Copyright  ©  Saleh  Alnasser  MD,  2012.  

1.    Table  of  Contents   1.      Table  of  Contents  ...................................................................................................  2   1.1      List  of  Tables:  ...................................................................................................................  4   1.2      List  of  Figures:  ..................................................................................................................  5  

2.      Abbreviations:  ........................................................................................................  6   3.      Abstract  ..................................................................................................................  7              3.1        Abstract  (English)  ...............................................................................................  7              3.2        Abstract  (French)  ................................................................................................  9   4.      Acknowledgements  ..............................................................................................  11   5.      Introduction:  ........................................................................................................  12   5.1.    History:  ..........................................................................................................................  12   5.2.      BE  Definition:  ................................................................................................................  14   5.3.  Epidemiology:  ............................................................................................................  16   5.4.    Pathogenesis:  ................................................................................................................  17   5.5.    Risk  Factors:  .............................................................................................................  18   5.5.1.      GERD:  ..........................................................................................................  18   5.5.2.        Demographic  factors:  ................................................................................  20   5.5.3.        Obesity:  .....................................................................................................  20   5.5.4.        Diet:  ...........................................................................................................  20   5.5.5.        Family  history:  ...........................................................................................  21   5.5.6.        Helicobacter  pylori  (H.  pylori):  ..................................................................  21   5.5.7.      NSAID  and  Aspirin:  .....................................................................................  21   5.5.8.        Smoking  and  alcohol:  ................................................................................  22   5.6.        Neoplastic  and  dysplastic  progression:  .......................................................................  22   5.7.      Surveillance:  ............................................................................................................  23   5.8.    Management:  ...........................................................................................................  27   5.8.1.              Surgery:  .............................................................................................  29   5.8.2.   Endoscopic  intervention:  ...............................................................  30  

6.            Rationale:  ..........................................................................................................  35   7.            Review  of  literature:  ..........................................................................................  36   8.            Objective:  ..........................................................................................................  38   9.            Hypothesis  .........................................................................................................  38   10.        Methods  ............................................................................................................  40    

2  

  10.1          Study  Population  .......................................................................................................  40   10.2          Inclusion  Criteria:  .......................................................................................................  40   10.3          Exclusion  Criteria:  ......................................................................................................  41   10.4          Study  Procedure:  .......................................................................................................  41   10.5          Ethics:  ........................................................................................................................  47   10.6          Statistical  analysis:  .....................................................................................................  48  

11.      Results:   ..............................................................................................................  50   11.1      Progression  from  NDB  to  any  dysplastic  or  neoplastic  grades:  ...................................  56   11.2        Progression  from  NDB  to  HGD/EAC:  ...........................................................................  64  

12.      Discussion:  .........................................................................................................  71   13.      Conclusion:  .........................................................................................................  78   14.      Appendices:  ...………………………………………………………..………………….…….……………….79                                       15.      References:   ........................................................................................................  81      

               

 

 

3  

1.1 List  of  Tables:    

Table  1,  Risk  factors  of  Barrett's  esophagus  development  ....................................................  19   Table  2,  Summary  of  the  surveillance  guidelines  for  BE  patients.  ......................................  25   Table  3:  Summary  of  the  relevant  clinical  studies  and  their  outcome  ..............................  39   Table  4,  Summary  of  the  total  and  missing  endoscopy  reports.  ..........................................  46   Table  5:  Total  patients  according  to  their  baseline,  eligibility  and  progression  status  .......................................................................................................................................................................  52   Table  6,  Demographic  characteristics  for  all  eligible  patients.  ............................................  53   Table  7,  Baseline  characteristics  of  patients  with  BE  based  on  their  baseline  status.  55   Table  8,  Follow  up  (in  months)  median  and  mean  for  the  patients  with  NDB  baseline  .......................................................................................................................................................................  56   Table  9,  Dysplastic  and  neoplastic  progression  rate  in  patients  with  NDB  baseline   according  to  the  demographic  and  endoscopic  variables  ......................................................  58   Table  10,  Analysis  of  the  potential  risk  factors  predicting  progression  from            NDB  to   dysplastic  or  neoplastic  grades  (Cox  regression)  .......................................................................  62   Table  12,  Analysis  of  potential  risk  factors  for  predicting  progression  From  NDB  to   dysplastic  or  neoplastic  grades  (GEE)  .............................................................................................  63   Table  13,  HGD/EAC  progression  rate  in  patients  with  NDB  baseline  according  to  the   demographic  and  endoscopic  variables  ........................................................................................  65   Table  14,  Analysis  of  potential  risk  factors  for  predicting  progression  from  NDB  to   HGD/EAC    (Cox  regression)  .................................................................................................................  69   Table  15,  Analysis  of  the  potential  factors  of  predicting  progression  from  NDB  to   HGD/EAC  (Cox  regression)  ..................................................................................................................  70   Table  16,  Analysis  of  the  potential  factors  predicting  the  progression  form  NDB  to   HGD/EAC  (GEE)  ........................................................................................................................................  70        

 

4  

1.2      List  of  Figures:   Figure  1,  Neoplastic  progression  of  Barrett's  esophagus  ...............................................................  16   Figure  2,  Examples  of  patient  treatment  timelines  to  elaborate  the  presentation  of  BE   grade  at  the  baseline.  ...................................................................................................................................  42   Figure  3,  Candidate  Independent  variables  for  this  study.  ............................................................  44   Figure  4,  Flow  chart  for  the  total  number  of  patients  and  the  process  of  inclusion  ……….51     Figure  5,  Box  plot  shows  the  median  age,  interquartile  range  for  all  3  groups.  ...................  53   Figure  6,  Cumulative  incidence  of  progression  to  dysplasia  or  cancer  by  gender……………59   Figure  7,  Cumulative  incidence  of  dysplastic  or  neoplastic  progression  by  age.  ...................  59   Figure  8,  Cumulative  incidence  of  dysplastic  or  neoplastic  grades  by  BE  length.  .................  60   Figure  9,  Cumulative  incidence  of  HGD/EAC  by  age.  ........................................................................  66   Figure  10,  cumulative  incidence  of  HGD/EAC  by  gender.  ...............................................................  66   Figure  11,  Cumulative  incidence  of  HGD/EAC  by  presence  of  mucosal  irregularities.  ........  67   Figure  12,  Cumulative  incidence  of  HGD/EAC  by  presence  of  ulcer.  ..........................................  67        

         

 

5  

2.    Abbreviations:   ARS                    Acid  reducing  surgery                                                          PDT                      Photodynamic  therapy   APC                    Argon  plasma  coagulation                                          PPIs            Proton  pump  inhibitors   BE                          Barrett’s  esophagus                                                                PR              Progression  rate   CBE                    Complete  Barrett’s  excision                                      RFA            Radiofrequency  ablation         CI                            Confidence  interval                                                                  RCT            Randomized  control  trial                                                           COX2                Cyclooxygenase  2                                                                        SIM            Specialized  intestinal  epithelium     EAC                      Esophageal  adenocarcinoma                                SSBE          Short  segment  Barrett’s  esophagus   EMR                    Endoscopic  mucosal  resection                            U.K.                  United  kingdom                                                                         GEE                      Generalized  estimation  equation     GERD                Gastroesophageal  reflux  disease   IND                        Indefinite  for  dysplasia                                                                                         HGD                  High  grade  dysplasia     HR                          Hazard  ratio   HH                          Hiatus  hernia     H.Pylori        Helicobacter  pylori     LGD                      Low  grade  dysplasia                                                                                               LSBE                    Long  segment  Barrett’s  esophagus   MUHC              McGill  University  Health  Center   NDBE                Non-­‐dysplastic  Barrett’s  esophagus                                 NSAID              Non  steroidal  antinflammatory  drug             OR                          Odds  ratio        

 

6  

3.    Abstract    

3.1        Abstract  (English)              3.1.1      Introduction:     Barrett’s   esophagus   (BE)   is   a   premalignant   condition   that   may   progress   through   a   stepwise   process   to   esophageal   adenocarcinoma   (EAC).   It   is   unknown   why   some   BE   patients  progress  to  EAC  rapidly  while  others  do  so  more  slowly,  or  not  at  all.  The  aim  of   this   study   is   to   identify   the   demographic   and   endoscopic   factors   that   can   be   used   as   predictors   of   dysplastic   and   neoplastic   progression   in   BE   patients,   and   thereby   be   used   to   stratify   BE   patients   into   different   surveillance   protocols   according   to   the   risk   of   neoplastic   progression.                3.1.2        Method:     All   BE   patients   at   McGill   University   Health   Center   between   January   2000   and   December  2010  were  identified  from  a  pathology  database.  1054  patients  with  intestinal   metaplasia  on  esophageal  biopsies  were  identified.    Only  those  with  endoscopic  findings   of   columnar   lined   mucosa   were   included   in   this   study,   (N=518).   Data   for   demographic   variables   (e.g.,   age   and   gender)   and   endoscopic   variables   (presence   of   hiatus   hernia,   esophagitis,   ulcers,   mucosal   irregularities   and   strictures)   were   collected.   Neoplastic   and   dysplastic   progression   was   examined   by   time   to   event   analysis.   Cox   proportional   hazard   regression   modeling   and   Generalized   Estimating   Equations   (GEE)   methods   were   used   to   identify  the  variables  that  are  most  predictive  of  neoplastic  progression.  

 

7  

                     3.1.3            Result:     From   a   non-­‐dysplastic   BE   (NDB)   at   baseline   state,   35(6.7%)   patients   progressed   to   dysplastic  or  neoplastic  grades  and  10(1.9%)  patients  progressed  to  high-­‐grade  dysplasia   (HGD)  or  EAC.  BE  length  (HR=1.2,  95%CI=1.1-­‐1.3)  and  advanced  age  (HR=3.5,  95%CI=1.7-­‐ 7.4)   were   independent   predictors   of   progression   from   NDB   to   dysplastic   or   neoplastic   grades.   However,   mucosal   irregularities   (HR=8.6,   95%CI=2.4-­‐30.4)   and   advanced   age   (HR=5.1,   95%CI=1.7-­‐16.6)   were   the   independent   predictors   of   progression   from   NDB   to   HGD/EAC.                        3.1.4          Conclusion:     Advanced   age,   a   long   BE   segment   and   presence   of   mucosal   irregularities   are   associated   with   increased   risk   of   dysplastic   and   neoplastic   progression   in   BE   patients.   In   addition   to   the   presence   of   dysplasia,   these   factors   may   help   to   stratify   BE   patients   according  to  their  risk  of  neoplastic  progression  and  therefore  can  be  used  to  individualize   BE  surveillance.      

     

 

 

8  

3.2        Abstract  (French)                    3.2.1        Introduction:                        L'oesophage   de   Barrett   (OB)   est   un   état   pré-­‐cancéreux   qui   peut   mener   à   l'adénocarcinome  invasif  (ACI)  de  l'oesophage.  Les  causes  de  la  progression  chez  certains   patients  ayant  un  OB  à  l'ACI  demeurent  inconnues.  Le  but  de  cette  étude  est  d'identifier   les   facteurs   démographiques   et   endoscopiques   comme   prédicteurs   de   la   progression   dysplasique   et   néoplasique   chez   le   patient   atteint   de   l'OB   et   ainsi   permettre   la   stratification   de   ceux-­‐ci   dans   différents   protocoles   de   surveillance   selon   le   risque   de   la   progression  néoplasique.        3.2.2        Méthodes                      Tous   les   patients   atteints   de   l'OB   au   centre   hospitalier   du   centre   universitaire   de   santé   McGill   entre   janvier   2000   et   décembre   2010   ont   été   revus   à   partir   d'une   base   de   données   en   pathologie.   Les   patients   présentant   une   métaplasie   intestinale   dans   les   biopsies  oesophagiennes  ont  été  identifiés.  Seuls  ceux  ayant  un  épithélium  métaplasique   cynlindrique   confirmé   à   la   pathologie   ont   été   inclus.   Les   données   suivantes   ont   été   enregistrées  :   les   variables   démographiques   (l'âge   et   le   sexe)   ainsi   que   les   variables   endoscopiques  (présence  de  hernie  hiatus,  esophagites,  ulcères,  irrégularités  au  niveau  de   l'épithélium   et   sténoses).   La   progression   dysplasique   et   néoplasique   a   été   examinée   par   une   analyse   au   temps   de   l'inclusion   à   l'évènement.   La   régression   de   Cox   et   la   méthode   GEE   (Generalized   Estimating   Equations)   ont   été   utilisées   pour   identifier   les   variables   prédisant  la  progression  néoplasique.  

 

9  

         3.2.3          Résultats:                      À   partir   de   1054   patients   atteints   de   l'OB   dont   518   présentant   une   métaplasie   intestinale   à   la   biopsie   et   ne   présentant   aucune   dysplasie   (OBND)   à   l'entrée   de   l'étude,   35   (6.7%)   d'entre   eux   ont   progressé   à   un   grade   de   dysplasie   ou   de   néoplasie   et   10   (1.9%)   d'entre  eux  ont  progressé  à  une  dysplasie  de  haut  grade  (DHG)  ou  à  un  ACI.  Un  OB  long   (HR=1.2,   95%IC=1.1-­‐1.3)   et   l'âge   (HR=3.5,   95%IC=1.7-­‐7.4)   sont   des   prédicteurs   de   la   progression   d'un   OBND   à   un   grade   de   dysplasie.   Cependant,   une   irrégularité   de   l'épithélium   (HR=8.6,   95%CI=2.4-­‐30.4)   ainsi   que   l'âge   (HR=5.1,   95%CI=1.7-­‐16.6)   sont   des   prédicteurs  de  la  progression  d'un  état  OBND  à  une  DHG  ou  à  l'ACI.            3.2.4            Conclusion                      L'âge,   un   long   segment   de   OB   et   la   présence   d'irrégularités   au   niveau   de   l'épithélium   ont  démontré  un  risque  accru  de  dysplasie  et  de  progression  néoplasique  chez  les  patients   atteints   de   l'OB.   En   plus   de   la   présence   de   dysplasies,   ces   facteurs   peuvent   aider   à   stratifier   les   patients   selon   leur   risque   de   progression   néoplasique   et   peuvent   donc   être   utilisés  pour  individualiser  la  surveillance  de  l'OB.  

       

 

10  

4.    Acknowledgements                      First   of   all,   it   is   a   pleasure   to   thank   those   who   made   this   thesis   possible.   I   am   heartily  thankful  to  my  supervisor,  Dr.  Lorenzo  Ferri,  whose  encouragement,  guidance  and   support  from  the  initial  to  the  final  level  enabled  me  to  develop  an  understanding  of  the   subject.  I  also  gratefully  acknowledge  Dr.  Eduardo  Franco  for  his  advice,  supervision,  and   crucial  contribution,  which  made  him  a  backbone  of  this  research  and  so  to  this  thesis.  My   special   thanks   go   to   Dr.   Agnihotram   Ramana-­‐kumar   for   his   extra   care   on   the   statistical   analysis  of  data  and  organization  of  the  results.  I  also  want  to  thank  Ms.  Myriam  Martel   for   her   great   work   on   the   data   entry,   translation   and   her   work   to   get   the   IRB   approval.   To   Dr.  Serge  Mayrand,  thank  you  for  your  great  help  in  assessment  of  objectives.                      Where   would   I   be   without   my   family?   My   mom   and   dad   deserve   a   special   mention   for   their   inseparable   support   and   prayers.   Words   fail   me   to   express   my   appreciation   to   my   wife   Lujain   whose   dedication,   love   and   persistent   confidence   in   me,   has   taken   the   load   off   my   shoulders.   I   owe   her   for   unselfishly   letting   her   intelligence,   passions,  and  ambitions  collide  with  mine,  and  for  her  editorial  work  on  the  thesis.                                  Finally,  many  thanks  to  the  heartland  of  science,  McGill  University,  which  paved   the   way   for   acquiring   knowledge   and   removes   the   obstacles   so   that   students   can   make   valuable  contributions  to  the  community  and  refine  their  skills.        

 

11  

5.      Introduction:                        Barrett’s   esophagus   (BE)   is   a   premalignant   condition   that   may   lead   to   the   development  of  esophageal  adenocarcinoma  (EAC).  EAC  develops  in  a  multistep  process   from  non-­‐dysplastic  BE  (NDB)  to  low-­‐grade  dysplasia  (LGD),  then  to  high-­‐grade  dysplasia   (HGD)  that  eventually  may  progresses  to  invasive  adenocarcinoma.  The  incidence  of  this   malignancy   has   increased   dramatically   during   the   past   3   decades,   with   a   poor   prognosis   overall   and   a   high   mortality.   Because   of   this   malignant   potential   in   BE,   periodic   surveillance   via   endoscopic   biopsies   is   recommended   to   detect   the   cancer   at   an   early   stage,  suitable  for  curable  treatment.  In  the  last  few  years,  a  revolution  in  the  BE  field  has   led  to  the  development  of  new  detection  and  ablative  endoscopic  techniques  in  order  to   diagnose  and  treat  this  condition  and  reduce  the  mortality  rate  from  EAC.     5.1.    History:   More   than   200   years   ago,   Schmidt   described   the   presence   of   ectopic   columnar   mucosa   in   the   distal   esophagus  

(1)  

. However,   the   current   concept   of   the   columnar  

epithelium   goes   back   to   1906,   when   the   pathologist   Wilder   Tileston   noticed   several   patients  with  esophageal  ulcers  in  which  the  surrounding  mucous  membrane  resembled   that   in   the   stomach   (2).   There   were   many   other   early   reports   describing   the   presence   of   columnar   epithelium   in   the   esophagus,   although   few   reports   tried   to   establish   its   pathological  significance  (3).   Esophageal   columnar   epithelium   got   more   attention   in   1950,   when   Norman   Barrett   published   his   first   report   about   the   esophageal   columnar   epithelium   (4).   He  

 

12  

hypothesized   that   the   presence   of   the   columnar   epithelium   in   the   distal   esophagus   was   due  to  congenital  shortening  of  the  esophagus  with  upward  extension  of  the  stomach.    In   1953,   Allison   and   Johnstone   disagreed   with   Barrett’s   contention   about   the   congenital   esophageal  shortening.  They  described  a  case  series  of  reflux  esophagitis  and  concomitant   “distal   esophagus   lined   with   gastric   mucosa”(5).   They   noted   that   the   columnar-­‐lined   organ   lacked   a   peritoneal   covering,   contained   few   islands   of   squamous   epithelium   and   had   submucosal  glands  and  a  muscularis  propria.  Initially,  Barrett  argued  against  this  concept   but   in   1957,   he   eventually   accepted   Allison   and   Johnstone’s   arguments,   and   suggested   that  the  condition  be  called  “lower  esophagus  lined  by  columnar  epithelium”(6).   For   the   next   2   decades,   the   histological   features   of   the   esophageal   columnar   epithelium   varied   and   remained   a   controversial   issue.   In   1976,   Paull   et   al   described   the   histologic   spectrum   of   BE   (7).   This   spectrum   includes   one   or   a   combination   of   3   types   of   columnar   epithelium—a   gastric   fundic-­‐type,   a   junctional   type   and   a   distinctive   type   of   intestinal  metaplasia  that  the  investigators  called  "specialized  intestinal  metaplasia"  (SIM).   Fundic  and  junctional  epithelial  types  are  very  similar  to  the  columnar  epithelia  normally   found  in  the  stomach.  However,  SIM  with  its  prominent  goblet  cells  can  be  distinguished   from  normal  gastric  mucosa.                      By  the  1970’s,  the  association  between  gastroesophageal  reflux  disease  (GERD)  and   BE  (8,9)  as  well  as  that  between  EAC  and  BE  were  established  (10-­‐12).  By  the  late  1980s,  it   was  clear  that  SIM  was  the  columnar  epithelial  subtype  that  had  the  greatest  potential   to  develop  dysplasia  and  EAC  (13,14).    

 

13  

5.2.      BE  Definition:   The   American   Gastroenterology   Association   defines   BE   as   a   change   in   the   distal   esophageal   epithelium   of   any   length   that   can   be   recognized   as   columnar-­‐type   mucosa   with   endoscopy   and   confirmed   to   have   intestinal   metaplasia   by   biopsy   (15).   The   concept   behind  this  definition  lies  in  that  a  majority  of  EAC  developed  in  a  BE  mucosa  exhibiting     intestinal   metaplasia   (11,16-­‐19).   This   definition   has   also   been   proposed   by   other   medical   societies  including  the  French  Society  of  Digestive  Endoscopy  and  the  German  Society  of   Pathology   in   which   the   histological   identification   of   intestinal   metaplasia   is   mandatory   for   a  diagnosis  of  BE  in  addition  to  endoscopic  evidence  of  columnar  lined  mucosa  (20).                                The   diagnosis   of   BE   by   this   definition   is   achieved   in   patients   who   have   endoscopic   and   histological   Barrett’s   findings.   However,   histologic   diagnosis   can   sometimes  be  difficult  when  the  biopsies  are  taken  from  the  gastroesophageal  junction.   In   this   situation,   the   differential   diagnosis   between   short-­‐segment   BE   and   intestinal   metaplasia   of   the   cardia   has   to   be   considered.   This   differentiation   has   serious   implications  because  intestinal  metaplasia  in  BE  is  a  precancerous  condition  and  requires   regular   endoscopic   follow-­‐up   examinations,   whereas   no   follow-­‐up   is   indicated   in   intestinal  metaplasia  of  the  cardia,  whose  malignant  potential  is  considered  to  be  low  (21-­‐ 22)

.   To   avoid   overdiagnosis   of   BE,   its   presence   is   considered   to   be   established   only   if  

endoscopic  examination  reveals  a  displacement  of  the  squamocolumnar  junction  that  is   proximal   to   the   gastroesophageal   junction   and   if   SIM   is   detected   by   histological   examination  (22-­‐23).   On   the   other   hand,   the   British   society   of   Gastroenterology   (24)   and   the   Japanese    

 

14  

Esophageal   Society   (25)  do   not   consider   SIM   as   a   prerequisite   in   their   definition   of   BE.   They   consider   it   as   less   important   for   a   diagnosis   of   BE   than   the   presence   of   a   proper   esophageal   gland,   squamous   island,   and/or   double   muscularis   mucosae  

(26-­‐27)

.   Their  

rationale  behind  excluding  SIM  as  criterion  is  based  on  the  need  for  extensive  biopsies  for   detection   or   exclusion   of   the   condition   plus   the   high   rate   of   sampling   errors.   By   using   this   definition,   there   will   be   an   increase   in   the   incidence   of   BE,   which   in   turn   will   mandate   increased   surveillance   of   these   patients   to   monitor   cancer   occurrence.   However,   recent   data   (28)   suggest   that   cardia-­‐type   epithelium   in   the   esophagus   may   predispose   also   to   malignancy  development  but  the  magnitude  of  this  risk  remains  unclear.   Cognizant   of   the   fact   that   some   cases   of   esophageal   cancer   arise   from   non-­‐   intestinalized   columnar   epithelium,   Kelty   et   al   (29),   tried   to   identify   the   risk   of   EAC   in   patients  who  had  a  columnar  epithelium  with  and  without  SIM.  They  found  that  there  was   no  statistical  difference  in  EAC  risk  between  the  two  groups.  Another  review  of  141  cases   by   Takubo   et  al  

(30)  

, demonstrated   that   more   than   70%   of   primary   esophageal  

adenocarcinomas  were  adjacent  to  cardiac  and/or  fundic  areas  rather  than  intestinal  type   mucosa  with  goblet  cells.  However,  the  validity  and  accuracy  of  these  observations  need   to  be  proven  by  larger  prospective  studies.   Because   there   are   insufficient   data   to   make   recommendations   regarding   management   of   patients   who   have   solely   cardia-­‐type   epithelium   in   the   esophagus,   the   American   Gastroenterology   Association   do   not   recommend   use   of   the   term   “Barrett's   esophagus”  for  those  patients  and  not  to  be  included  in  the  endoscopic  surveillance.      

15  

 

Figure   1,   Neoplastic   progression   of   Barrett's   esophagus.   A.   Salmon   colored   tongues   represent   Barrett's   epithelium   in   endoscopy.   B.   Progression   of   Barrett’s  epithelium  to  EAC  for  the  same  patient  5  years  later.      

   5.3.  Epidemiology:   Esophageal  cancer  is  the  eighth  most  common  cancer  and  the  sixth  leading  cause   of   cancer   death   worldwide   (31-­‐32).   Its   overall   incidence   rates   vary   greatly   throughout   the   world.  In  North  America,  the  epidemiology  of  esophageal  cancer  has  changed  dramatically   over   the   past   3   decades.   In   the   1970s,   most   esophageal   cancers   were   of   squamous   cell   type.  Since  then,  there  has  been  a  dramatic  increase  in  the  incidence  of  EAC   (33)  making  it   the   fastest   rising   incidence   of   a   solid   cancer   in   the   Western   world   (34).   However,   most   cases   of   EAC   arise   on   a   background   of   BE.   The   reported   prevalence   of   BE   varies   considerably.   There   are   numerous   studies   that   analyzed   the   prevalence   of   BE   demonstrating   a   wide   range   of   results.   In   a   general   population,   the   prevalence   of   BE   is   estimated   to   be   between   1.6   and   6.8%   (35).   Many   studies   from   different   populations   around  the  world  have  shown  an  increase  in  the  diagnosis  of  BE  during  recent  decades  (36-­‐  

16  

38)

.  This  may  be  partially  due  to  more  access  to  esophageal  endoscopy  and  biopsy,  but  this  

does  not  appear  to  account  for  the  generalized  increase  in  this  condition.   BE   is   a   known   premalignant   condition   associated   with   the   greatest   risk   of   developing  EAC   (39).  This  risk  of  EAC  is  about  30  to  125  times  higher  for  patients  with  BE   than   for   those   without   BE.   EAC   has   been   estimated   to   develop   in   about   0.5%–0.6%   of   patients  with  BE  annually  (40-­‐45).  The  risk  of  EAC  development  will  be  significantly  higher  for   those  who  have  dysplasia.  However,  esophageal  adenocarcinoma  is  an  uncommon  cause   of  death  in  people  with  BE  (46-­‐49)  as  most  patients  with  BE  die  from  causes  other  than  EAC.          5.4.    Pathogenesis:   In   general,   the   pathogenesis   of   BE   is   poorly   understood.   It   is   well   known   that   BE   develops   through   a   process   of   metaplastic   change   from   squamous   to   columnar   epithelium.   BE   development   requires   an   initial   esophageal   mucosal   injury   and   the   presence   of   a   pathologic   environment,   allowing   for   abnormal   healing   (23),   which   makes   gastroesophageal   reflux   the   strongest   risk   factor   for   BE   development.   This   metaplastic   columnar   epithelium   occurs   in   response   to   oxidative   damage   and   inflammation   of   the   distal   esophageal   epithelial   mucosa   from   contact   not   only   with   the   acidic   gastric   contents   but  also  with  bile.  The  acids  and  pepsin  enzymes  from  the  stomach  weaken  cell  junctions   and   widen   the   intercellular   gaps   that   will   allow   the   acid   to   access   the   nerve   endings.   Because   of   the   low   pH   environment,   bile   will   be   deposited   and   this   will   lead   to   cell   disruption   and   damage   (50).   As   a   result   of   this   damage,   one   theory   suggests   that   the   intestinal   metaplasia   develops   as   part   of   the   protective   mechanism   against   chronic   acid   reflux   (51).  Another   theory   suggests   abnormal  differentiation  of  pluripotential  cells   in   the  

 

17  

basal   esophageal   epithelium   (52).   This   abnormal   differentiation   results   from   exposure   of   these   cells   to   the   refluxed   gastric   juice   after   damage   to   the   squamous   epithelium   (53-­‐55).   Recent  studies  suggest  that,  these  pluripotential  stem  cells  may  contribute  to  esophageal   lesion  regeneration  and  the  initiation  of  metaplasia  (56).     5.5.    Risk  Factors:                      Different  risk  factors  are  associated  with  BE,  some  of  which  are  very  strong  like   GERD  while  others  are  controversial  and  require  more  clinical  studies  to  confirm  their   association.  Here  will  mention  the  most  important  risk  factors.   5.5.1.      GERD:   GERD   is   considered   the   strongest   and   the   best   understood   risk   factor   for   BE   development  (15,25).  Mechanisms  that  lead  to  BE  development  include  esophageal  mucosal   injury   from   acid   reflux   that   acts   as   the   trigger   for   the   development   of   Barrett’s   esophagus   (57-­‐58)

.   The   presence   of   columnar   metaplasia   proximal   to   the   gastric   conduit   in  

esophagectomy   specimens   has   confirmed   the   relationship   between   GERD   and   columnar   metaplasia  

(59)

.   Clinically,   BE   is   associated   with   long-­‐standing,   symptomatic  

gastroesophageal  reflux  disease  (GERD).  Studies  show  that  there  is  a  direct  proportional   relationship  between  the  duration,  severity  and  frequency  of  GERD  and  the  development   of   BE   and   EAC   (60).   For   example,   more   frequent   symptoms   of   GERD   and   reflux   episodes   lasting  longer  than  5  minutes  are  associated  with  BE  (61).  

 

 

18  

Table  1,  Risk  factors  of  Barrett's  esophagus  development   Risk  Factor  

Higher  risk  

Lower  risk  

Older  age  

Younger  age  

Gender  

Male  

Female  

Race  

White  

Others  

GERD  

Long  duration  

Less  duration  

Nature  of  reflux  

Bile  and  acid  reflux  

Only  Acid  reflux  

Overweight  and  obese  

Normal  weight  

Age  

Weight   Diet  

 Less  vegetable  and  fruit  

         More  vegetable  and  fruit  

Smoking  

Smoking  

No  smoking  

H.  pylori  

Absent  

Present  

                               The   nature   of   the   reflux   content   also   is   a   relevant   factor   in   BE   development   as   patients   who   have   both   gastric   acid   and   bile   reflux   have   been   found   to   have   a   higher   prevalence   of   BE   than   patients   who   have   only   gastric   acid   reflux   (62).   This   has   been   confirmed   in   an   animal   model   where   epithelial   damage   will   regenerate   to   columnar   epithelium  only  in  the  presence  of  both  bile  and  gastric  reflux  (63).    

 

19  

5.5.2.        Demographic  factors:   The   epidemiological   data   show   that   the   BE   exhibits   a   2-­‐3:1   male   predominance   (55)   with   the   typical   age   of   diagnosis   in   the   50–59   years   age   group.   There   is   also   a   higher   prevalence  of  BE  in  whites  compared  to    blacks,  Asians  or  Hispanics  (56).   5.5.3.        Obesity:   Obesity   is   an   independent   factor   for   BE   development   (64).   Obese   patients   have   frequent   GERD   symptoms   due   to   an   increase   in   an   intra-­‐abdominal   pressure   that   will   cause   transient   lower   esophageal   sphincter   relaxation   resulting   in   more   reflux   (65).   Central   obesity   has   been   strongly   associated   with   GERD   and   BE   in   several   studies   (66-­‐68).   Recent   studies  have  emphasized  the  importance  of  central  obesity  pattern  rather  than  body  mass   index   in   the   evolution   of   the   BE   (67,68).     High   levels   of   several   adipocytokines   including   leptin  that  are  associated  with  central  obesity  have  been  proposed  as  contributors  to  BE   pathogenesis  and  its  progression  (69-­‐70).   5.5.4.        Diet:   Vegetable  and  fruit,  together  with  vitamin  C,  lower  the  risk  of  BE  and  EAC  due  to   their  antioxidant  effects  (71-­‐72).  Ingestion  of  leafy  and  cruciferous  vegetable,  carbohydrates,   and   fiber   display   an   inverse   relationship   with   BE   and   EAC.   Patients   at   higher   risk   for   BE   may  benefit  from  reducing  their  intake  of  red  meat  and  processed  food  items  (73),  although   some  studies  showed  no  relationship  between  this  and  the  incidence  of  BE  (74,75).   Iron  may  be  implicated  in  BE  pathogenesis.    Experimental  studies  showed  that  the   rate   of   BE   and   EAC   in   rats   after   surgical   induction   of   reflux   increased   in   those   who  

 

20  

received   iron   supplements   (76).   However,   a   reduced   iron   level   in   premenopausal   women   with  BE  might  have  a  role  in  delaying  the  onset  of  BE  and  EAC  (77).   Nitric   oxide   (NO)   has   been   shown   to   play   a   role   in   the   pathophysiology   of   BE.   Nitrates   in   the   saliva   and   diet   will   be   reduced   to   nitrites   by   oral   bacteria   and   these   will   become   an   oxidative   compounds   with   mutagenic   potential   at   the   gastroesophageal   junction   in   an   acidic   environment  

(78-­‐79)

.   This   makes   NO   a   potential   risk   factor   for  

metaplasia  development  and  carcinogenesis  initiation  (80).   5.5.5.        Family  history:   The   development   of   BE   among   first   degree   relatives   of   patients   with   BE,   with   or   without   GERD   symptoms,   has   been   suggested   (81).   Some   epidemiologic   data   show   that   there   is   a   familial   contribution   to   BE   (82,83).   However,   it   is   not   known   whether   BE   is   a   hereditary  condition,  and  no  gene  has  been  implicated  to  date  (35,84).   5.5.6.        Helicobacter  pylori  (H.  pylori):   H.  pylori    exerts  a  protective  role  in  BE  by  reducing  acid  production  secondary  to   gastritis  that  creates  acholrohydria.  An  inverse  association  between  H.  pylori  infection  and   the   presence   of   BE   has   been   confirmed   in   many   studies   (85-­‐86).   A   recent   meta-­‐analysis   supports  this  association  with  a  reported  risk  reduction  of  BE  with  H.  pylori  infection  (87).   5.5.7.      Non-­‐steroidal  anti-­‐inflammatory  drugs  and  Aspirin:   Non-­‐steroidal   anti-­‐inflammatory   drugs   (NSAIDs)   and   aspirin   are   considered   as   protective   factors.   BE   epithelium   increases     the   expression   of   cyclooxygenase   2   (COX   2)  

 

21  

and   this  expression  increases   with   higher   degrees   of   dysplasia   (88).  Although   unconfirmed,   some  feel  that  inhibition  of  COX  2  by  aspirin  or  NSAIDs  can  slow  the  progression  of  BE.   5.5.8.        Smoking  and  alcohol:                            Some  studies  (89-­‐90)  show  an  increase  in  the  risk  of  BE  and  EAC  with  smoking,  but  no   relation   has   been   proven   to   the   quantity   or   duration   of   smoking.   However,   it   has   been   suggested   that   there   is   a   synergistic   relationship   between   smoking   and   reflux   that   will   increase   the   risk   of   BE   development   (90).   The   relationship   between   alcohol   consumption   and  BE  is  not  well  established  to  date.     5.6.        Neoplastic  and  dysplastic  progression:     Malignant   transformation   from   BE   to   EAC   is   believed   to   occur   through   the   histopathologic  stages  classified  as  no  dysplasia,  LGD  and  HGD   (91).  The  accurate  annual   incidence   of   EAC,   HGD   or   LGD   in   BE   patients   remains   unclear,   as   studies   have   shown   considerable   variation   in   the   incidence   rates.   These   studies   were   based   primarily   on   patients   referred   to   tertiary   centers,   whose   cancer   risk   may   exceed   that   for   patients   managed   by   non-­‐referral   centers.   Moreover,   published   data   predominantly   come   from   small   retrospective   cohort   studies   with   relatively   short   follow-­‐up,   showing   higher   cancer   incidence  than  may  be  observed  in  larger  surveillance  studies.  Consequently,  evidence  of   publication  bias  in  these  surveillance  studies  has  been  reported.   The  estimated  annual  risk  of  EAC  development  in  BE  patients  is  about  0.5%–1.0%   of  patients  with  BE   (40-­‐43).  Meta-­‐analyses  estimate  the  incidence  of  EAC  among  individuals  

 

22  

with  BE  to  be  6–7  per  1000  person-­‐years   (44-­‐45).  A  systematic  review  by  Skiemma  et  al   (92)   showed  that  the  annual  incidence  of  EAC  in  BE  patients  is  about  0.63  %.  51  studies  have   been   included   in   this   systematic   review   where   no   evidence   of   publication   bias   was   found.   However,   a   recent   population   based   study   by   Hvid-­‐Jensen   et   al   (93),   showed   that   the   annual  risk  of  EAC  in  BE  patients  is  about  0.12%.      Dysplasia   is   the   first   morphologically   recognizable   lesion   in   the   neoplastic   progression   of   BE   to   adenocarcinoma,   and   it   is   the   most   common   basis   of   risk   stratification   in   affected   patients   (94).   This   makes   the   risk   of   EAC   development   in   BE   patients  higher  for  those  who  have  dysplasia.  However,  the  estimated  risk  of  progression   to   EA   among   patients   with   dysplasia   varies   widely   among   different   studies   (95-­‐98).   In   patients  with  low-­‐grade  dysplasia,  incidence  rates  for  esophageal  adenocarcinoma  range   from  0.6%  to  1.6%  per  year  (99-­‐100).  In  contrast,  the  risk  of  the  development  of  EAC  is  high   among  patients  with  HGD  with  an  estimated  incidence  of  6.6%  per  year  in  a  recent  meta-­‐ analysis  (101).  

 5.7.      Surveillance:                                The  key  to  the  prevention  and  early  treatment  of  EAC  in  Barrett’s  patients  is  the   detection   and   eradication   of   cancer   or   HGD   at   an   early   stage.   Identification   of   BE   patients   with  dysplasia  or  early  stages  of  cancer  will  reduce  the  mortality  associated  with  EAC   (102-­‐ 104)

.  If  cancer  is  detected  at  an  early  stage,  the  5-­‐year  survival  rate  is  83%-­‐90%,  compared  

with  the  10%-­‐20%  5-­‐year  survival  rate  at  more  advanced  stages.                      The   goal   of   endoscopic   surveillance   of   patients   with   BE   is   the   diagnosis   of   HGD   or    

23  

EAC   at   an   earlier   curable   stage   with   a   lower   rate   of   lymph   node   metastasis.   There   is   some   evidence  that  EAC  is  detected  at  an  earlier  stage  in  patients  with  BE  who  are  undergoing   surveillance  (105),  and  this  improves  survival  rates  in  general  (106-­‐107).  It  is  generally  accepted   that  patients  with  BE  should  be  enrolled  in  a  surveillance  program  (15).  Patients  should  also   be   started   on   proton   pump   inhibitors   (PPIs)   at   initial   endoscopy   to   treat   GERD   and   the   associated   esophagitis   in   order   to   improve   the   endoscopic   vision   of   Barrett’s   epithelium   and   to   reduce   the   inflammation   that   might   give   false-­‐positive   biopsy   results   for   dysplasia.   A   recent   guideline   from   the   American   College   of   Gastroenterology  

(15)

  suggests  

surveillance  endoscopic  biopsies  every  3  years  for  patients  with  NDB  when  2  endoscopic   surveillance   biopsies   within   a   year   confirm   absence   of   the   dysplasia.   Biopsy   protocols   should  include  4  quadrant  biopsies  every  2  cm  of  Barrett’s  mucosa.  However,  absence  of   the  dysplasia  in  the  biopsy  does  not  completely  rule  out  the  presence  of  dysplasia  or  even   cancer.   The  presence  of  LGD  mandates  follow-­‐up  endoscopic  biopsies  in  6  months  to  rule   out   the   presence   of   HGD.   To   reduce   false   positive   biopsy   results,   an   expert   pathologist   should   confirm   pathologic   diagnosis   of   LGD.   If   only   LGD   is   found   then   endoscopic   biopsies   should   be   performed   every   year   until   no   dysplasia   is   noted   in   2   consecutive   years.   For   patients  with  HGD,  a  secondary  review  with  an  expert  in  esophageal  pathology  is  required   and   if   so,   endoscopic   biopsies   should   be   repeated   within   3   months.   HGD   is   generally   considered   as   a   threshold   to   either   surgical   or   endoscopic   intervention   or   extensive   surveillance.  However,  these  options  should  be  tailored  according  to  the  patient’s  overall   condition.  

 

24  

 

       Table  2,  Summary  of  the  surveillance  guidelines  for  BE  patients.   Dysplasia   No  dysplasia  

Intervention    Surveillance  endoscopic  biopsies  every  3  years.    When  2  biopsies  within  a  year  confirm  the  absence  of  dysplasia.  

LGD  

 Repeated  endoscopic  biopsies  within  6  months,  once  confirmed    Surveillance  every  year.During  yearly  follow  up  If  two  consecutive   endoscopic  biopsies  show  no  dysplasia,  surveillance  interval  can  be   shifted  to  the  standard  surveillance  program.  

HGD  

  Once  confirmed  by  an  expert  pathologist,  endoscopic   biopsies  need  to  be  repeated  in  3  months  and  should  be  read  by  a   second  pathologist.     If  confirmed,  endoscopic  or  surgical  intervention  vs.  extensive   surveillance.  

Invasive                                          E    arly       stage  (T1a)  can  be  treated  with  Endoscopic  mucosal   Carcinoma  

resection  (EMR)     (>T1a)  can  be  treated  with  minimal  invasive  or  open   esophagectomy  based  on  the  size  of  the  tumor  and  node  status  

  Endoscopic  surveillance  of  BE  patients  is  considered  as  a  very  low-­‐risk  procedure.   Upper   endoscopies   have   a   reported   morbidity   of   0.5%   and   mortality   of   0.05%   (108).   However,  challenges  of  the  endoscopic  surveillance  include  the  inconsistency   (109-­‐110)  and   the  reproducibility  of  the  diagnosis  of  Barrett’s  esophagus,  with  or  without  dysplasia   (111-­‐ 113)

 

  due   to   sampling   error,   plus   the   intra-­‐   and   inter-­‐observer   variations.   However,   these  

25  

considerations   bring   into   questioning   the   clinical   aspects   and   cost-­‐effectiveness   of   the   surveillance   program   for   patients   with   NDB   and   till   now   the   relative   benefits   remain   unproven  (114-­‐115).                            Some   observational   studies   on   endoscopic   surveillance   suggest   its   efficacy,   as   surveillance-­‐diagnosed   EAC   has   a   much   better   prognosis   compared   those   with   a   symptomatic   presentation   (15).   However,   some   patients   enrolled   in   the   surveillance   program   might   drop   out   of   it   (114)   or   die   from   causes   unrelated   to   EAC   (47,116).   These   studies   are   not   definitive   because   they   are   highly   susceptible   to   different   types   of   biases   that   can   inflate   the   benefits   of   surveillance.   A   randomized   trial   is   required   to   establish   the   efficacy   of   surveillance,   which   would   need   large   numbers   of   patients   and   a   long   follow-­‐up  time.  However,  the  results  of  such  a  study  are  unlikely  to  be  available  in  the   near  future.   Another  challenge  to  this  surveillance  program  is  the  degree  of  adherence  to  these   guidelines   by   clinicians,   which   has   been   described   in   the   literature   to   be   poor   (117).   An   endoscopic  surveillance  practice  at  one  institute  revealed  that  appropriate  four-­‐quadrant   biopsies   were   taken   in   only   23%   of   patients   with   BE   and   the   mean   interval   between   endoscopies  was  only  12  months,  indicating  an  increased  endoscopy  rates  per  patient  (118).   This  may  lead  to  a  waste  of  clinical  and  economic  resources,  as  the  benefits  of  surveillance   might   be   reduced   by   poor   adherence   to   the   surveillance   protocol   plus   the   cost   of   the   endoscopy  in  general.  In  addition,  the  quality  of  life  for  BE  patients  may  be  impaired  by   anxiety  concerning  the  possibility  of  cancer  and  the  discomfort  attributable  to  endoscopy.  

 

26  

 5.8.    Management:   In   general,   the   management   of   BE   is   guided   by   the   extent   of   SIM   and   grade   of   dysplasia   or   cancer,   if   present.   Any   BE   patients   without   evidence   of   dysplasia   or   cancer   should   follow   a   conservative   and   non-­‐invasive   management.   The   primary   goal   for   the   management  of  BE  is  prevention  of  the  gastroesophageal  reflux  that  may  reduce  the  risk   of  development  or  progression  to  dysplasia  or  cancer.  This  involves  symptom  control  and   endoscopic   surveillance   biopsies   to   exclude   progression.   Conservative   treatment   begins   with   dietary   and   lifestyle   modifications,   together   with   pharmacological   acid   suppression   therapy  in  symptomatic  patients  (119).   Lifestyle   modifications   are   usually   helpful   to   increase   esophageal   acid   clearance,   and   decrease   the   incidence   of   reflux   events.   Increase   in   the   body   mass   index   (BMI)   is   associated   with   an   increase   in   the   incidence   of   GERD  

(120)

.   Fatty   food,   caffeinated  

beverages,   chocolate   and   mint   may   also   increase   gastric   reflux   (121).   There   is   physiologic   evidence  that  exposure  to  tobacco,  alcohol,  chocolate  and  high-­‐fat  meals  decreases  lower   esophageal   sphincter   pressure.   Evidence   for   the   efficacy   of   dietary   modifications   in   controlling   reflux   symptoms   is   still   lacking   (122).   At   present,   there   is   no   definitive   proof   supporting  an  improvement  in  GERD  symptoms  after  alcohol  or  smoking  cessation  (122).                        Acid-­‐suppressing   medications   are   the   mainstay   treatment   for   reflux   symptoms.   Either   PPIs   or   histamine-­‐2   receptor   antagonists   (H2RAs)   can   be   used   to   decrease   gastric   acid  secretion.  However,  PPIs  provide  more  complete  esophagitis  healing  and  heartburn   relief   compared   to   H2RAs   and   this   occurs   nearly   twice   as   fast   (123).   The   risk   of   EAC   in   patients   with   GERD   not   taking   PPIs   is   two   to   four   times   higher   than   the   risk   of   EAC   in  

 

27  

patients  who  are  on  acid  suppression  therapy  (124-­‐125).   Data   on   PPIs   as   chemoprevention   agents   are   controversial.   Giving   high-­‐dose   PPIs   to  prevent  progression  of  Barrett  esophagus  to  dysplasia  and  cancer  is  a  common  practice   but   there   is   no   strong   evidence   to   support   this   (125).   However,   two   retrospective   studies   demonstrated   a   reduced   risk   of   dysplasia   when   patients   with   BE   used   PPIs   (125-­‐126).   In   a   double-­‐blind  randomized  control  trial  comparing  the  amount  of  BE  regression  in  patients   on   H2RAs   with   those   on   PPI   therapy,   a   decrease   in   surface   area   of   8%   was   seen   in   the   PPI   group   and   no   significant   change   was   seen   in   the   H2RAs   (127).   Also,   in   two   retrospective   observational   studies,   a   decrease   in   the   rate   of   progression   from   non-­‐dysplastic   BE   to   HGD/EAC  was  found  with  PPI  use  (124,128).   Several  epidemiologic  studies  have  found  aspirin  and  NSAID  are  associated  with  a   decreased  risk  of  progression  to  esophageal  carcinoma  (129-­‐132).  The  ongoing  AspECT  trial  in   the   U.K.   is   now   studying   the   combined   effect   of   PPIs   and   aspirin   in   preventing   the   progression   of   BE   to   EAC.   Treatment   with   a   cyclooxygenase   2   (COX   2)   inhibitor   has   also   been   shown   to   decrease   the   risk   of   progression   to   EAC   in   an   animal   model   of   Barrett’s   esophagus   (133).   Heath   et   al   (134)   conducted   a   multicenter,   prospective   trial   did   not   find   a   statistically   significant   difference   between   the   celecoxib   (COX   2   inhibitor)   and   the   placebo   groups.   However,   it   has   been   shown   that   50%   of   patients   with   symptoms   controlled   on   PPIs   and   up   to   70%   of   patients   who   do   not   respond   to   PPI   therapy   show   evidence   of   biliary   reflux   (135).   This   finding   has   led   some   to   propose   anti-­‐reflux   surgery   (ARS)   as   a   treatment   of   BE   as   it   serves   to   decrease   both   gastric   acid   and   bile   reflux,   a   benefit   that    

28  

cannot  be  achieved  by  medical  therapy.  In  a  retrospective  review  of  312  patients  following   laparoscopic  Nissen  fundoplication,  92%  reported  improvement  in  symptoms  and  70%  did   not   use   anti-­‐reflux   medications   at   a   median   follow-­‐up   of   11   years  

(139)

.   For   the  

effectiveness   of   ARS   in   controlling   the   reflux,   results   from   the   LOTUS   trial   (a   large   multicenter   randomized   European   study),   with   a   three-­‐year   follow-­‐up,   showed   that   the   esophageal   pH   was   better   controlled   in   patients   with   BE   who   underwent   anti-­‐reflux   surgery   compared   with   patients   treated   with   a   PPI   (140).   However,   the   symptoms   were   the   same  in  both  groups.  The  role  of  ARS  in  preventing  BE  progression  is  highly  controversial   and   there   is   significant   variance   in   the   literature.   A   case–control   study   showed   that   63.2%   of   patients   on   high-­‐dose   PPIs   had   regression   of   LGD,   whereas   93.8%   of   surgical   patients   were  found  to  have  regression  of  dysplasia  at  12  months  (141).  A  systematic  review  showed   that   ARS   was   superior   to   PPIs   at   preventing   cancer   development   (142),   but   when   only   prospective  studies  are  considered,  the  benefit  for  ARS  for  EAC  prevention  could  not  be   confirmed.  Additionally,  when  cancer  occurs  in  a  BE  patient  following  ARS,  it  is  more  likely   that  the  anti-­‐reflux  barrier  of  the  fundoplication  has  failed   (143).  However,  a  meta-­‐analysis   by   Li   et   al   showed   that   neither   pharmacologic   nor   surgical   anti-­‐reflux   interventions   achieved  complete  regression  of  BE,  nor  eliminated  the  risk  of  EAC  development  (144).   5.8.1.    Surgery:   In   Barrett’s   patients   with   HGD,   there   is   an   increased   risk   of   occult   malignancy,   which   makes   the   surgical   or   endoscopic   resection   the   traditional   standard   treatment   in   these  patients.  Several  studies  have  shown  the  presence  of  malignancy  in  approximately   35-­‐40%  of  resected  samples  in  HGD  patients  (145-­‐150).    

 

29  

Prior   to   the   recent   advent   of   endoscopic   therapies,   esophagectomy   was   the   only   modality   of   treatment   available   for   HGD   and   EAC.   However,   there   is   considerable   postsurgical  morbidity  and  mortality.  The  mortality  rate  associated  with  esophagectomy  is   inversely   related   to   the   number   of   esophagectomies   performed,   making   the   higher   volume  centers  attaining  lower  mortality  rate  (151).  It  has  been  suggested  that  there  should   be   at   least   20   esophagectomies   done   a   year   at   an   institution   in   order   to   decrease   operative  mortality  rates  to  5%  or  less  (152).   Esophagectomy   is   a   very   invasive   procedure   with   a   complication   rate   of   approximately  40-­‐50%  and  a  hospital  stay  of  10  to  14  days.  The  immediate  complications   include   pneumonia,   anastomotic   leak,   wound   infection,   arrhythmia   and   heart   failure.   Long-­‐term   complications   include   dysphagia   due   to   stricture   formation,   weight   loss,   gastroesophageal   reflux   and   dumping   syndrome,   which   may   impair   the   health-­‐related   quality  of  life  (153).   5.8.2.  Endoscopic  intervention:   Endoscopic   treatment   has   been   designed   as   an   alternative   to   surgical   resection   for   patients  with  high-­‐grade  dysplasia  or  early  stage  EAC  and  is  focused  on  localized  resection   or   ablation   of   the   existing   metaplastic   tissue   using   special   methods   and   techniques   that   eliminate   the   columnar   mucosa.   A   neosquamous   epithelial   layer   replaces   this   ablated   metaplastic   epithelium.   Multiple   ablative   modalities   are   now   used   in   clinical   practice,   including   argon   plasma   coagulation   (APC),   photodynamic   therapy   (PDT),   and   more   recently  radiofrequency  ablation  (RFA)  and  cryoablation.   The  low  risk  of  complications  and  availability  of  good  treatment  techniques  in  the  

 

30  

setting  of  low  rates  of  lymphatic  or  hematogenous  dissemination  have  made  endoscopic   therapy  for  BE  patients  with  HGD  and  early  EAC  a  very  practical  option.  One  of  the  major   concerns   of   ablative   modalities   is   the   absence   of   a   pathologic   specimen   for   histologic   examination.   Indeed,   there   is   a   possibility   of   progression   of   buried   Barrett’s   metaplasia   or   dysplasia  under  the  neosquamous  epithelial  layer,  as  has  been  described  in  the  literature   (154)

.   Multiple   techniques   have   been   developed   for   the   endoscopic   ablation   and  

treatment   of   BE.   These   techniques   might   be   used   either   alone   or   in   combination   with   other  ablative  techniques  in  treating  Barrett’s  patients  with  HGD  or  early  stage  EAC.   5.8.2.1.      Endoscopic  mucosal  resection  (EMR):    EMR   is   an   endoscopic   procedure   that   was   first   used   in   Japan   for   superficial   stomach   cancers.   Because   Barrett’s   dysplasia   and   early   cancer   is   present   in   more   flat   lesions,  EMR  has  been  applied  to  the  esophagus.  This  intervention  involves  an  excision  of   a   larger   and   deeper   specimen   of   Barrett’s   mucosa   than   is   afforded   by   standard   biopsy   forceps.   It   has   become   increasingly   important   in   recent   years   and   it   can   be   used   as   a   diagnostic   or   a   therapeutic   tool.   One   of   the   advantages   of   EMR   over   other   ablative   therapies  is  that  it  provides  tissue  specimens.  So,  resecting  a  large  suspicious  area  using   EMR   will   provide   more   tissue   for   the   pathological   analysis.   This   might   detect   a   focus   of   cancer   that   is   more   likely   to   be   missed   by   conventional   biopsies   as   the   depth   of   these   specimens  can  extend  down  to  the  middle  of  the  submucosa.   Another   advantage   of   EMR   is   its   potential   for   therapy.   This   is   usually   limited   to     HGD  and  early  stage  cancer  with  negligible  risk  of  lymph  node  metastases.  For  the  disease    

31  

confined   to   the   mucosa   with   negative   margins,   complete   resection   can   be   considered.   However,   those   with   submucosal   invasion   are   usually   referred   for   surgery   and   oncology   therapies.    Several  studies  have  demonstrated  that  EMR  is  safe  and  very  effective  for  the   treatment  of  superficial  lesions   (155-­‐157).  Numerous  case  series  which  have  been  published   on  using  EMR  for  endoscopic  therapy  of  HGD  and  superficial  cancer  showing  outstanding   results  

(158)

.   A   recent   study  

(159)  

has   now   provided   excellent   long-­‐term   results   for  

endoscopic  resection  in  100  consecutive  patients  with  low-­‐risk  mucosal  Barrett’s  cancer.   EMR   techniques   that   have   been   described   include   snare   resection   with   prior   submucosal  injection  to  elevate  the  mucosa  and  allow  easy  grasping  with  either  a  cap  or  a   ligation   device.   EMR   has   also   been   employed   as   a   method   to   remove   all   Barrett’s   mucosa   (complete   Barrett’s   excision   (CBE)).     However,   this   technique   is   not   more   effective   than   the   ablative   modalities   and   confers   a   higher   complication   rate   (160-­‐164).   The   complication   profile  of  EMR  includes  stricture  formation,  with  an  incidence  rate  that  approaches  50%,   bleeding   and   perforation.   Of   note,   most   esophageal   strictures   and   bleeding   are   amenable   to  endoscopic  treatment  (164-­‐167).   5.8.2.2

Photodynamic  therapy  (PDT):  

Photodynamic   therapy   involves   the   intravenous   administration   of   a   photosensitizer,   which   accumulates   in   the   target   mucosa   followed   by   activation   of   the   photosensitizer  that  is  achieved  by  endoscopically  applied  laser  directly  to  the  malignant   tumor.  This  results  in  free  radical  formation  leading  to  the  death  of  the  tumor  cells.   PDT   has   been   successfully   used   to   treat   early   neoplasia   in   BE   for   more   than   one   decade   (168-­‐169).  In  patients  with  HGD,  a  randomized  trial  of  PDT  with  PPI  versus  PPI  alone,    

32  

complete   ablation   of   HGD   in   77%   of   patients   in   the   phototherapy   plus   PPI   group   versus   39%  of  patients  in  the  PPI  only  group   (170).    More  importantly,  PDT  was  found  to  reduce   the   progression   of   Barrett’s   HGD   to   cancer   by   approximately   50%   compared   to   patients   treated  with  PPIs  alone.   The   high   stricture   rate,chest   pain,   progression   of   the   disease   despite   treatment   and   cutaneous   photosensitivity   plus   the   high   cost   are   the   major   drawbacks   associated   with  this  treatment  modality  (171-­‐172).  Accordingly,  this  technique  has  largely  been  replaced   by  other  modalities  including  RFA  and  cryotherapy.   5.8.2.3.  Radiofrequency  ablation  (RFA):   Radiofrequency   ablation   (RFA)   is   a   non-­‐invasive   technique   that   uses   thermal   energy  to  destroy  abnormal  cells.  This  is  a  newer  technique  in  which  a  cylindrical  balloon   with   circular   electrodes   is   inflated   so   the   electrodes   come   into   contact   with   mucosa   to   which  thermal  energy  is  applied.  Ablation  can  be  applied  to  the  whole  circumference  of   the   esophagus   (HALO-­‐360)   or   to   smaller   areas   using   a   focal   device   (HALO-­‐90).   Tissue   penetration  depth  of  the  RF  energy  is  about  0.5mm  (173),  which  has  been  demonstrated  as   sufficient   for   successful   ablation   of   esophageal   epithelium   with   no   injury   to   the   deeper   tissues.  What  make  this  technique  unique  are  the  precise  and  controlled  delivery  and  the   automated   delivery   of   a   preset   amount   of   standardized   radiofrequency   energy.   Furthermore,  RFA  is  simple  and  less  time-­‐consuming  than  other  treatments.   RFA  has  been  shown  to  be  successful  with  high  rates  of  complete  eradication  in  the   treatment   of   dysplastic  

(174)  

and   NDB  

(175-­‐177)

.   A   recent   landmark   randomized   sham-­‐

controlled   trial   showed   that   RFA   was   effective   in   the   complete   eradication   of   LGD    

33  

compared   to   controls   (90.5   vs.   22.7%,   P   <   0.001)(174)   Similar   results   were   seen   in   the   treatment  of  patients  with  HGD  (77.4  vs.  2.3%,  P  <  0.001)  (174).      Although  a  follow  up  study   has  shown  this  effect  to  be  durable  to  3  years  (178),  information  on  progression  to  cancer   will  not  be  forthcoming,  as  patients  in  the  sham  group  were  offered  cross-­‐over  RFA  after  1   year.    Given  that  the  depth  of  effect  with  RFA  (0.5-­‐1mm)  is  significantly  less  than  PDT  (2-­‐ 5mm),  the  reduction  in  cancer  progression  is  unlikely  to  be  better  than  that  seen  with  PDT   (approximately  50%)  (175).   The   most   common   complications   associated   with   RFA   include   non-­‐cardiac   chest   pain,   superficial   lacerations,   and   stricture   formation   (although   a   much   lower   rates   than   EMR/CBE  and  PDT).  At  present,  RFA  is  the  preferred  modality  to  be  used  as  an  adjunct  to   endoscopic   resection   for   ablation   of   the   remaining   non-­‐dysplastic   Barrett’s   epithelium   after  successful  resection  of  all  irregular  mucosa  suggestive  of  HGD  or  EAC.   In   patients   with   visible   lesions   in   the   setting   of   HGD,   a   combination   of   EMR   and   RFA   has   recently   been   studied.   Pouw   and   colleagues  

(179)

  have   reported   on   the  

performance   of   EMR   for   visible   lesions   with   subsequent   ablation   of   the   remaining   segment.   Complete   histological   eradication   of   all   dysplasia   and   SIM   was   achieved   in   43   patients  (98%).   5.8.2.3

Cryotherapy:  

Cryotherapy   is   the   latest   endoscopic   ablative   technique.   Through   freeze-­‐thaw   cycles   using   liquid   nitrogen   or   carbon   dioxide,   intracellular   disruption   and   ischemia   are   produced.   These   cycles   are   said   to   cause   intracellular   damage   while   preserving   the   extracellular  matrix  and  thereby  promoting  less  fibrosis  (180-­‐181).    

34  

Two  case  series  have  shown  good  results,  but  long-­‐term  follow  up  is  lacking  (182-­‐183).   Furthermore,   there   are   no   RCT   comparing   its   efficacy   with   other   modalities   of   therapy.   The   fogging   of   the   scope   lens,   risk   of   perforation   and   the   prolonged   duration   of   the   therapy  are  some  of  the  limitations  of  cryotherapy.  

6.      Rationale:   The  incidence  of  EAC  has  been  rapidly  increasing  in  the  past  3  decades  and  only  a   minority  of  BE  patients  will  progress  to  HGD  or  EAC   (184-­‐185).  Unfortunately,  most  EAC  are   detected  in  the  late  stage  and  the  associated  mortality  exceeds  90%  (186).    For  that  reason,   endoscopic  surveillance  of  patients  with  BE  is  recommended  because  it  detects  cancer  at   an  early,  curable  stage  (187-­‐188)  that  may  help  to  reduce  the  associated  mortality.                    The   cost-­‐effectivness   of   this   surveillance   program   is   dependent   on   the   risk   of   progression   of   BE   to   EAC.   However,   there   is   a   wide   variation   in   the   annual   risk   of   progression  from  BE  to  EAC.  Recently,  this  has  been  estimated  at  about  0.5%  per  year  (40-­‐ 43)  

. As   the   majority   of   BE   patients   will   never   progress,   most   of   them   will   die   due   to  

unrelated  diseases.      Because  of  the  relatively  large  number  of  patients  with  BE  and  because  the  absolute   risk   of   neoplastic   progression   in   BE   that   is   low,   the   majority   of   patients   with   BE   will   not   benefit   from   an   endoscopic   surveillance   program,   making   the   clinical   and   cost-­‐ effectiveness  of  this  program  in  general  questionable.  However,  at  present  it  is  unknown   which  subgroup  of  patients  with  BE  will  be  more  likely  to  rapidly  progress  to  HGD  and  EAC   than  others.  This  makes  risk  stratification  in  identifying  BE  patients  at  the  highest  risk  of   developing   neoplastic   progression   important   and   it   may   also   make   the   surveillance    

35  

program   more   cost-­‐effective   allowing   for   individualization   of   intensive   surveillance   and   follow  up  for  targeted  subgroups.                    So   far,   only   the   presence   of   dysplasia   is   used   as   a   tool   to   determine   the   timing   of   surveillance   intervals   and   management   of   patients   with   BE.   However,   additional   progression   predictors   are   needed   for   appropriate   risk   stratification   to   detect   those   patients   at   higher   risk   of   neoplastic   progression.   Easily   attainable   demographic   and   endoscopic   features   could   be   used   to   predict   the   neoplastic   progression   and   hence   provide   an   ideal   non-­‐invasive   method   for   risk   stratification.   When   these   predictors   are   used   in   conjunction   with   endoscopic   biopsy   results   as   determinants   of   surveillance   intervals,   may   improve   the   efficiency   of   the   program.   A   detailed   assessment   of   all   demographic  and  endoscopic  factors  and  their  role  in  progression  should  be  performed  in   order  to  know  what  are  the  factors  that  can  be  used  as  a  predictor  of  progression.                              This   study   will   attempt   to   determine   what   are   the   most   predictive   demographic   and  endoscopic  factors  for  neoplastic  progression  in  BE  patients.  

7.          Review  of  literature:                              Identification   of   demographic,   clinical,   endoscopic   and   pathologic   factors   that   predict   the   rapid   progression   to   any   dysplastic   grades   and   cancer   will   aid   in   risk   stratification  among  BE  patients.    This  has  been  reviewed  by  several  studies,  but  presently   only  the  presence  of  dysplasia  has  been  found  to  be  the  major  determinant  that  is  used   clinically   for   BE   management   and   surveillance   intervals.   Previous   studies   have   shown   some   factors   that   are   implicated   in   the   neoplastic   progression   of   BE   condition.   A   1993    

36  

study   by   Weston   et   al   (189)   was   one   of   the   earliest   studies   that   tried   to   determine   the   endoscopic  and  pathologic  predictors  of  progression.  It  was  a  prospective  study  in  which   108  patients  were  included.  It  showed  that  the  length  of  Barrett's  segment,  presence  of   hiatal   hernia   and   dysplasia   at   initial   diagnosis   or   during   follow-­‐up   were   found   to   be   predictive  of  development  of  HGD  or  EAC.      A  retrospective  study  done  by  Anandasabapathy  et  al  (190)  searched  for  the  clinical,   endoscopic   and   pathologic   predictors   of   HGD   or   EAC.   With   a   total   of   109   patients,   they   found   that   male   gender,   longstanding   GERD,   hiatal   hernia   size   and   BE   segment   length   were   strongly   associated   with   higher   grades   of   dysplasia   at   index   diagnosis.   However,   other   studies   have   shown   that   hiatal   hernia,   a   long   BE   segment   and   LGD   are   also   associated   with   EAC   development   (191-­‐196).   In   addition,   factors   such   as   male   gender,   advanced   age   and   Caucasian   ethnicity   are   associated   with   GERD,   BE   and   EAC   development.                          A   recent   prospective   study   by   Sikkema   et   al   (197)   included   712   patients   with   a   baseline   diagnosis   of   NDB   or   LGD.   It   revealed   that   the   risk   of   developing   HGD   or   EAC   is   predominantly   determined   by   the   presence   of   LGD,   a   known   duration   of   BE   ≥   10   years,   longer   BE   segment   and   the   presence   of   esophagitis.   One   or   a   combination   of   these   risk   factors   identify   patients   with   a   low   or   high   risk   of   neoplastic   progression   and   could   therefore  be  used  to  individualize  surveillance  intervals  in  BE.   Pieter  et  al   (198)  performed  a  retrospective  study  in  which  42,207  patients  with  BE   were   included.   Male   gender,   older   age   and   LGD   in   the   initial   presentation   were   the   independent   predictors   of   malignant   progression   in   this   largest   cohort   study.   Bhat   et   al    

37  

(199)  

did  a  retrospective  study  of  8,522  patients.  SIM,  LGD  and  male  gender  where  found  to  

increase  the  risk  of  EAC  development  in  BE  patients.                                However,   there   are   some   limitations   of   these   studies.   Low   power   due   to   small   sample   size   is   one   of   the   limitations   for   the   first   three   studies.   For   the   two   larger   retrospective   studies  

(198-­‐199)

,   there   was   lack   of   availability   of   complete   data   most  

important   of   which   is   the   absence   of   endoscopic   data   as   the   studies   were   based   on   administrative   pathology   databases.     This   is   an   important   point,   as   it   is   difficult   to   determine   which   patients   have   true   Barrett’s   esophagus   (SIM   with   columnar   lined   esophageal   mucosa   on   endoscopy)   rather   than   intestinal   metaplasia   of   the   cardia.   Also   there   were   no   standardized   biopsy   protocol   and   pathological   reporting   system   used   in   Irish  study  (199).  Table  3  summarizes  the  most  important  studies  of  this  topic.  

8.          Objective:   To   identify   the   factors   that   predict   the   progression   of   non-­‐dysplastic   Barrett   (NDB)   to  any  dysplastic  or  neoplastic  grades.    

9.            Hypothesis                                Does  the  presence  of  the  listed  predictors  increase  the  risk  of  dysplastic  and   neoplastic  progression  in  BE  patients?        

 

38  

   

Table  3:  Summary  of  the  relevant  clinical  studies  and  their  outcome     Sikkema  et   Anandasabapathy   Weston  et  al   Bhat  et  al.  a   al   et  al  

Pieter  et  al.  a  

Year  

March  2011  

Jan  2007  

Jan  2007  

May  2011  

March  2010  

Total  no.   Patients  

713  

108  

109  

8522  

42  207  

Author  

Type  

Prospective   Prospective  

Developed   HGD/EAC  

26  

35  

Duration  

4  years  

101  months  

LGD     Longer       duration  of     BE   Predictors     of   Longer   progression   length     Esophagitis    

Dysplasia     HH     BE  length  

Retrospective   Retrospective    Retrospective   35  

36/79  

161/505  

Jan  2002  to  Sept   1993  to  2005   1991  to  2006   2005     Male  gender     Longstanding       GERD     HH  size     Length  of  BE        

Age     LGD     SIM  

Age     Male     LGD  

a  =  follow  the  British  definition  of  BE          

 

39  

10.            Methods                              Between  January  2000  and  December  2010,  we  performed  a  retrospective  study   where   patients   with   a   diagnosis   of   BE   were   evaluated   at   the   McGill   University   Health   Center   (MUHC),   including   the   Montreal   General   and   the   Royal   Victoria   Hospitals,   in   Montreal,   Quebec,   Canada.   Demographic   and   endoscopic   data   were   reviewed   retrospectively  for  each  patient  confirmed  to  have  Barrett’s  esophagus.   10.1          Study  Population                          Patients   who   underwent   an   upper   endoscopy   at   MUHC   in   the   last   10   years   and   were  confirmed  to  have  BE  in  their  biopsy,  were  identified.  Criteria  for  the  diagnosis  of  BE   in  this  project,  following  the  American  society  of  gastroenterology  (ASGE)  definition  of  BE,   where   endoscopic   identification   of   the   squamocolumnar   junction   proximal   to   the   gastroesophageal   junction   and   targeted   biopsies   with   pathology   revealing   columnar   epithelium  with  goblet  cells.  For  that  we  included  any  patient  who  had  both  a  pathologic   diagnosis  of  BE  together  with  an  endoscopic  diagnosis  of  BE  at  any  time  as  of    recruitment.   10.2                          Inclusion  Criteria:   



Patients  in  MUHC     

From  January  2000  till  December  2010.  



18  years  and  older.  

Diagnosis  of  BE    

Made  any  time  since  recruitment.   Made  based  on  both  pathological  and  endoscopic  findings  (not   necessary  to  have  both  in  the  same  visit).  

 

40  

 2  or  more  endoscopic  surveillance  follow  up  visits  in  order  to  assess  the         progression      status.   10.3          Exclusion  Criteria:   

Absence  of  BE  in  the  endoscopy  reports  even  if  it  is  present  in  pathology.  



Absence  of  BE  in  the  pathology  report  even  if  it  is  present  in  endoscopy.  



Single  surveillance  follow  up.  



Any  history  of  esophageal  resection  or  esophageal  squamous  cancer.  



Age  less  than  18  years.  

  10.4      Study  Procedure:                            This   study   began   by   identifying   the   patients   who   had   BE.   First,   the   pathology   database  of  the  MUHC  (LIS  PROD)  was  searched  to  identify  those  with  a  BE  in  their  biopsy.     In   this   search,   we   used   different   search   terms   (Barrett   esophagus,   Barrett's   esophagus,   Barrett’s  epithelium)  to  widen  our  search  base  and  to  identify  all  possible  cases  that  might   be  missed  due  to  misspelling  of  the  word  “Barrett”.  Once  a  histologic  diagnosis  of  BE  was   found,   the   endoscopy   database   software   “Endoworks”   was   searched   to   locate   the   related   gastroscopy  reports.              

 

41  

  Year                                                                                                          2007                                                                    2009                                        2009   Pathologic  diagnosis                                                NA                                                                            IND                                            HGD   Endoscopic  diagnosis                                            BE                                                                              NA                                              NBE   Patient  1                                                      Year                                                                                                  2002      2003                                2005                              2007                              2010                                         Pathologic  diagnosis                                        BE              BE                                          BE                                        BE                                        BE   Endoscopic  diagnosis                                    NA            NA                                          BE                                          BE                                      BE   Patient  2     Year                                                                                                        2006                    2006                                                  2007     Pathologic  diagnosis                                              BE                              BE                                                        EAC                                       Endoscopic  diagnosis                                          BE                              BE                                                            BE                                                 Patient  3:       Year                                                                                                        2007                                                    2008                                                2009     Pathologic  diagnosis                                              NA                                                                BE                                                      EAC                                       Endoscopic  diagnosis                                            BE                                                                BE                                                        BE                                                 Patient  3:      

    Figure  2,  Examples  of  patient  treatment  timelines  to  elaborate  the   presentation  of  BE  grade  at  the  baseline.    

 

42  

In   order   to   collect   the   data,   demographic   and   endoscopic   case   report   forms   (see   Appendices   A   and   B)   prepared   specifically   for   this   project   were   used.   These   forms   contain   all  the  possible  risk  factors  that  might  be  implicated  in  dysplastic  or  neoplastic  progression   of   BE.   These   have   been   filled   for   each   endoscopy   report   to   determine   the   presence   or   absence  of  these  factors  in  the  BE  population.  Because  the  Endowork  software  was  only   installed   at   the   MUHC   in   2004,   the   medical   charts   of   patients   prior   to   this   date   were   requested   for   those   who   had   BE   in   pathology   to   get   their   endoscopy   reports.   All   biopsy   samples   from   BE   patients   were   examined   by   an   expert   esophageal   pathologist   in   the   MUHC  hospital  where  the  BE  patient  was  identified  or  followed  up.   Data  collected  for  this  project  included  patient  demographics  and  findings  on  the   endoscopic   and   pathology   reports.   The   independent   variables   included   are   those   that   might   be   associated   with   an   increased   risk   of   Barrett   dysplasia   or   adenocarcinoma   development.  Independent  demographic  variables  include  age  and  gender.  Patients  were   divided   into   two   categories   based   on   the   median   age,   those   less   than   60   years   old   and   those   60   years   old   or   older.   Endoscopic   independent   variables   include   endoscopy   date,   information   on   hiatal   hernia   presence   and   size   (small,   large),   presence   and   grade   of   esophagitis  (mild,  moderate,  severe),  presence  of  ulcer,  Barrett  segment  length  (PRAG  M),   presence  of  mucosal  irregularities,  strictures.     Selection  of  these  independent  variables  to  be  examined  was  made  based  on  the   review   of   literature   that   showed   associations   between   BE   development   and   progression   to  dysplasia  or  EAC.  We  also  considered  all  the  possible  risk  factors  that  can  be  gathered   from  the  endoscopy  or  pathology  reports.  

 

43  

 

    Endoscopic   Variables   *Hiatus  hernia   (size)   *Esophagitis   (severity)  

Demographic   variables   *Age     *Gender    

*  Ulcer   *mucosal   irregularities   *BE  length   *Stricture  

Progression   Factors  

   

 

                             Figure  3,  Candidate  Independent  variables  for  this  study.     Hiatus   hernia   size   was   divided   into   small   or   large.   Hiatus   hernias   of   1-­‐2   cm   were   determined   to   be   small,   while   the   large   hiatus   hernias   group   included   those   of   3cm   or   more.  Esophagitis  severity  was  evaluated  as  mild,  moderate  or  severe.  Because  the  classes   of  Los  Angeles  (LA)  classification  of  esophagitis  severity  have  been  used  in  some,  but  not   all,   endoscopy   reports,   these   were   converted   into   our   scale   as   the   following:   mild   represents   class   A,   moderate   represents   class   B   and   severe   represents   classes   C   and   D.    

44  

The   Barrett’s   segment   length   was   identified   based   on   the   reported   PRAG   M   measurement.   It   was   divided   into   2   categories:   short   segment   Barrett’s   (SSB)   if   the   length   is  less  than  3  cm  and  long  segment  Barrett’s  (LSB)  if  3  cm  or  more.  Mucosal  irregularities   included  the  presence  of  any  nodular  mucosa,  nodules  or  polyps  in  the  distal  esophagus.   Pathologic   variables   included   pathology   report   dates,   presence   or   absence   of   dysplasia   (including  indefinite  for  dysplasia  (IND),  LGD  and  HGD)  or  cancer.     The   primary   clinical   outcome   assessed   in   this   project   was   the   progression   to   dysplasia   or   cancer.   In   this   project,   we   wanted   to   assess   the   dysplastic   and   neoplastic   progression  in  this  cohort.  Two  types  of  progression  were  investigated:    Progression   from   NDB   to   any   dysplastic   or   neoplastic   grades   (including   IND/LGD   or   HGD/EAC).    Progression  from  NDB  to  HGD/EAC.   Based   on   the   outcome,   we   attempted   to   identify   the   predictors   that   speed   up   progression  to  dysplasia  or  cancer.   Due  to  the  lack  of  standardized  endoscopy  reporting  system  within  the  division  of   gastroenterology  at  the  McGill  University  Health  Centre,  there  exist  significant  variations   in  the  reporting  of  findings  by  the  numerous  endoscopists.  Although  there  is  no  synoptic   reporting,   there   is   a   general   policy   in   writing   the   endoscopy   reports   among   the   endoscopists  in  which  only  the  positive  findings  are  described.  Therefore,  for  the  purposes   of  this  study,  we  made  the  assumption  that  any  of  the  possible  endoscopic  findings  that   were  not  mentioned  in  the  endoscopic  reports  are  considered  as  evidence  that  the  report  

 

45  

was   negative   for   such   items.   This   policy   also   applied   to   pathologic   reporting   for   the   presence  and  absence  of  BE,  dysplasia  or  cancer.  For  endoscopic  variables,  this  is  applied   to  the  presence  of  Hiatus  hernia,  esophagitis,  ulcer,  strictures  and  mucosal  irregularities.   In   regards   to   the   size   of   hiatus   hernia,   the   severity   of   esophagitis   and   the   length   of   the   BE   segment,   we   did   not   follow   this   policy   as   not   reporting   them   does   not   necessarily   provide   proof  of  their  absence.  

Table  4,  Summary  of  the  total  and  missing  endoscopy  reports.   Condition   Total  endoscopy  reports  entry  

Total  number                                                1961  

Total  missing  endoscopy  reports  

311  

 Total  missing  baseline  endoscopy  reports  

166  

                                                     Because   of   the   retrospective   nature   of   the   study,   the   availability   of   the   endoscopy   reports   was   an   issue.   Some   of   the   patients   had   missing   endoscopy   reports   that   could   not   be   found   in   either   the   hospital   charts   or   the   Endoworks   electronic   database.  These  missing  reports  could  be  either  for  the  baseline  visit  or  any  subsequent   visit.  However,  all  the  patients  included  in  the  final  analysis  must  have  had  at  least  1  visit   with   a   scope   report   that   confirmed   the   endoscopy   diagnosis   of   BE.   This   situation   also   occurred   in   pathologic   data,   for   different   reasons.   Unavailability   of   some   pathologic   reports   in   this   cohort   is   mainly   due   to   patient-­‐related   reasons.   These   included   either   refusal  of  biopsy  by  the  patient  or  cases  where  the  patient’s  medical  condition  did  not    

46  

allow   for   biopsies,     for   example   the   risk   of   excessive   bleeding   for   a   patient   on   anticoagulation   medication.   As   the   presence   or   absence   of   dysplasia   or   cancer   in   the   baseline  pathology  status,  is  important  to  determine  the  progression.  In  the  absence  of   the   baseline   pathology   status,   in   some   cases   we   considered   the   subsequent   visit   pathology  result  as  a  baseline  status  for  these  patients.  We  feel  that  this  is  an  acceptable   concession   to   make   as   it   is   unlikely   that   the   BE   would   be   different   in   between   endoscopies  of  the  same  patient.                              In   general,   the   endoscopic   surveillance   program   for   BE   patients   at   the   MUHC   is   designed   to   follow   the   guidelines   of   the   American   society   of   gastroenterology   (ASGE).     However,   the   compliance   to   this   protocol   is   admittedly   low   for   the   reasons   mentioned   above.   Dysplasia   associated   with   BE   was   graded   according   to   the   consensus   criteria   of   1988,  with  adjustments  as  proposed  in  2001(200-­‐201).  The  latter  comprises  IND,  LGD,  HGD   and  EAC  (202).                              Patients   in   this   cohort   were   classified   into   3   groups   based   on   their   pathologic   baseline  status  into:  1)  NDB,  2)  IND/LGD,  or  3)  HGD/EAC.  The  NDB  group  included  patients   who   presented   to   the   MUHC   with   NDB   diagnosis   (baseline   diagnosis),   whether   it   progressed   later   on   or   not.   The   IND/LGD   group   included   those   with   IND   or   LGD   in   the   baseline  diagnosis.  HGD/EAC  included  those  with  HGD  or  EAC  in  their  presentation  to  the   MUHC.     10.5          Ethics:                        The  Medical  Ethics  Committee  of  McGill  University  Health  Center  (MUHC)  approved   the  study  protocol.      

47  

10.6          Statistical  analysis:   The   primary   outcome   of   this   analysis   is   to   identify   the   predictors   of   progression   from   non-­‐dysplastic   Barrett’s   epithelium   to   dysplasia   or   cancer.   Demographic   and   endoscopic   characteristics   were   analyzed   using   the   low   risk   category   as   the   referent   group.   Categorical   endoscopic   variables   were   age   (<   60   years   old,   ≥   60   years   old),   gender,   esophagitis  and  grade  of  esophagitis,  hiatus  hernia  and  its  size,  ulcer,  BE  length    (<  3  cm,  ≥   3cm),  presence  of  mucosal  irregularities  or  strictures.  We  used  the  presence  or  absence  of   dysplasia  or  cancer  in  the  pathology  report  as  the  outcome  to  determine  the  progression   status.   To  know  how  many  patients  have  progressed  compared  to  the  entire  cohort,  the   person-­‐year   incidence   rate   of   the   progression   for   each   type   being   investigated   was   calculated.   This   has   been   expressed   per   1000   person-­‐year.   The   rate   of   progression   as   a   function  of  each  independent  variable  was  also  calculated.   Progression   from   NDB   to   pre-­‐malignant   and   malignant   lesions   was   initially   examined   via   time-­‐to-­‐event   survival   analysis   methods.   Survival   curves   were   constructed   using   the   Kaplan-­‐Meier   method.   This   was   used   as   a   descriptive   statistical   method   to   analyze  the  data  while  controlling  for  censored  observations,  where  not  all  patients  have   an   outcome   (not   all   patients   progressed).   A   Kaplan-­‐Meier   curves   were   constructed   for   some   variables   for   which   comparisons   were   made   between   high   risk   and   low   risk   categories   for   a   given   variable.   In   order   to   measure   the   significance   of   the   differences   between  the  Kaplan-­‐Meier  curves,  the  Log-­‐rank  test  was  also  used.   After   having   a   preliminary   analysis   of   the   results   using   the   survival   curves,   a   full    

48  

analysis   was   performed   in   order   to   identify   the   factors   that   are   most   predictive   in   the   progression   to   dysplasia   or   cancer.   For   this,   the   Cox   proportional   hazard   model   was   chosen.  It  was  used  to  calculate  the  Hazard  Ratio  (HR)  with  corresponding  95%  confidence   intervals   (CIs)   of   progression   for   each   demographic   and   endoscopic   variable   using   the   low   risk  category  as  the  referent  group.  This  was  also  calculated  after  age  adjustment.  In  the   analysis,   Cox   proportional   hazards   regression   modeling   (Empirical   estimate)   is   applied   in   which  all  the  independent  variables  were  examined  first  to  assess  their  effect  individually,   then  their  combined  influence,  to  identify  the  variables  that  are  most  predictive  of  lesion   progression.  Two-­‐sided  p-­‐values  <  0.05  were  considered  to  be  statistically  significant.     Due   to   the   nature   of   the   data,   containing   multiple     observations   per   patient,   we   used  the  generalized  estimating  equations  (GEE)  model  to  estimate  the  odds  ratios  (OR)  of   progression   at   the   next   visit   according   to   each   variable.   This   statistical   procedure   takes   into  account  the  correlation  between  the  variables  for  each  individual.  The  advantage  of   using  the  GEE  model  is  to  be  able  to  use  multiple  pairs  of  visits  from  each  patient  to  assess   all  covariates  that  can  be  predictive  of  progression  in  the  short  term.  Here  again,  all  the   independent   variables   were   examined   to   estimate   their   combined   influence   in   order   to   identify  the  variables  that  are  most  predictive  of  Barrett’s  progression.    For  statistical  analysis,  we  used  the  “STATA  10”  statistical  software  program  for  all   analyses   (Copyright   2002–2010   StataCorp   LP,   4905   Lakeway   Drive,   College   Station,   TX   77845  USA).  

 

49  

11.      Results: From  January  2000  to  December  2010,  the  total  number  of  patients  identified  with   BE  in  the  pathology  database  “LIST  PRODE”  was  1052;  751  of  whom  were  found  to  have   pathologic   and   endoscopic   diagnosis   of   BE.   303   patients   were   excluded   due   to   our   inability   to   find   the   endoscopy   report   in   either   “Endowork”   or   the   medical   chart,   no   documentation  of  BE  in  the  endoscopy  reports,  or  due  to  poor  documentation  of  BE  in  the   scope  reports  like  pink  mucosa  or  abnormal  mucosa.  Of  these  751  patients,  518  patients   had  2  or  more  surveillance  visits  that  made  them  eligible  for  the  final  progression  analysis.   Figure  4  shows  the  progress  of  the  inclusion  process  up  until  the  final  analysis.              During   this   surveillance   and   based   on   the   baseline   status,   a   total   of   57   patients   progressed.   From   the   baseline   of   NDB   (N=458),   35   patients   (7.6%)   progressed   to   any   dysplastic  or  neoplastic  grades,  7  patients  progressed  from  an  IND  baseline  (7/13=  53.8%),   10   patients   progressed   from   LGD   baseline   (10/20=50%),   and   5   patients   progressed   from   HGD  baseline  (5/11=45.5%).  Table  5  shows  the  total  number  of  patients  according  to  their   baseline,  eligibility  and  progression  status.                

   

50  

 

1054  patients  had  BE  by   Pathology  

     

   

120  No  BE  in  EGD  

 

13  not  well  documented  

 

170  No  available  EGD    

   

 

751  patients  had  BE  by   pathology  and  endoscopy  

   

     

233  had  single  visits  

           

518  patients  entered  the   final  analysis     Figure  4:  Flow  chart  for  the  total  number  of  patients  and  the  process  of   inclusion.

 

51  

Table  5:  Total  patients  according  to  their  baseline,  eligibility  and  progression   status                    Baseline  

Total  patients  no.  

                 Eligible  

           Progressed  

NDB  

681  

458  

35  

IND  

14  

13  

7  

LGD  

24  

20  

10  

HGD  

14  

11  

5  

Cancer  

18  

16  

Total  

751  

518  

               -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐   57  

                            Eligible  patients  were  divided  based  on  their  baseline  status  into  NDB,  IND/LGD   and   HGD/EAC.   These   groups   include   patients   who   have   presented   with   the   same   condition  and  either  progressed  to  higher  grades  or  remained  in  the  same  status.  Out  of   518,  458  were  included  in  the  NDB  group,  33  in  IND/LGD  and  27  in  the  HGD/EAC  group.     The  demographic  characteristics  of  all  eligible  patients  (n=518)  are  shown  in  table   6.  For  all  eligible  patients,  the  median  age  was  60  years  old.  Figure  5  shows  the  median   age   for   the   3   groups   of   patients.   For   those   in   IND/LGD   and   HGD/EAC   groups,   a   higher   percentage  is  above  the  median,  54.5%  and  70.3  %  respectively.  Males  (n=372)  represent   the  majority  of  the  entire  cohort  of  patients  (71.8%).    

 

52  

100

100     80

80     age 60

             Age  (years)          60     40

40     20

20   0 NDB  

1   IND/LGD  

2 HGD/EAC  

Figure  5,  Box  plot  shows  the  median  age,  interquartile  range  for  all  3  groups.    

                                       Table  6,  Demographic  characteristics  for  all  eligible  patients.    

All  

NDB  

IND/LGD  

HGD/EAC  

 

N    

N    

N    

N    

518  

458  

33  

27  

<  60  

263  

240  

15  

8  

≥  60  

255  

218  

18  

19  

Male  

372  

319  

28  

25  

Female  

146  

139  

5  

2  

     No.  of  patients  

   

 

53  

Due  to  the  retrospective  nature  of  the  study,  endoscopic  reports  of  166  patients   were   missing   in   the   baseline   visit.   However,   evaluation   of   the   endoscopic   variables   revealed  that  42%  had  hiatus  hernia,  12.16%  had  esophagitis,  4.7%  had  ulcers,  6.9%  had   mucosal   irregularities,   and   3%   had   strictures.   Due   to   poor   documentation   in   the   endoscopy   reports,   more   data   were   missing   to   document   the   hiatus   hernia   size,   esophagitis   grade   and   length   of   BE.   Table   7   shows   all   the   endoscopic   variables   for   the   whole  cohort  and  all  3  groups,  including  the  missing  reports.                        

 

54  

Table  7,  Baseline  characteristics  of  patients  with  BE  based  on  their  baseline   status.    

All  

NDB  

IND/LGD  

HGD/EAC  

 

N  (%)  

N  (%)  

N  (%)  

N  (%)  

No.  of  patients  

518  

458  

33  

27  

 Hiatus  hernia  (HH)    No  

209  (40.3)  

187(40.8)  

11(33.3)  

11(40.7)  

                                                                     Yes  

143  (27.6)  

124(27.1)  

11(33.3)  

8(29.6)  

Missing  

166  (32.1)  

147(32.1)  

11(33.3)  

8(29.6)  

HH  size                                  Small  

42  (8.1)  

36(7.9)  

5  (15.2)  

1(3.7)  

                                                         Large  

59(11.4)  

50  (10.9)  

4(12.1)  

5(18.5)  

Missing  

417(80.5)  

372(81.2)  

24(72.7)  

21(77.8)  

Esophagitis                        No  

269  (52)  

234  (51.1)  

17  (51.5)  

18  (66.7)  

                                                               Yes  

83  (16)  

77  (16.8)  

5  (15.2)  

1  (3.7)  

Missing  

166  (32)  

147  (32.1)  

11  (33.3)  

8  (29.6)  

Severity                                Mild  

14  (2.7)  

13  (2.8)  

1  (3)  

0  

Moderate  

28  (5.4)  

26  (5.7)  

2  (6.1)  

0  

Severe  

13  (2.5)  

11  (2.4)  

1  (3)  

1  (3.7)  

Missing  

463  (89.4)  

97  (21.2)  

29  (87.9)  

26  (96.3)  

Ulcer                                                  No  

318  (61.4)  

281  (61.4)  

18  (54.5)  

19  (70.4)  

                                                                   Yes  

34  (6.6)  

30  (6.6)  

4  (12.1)  

0  

Missing  

166  (32)  

147  (32.1)  

11  (33.3)  

8  (29.6)  

BE  Length                    <  3  cm  

49  (9.5)  

40  (8.7)  

5  (15.2)  

4  (14.8)  

                                                       ≥  3  cm  

98  (18.9)  

81  (17.7)  

8  (24.2)  

9  (33.3)  

Missing  

371  (71.6)  

337  (73.6)  

20  (60.6)  

14  (51.9)  

Mucosal  irreg.                No  

338  (65.3)  

305  (66.7)  

20  (60.6)  

13  (48.1)  

                                                                   Yes  

14  (2.7)  

6  (1.3)  

2  (6.1)  

6  (22.2)  

Missing  

166  (32)  

147  (32.1)  

11  (33.3)  

8  (29.6)  

Stricture                                      No  

341  (65.8)  

301  (65.7)  

21  (63.6)  

19  (70.4)  

                                                                   Yes  

11  (2.1)  

10  (2.2)  

1  (3)  

0  

Missing  

166  (32)  

147  (32.1)  

11  (33.3)  

8  (29.6)  

Total  EGD  missing  

166    (32)  

147  (32.1)  

11  (33.3)  

8  (29.6)  

                                                                                                   

 

55  

Table  8,  Follow  up  (in  months)  median  and  mean  for  the  patients  with  NDB   baseline                            Status    

Mean    

95%  CI  

Median    

95%  CI  

All  patients  

40.1  

36.1-­‐45.2  

55.2  

51.9-­‐59.7  

 Remained  NDB  

44.0  

41.9-­‐46.4  

60.5  

57.7-­‐63.3  

NDB  to  IND/LGD  

20.2  

16.9-­‐24.1  

30.2  

17.9-­‐38.3  

NDB  to  HGD/EAC  

21.2  

19.2-­‐23.5  

16.7  

16.7-­‐28.4  

                     The   surveillance   follow   up   time   for   patients   who   remained   in   NDB   status   had   a   mean  of  3.7  years  and  median  of  5  years  (44  months,  60.5  months  respectively).  For  those   who  progressed  from  NDB  to  IND/LGD  and  to  HGD/EAC,  the  follow-­‐up  was  shorter.  This  is   because  the  presence  of  LGD  or  HGD  increases  the  risk  of  progression  to  EAC  and  is  either   treated  or  the  patient  dies  so  a  shorter  follow  up  is  expected.  Table  8  shows  the  mean  and   the  median  for  each  category.     In  order  to  identify  the  predictors  of  neoplastic  progression,  two  different  stages  of   progression  have  been  analyzed.  They  are:    Progression  from  NDB  to  any  dysplastic  or  neoplastic  grade  (including  IND/LGD  or         HGD/EAC).    Progression  from  NDB  to  HGD/EAC.     11.1      Progression  from  NDB  to  any  dysplastic  or  neoplastic  grades:                        35  patients  progressed  from  NDB  to  a  dysplastic  grade  or  cancer,  including  IND/LGD   or  HGD/EAC.  The  progression  rate  and  patient-­‐year  follow  up  of  these  patients,  based  on    

56  

their   demographic   and   endoscopic   variables   are   shown   in   table   8.   The   incidence   of   this   type   of   progression   in   this   cohort   was   19.8   cases   per   1000   person-­‐years   (95%   CI   14.2-­‐ 27.6).   The   total   patient   year   follow   up   was   1767.6   person-­‐years   for   all   35   patients.   The   annual   risk   of   progression   to   any   dysplastic   or   neoplastic   grade   from   NDB   baseline   is   1.98%  per  year  (95%  CI  1.4-­‐2.8).   Table   9   shows   the   progression   rate   per   1000   person-­‐years   for   each   variable   examined   in   this   project.   Of   those,   54.3%   were   older   than   60   years   old   with   a   progression   rate   of   26.6   (95%   CI   16.9-­‐41.7).   Males   represented   80%   with   a   progression   rate   of   22.5   (95%   CI   15.6-­‐32.6).   Evaluation   of   the   endoscopic   variables   shows   that   the   presence   of   hiatus  hernia  had  a  higher  progression  rate  of  23.7  (95%  CI  16.2-­‐34.5).  Progression  rates   also   increased   with   an   increase   of   its   size   (19.8,   21.3   respectively).   Surprisingly,   esophagitis  had  a  lower  progression  rate  (16.6  vs.  21.2)  compared  to  those  who  did  not   have   esophagitis.   Presence   of   an   ulcer   or   mucosal   irregularities   had   high   progression   rates,  21.0  (95%  CI  7.9-­‐55.9)  and  32.2  (95%  CI  12.1-­‐85.9)  respectively.  The  longer  the  BE   segment,  the  higher  the  risk  of  progression,  with  progression  rate  of  29.9  (95%  CI  18.9  –   47.5)   for   a   long   BE   segment.   Presence   of   stricture   was   also   associated   with   a   higher   progression   rate   of   34.2   (95%   CI   11.0-­‐105.9).   The   10-­‐year   cumulative   incidence   of   any   dysplastic  or  neoplastic  grades  by  age,  gender  and  BE  length  are  shown  in  figures  6,  7  and   8.   Those   older   than   60   years,   male   and   those   who   had   BE   length   ≥   3   cm   are   at   higher   risk   of   progression   to   any   dysplastic   or   neoplastic   grades   comparing   to   their   lower   risk   counterparts.  However,  only  BE  length  ≥  3  cm  showed  a  significant  difference  (p=0.031).    

 

57  

Table  9,  Dysplastic  and  neoplastic  progression  rate  in  patients  with  NDB   baseline  according  to  the  demographic  and  endoscopic  variables   Variable  

Category  

Events  

 Person  year   Progression                                P  r=ate/    0.22   1000  person  year  

95%  CI  

 

Age  

<  60  

16  

1052.8

15.2  

9.3-­‐24.8  

 

≥  60  

19  

714.7  

26.6  

16.9-­‐41.7  

Gender  

Male  

28  

1242.4  

22.5  

15.6-­‐32.6  

 

Female  

7  

525.2  

13.3  

6.4-­‐27.9  

HH  

No  

8  

626.5  

12.8  

6.4-­‐25.5  

 

Yes  

27  

1141.1  

23.7  

16.2-­‐34.5  

HH  size  

Small  

8  

402.9  

17.3  

10.0-­‐29.8  

 

Large  

12  

564.3  

21.3  

12.1-­‐37.4  

Esophagitis  

No  

26  

1225.1  

21.2  

14.5-­‐31.2  

 

Yes  

9  

542.5  

16.6  

8.6-­‐31.9  

Eso.  Severity  

Mild  

1  

168.9  

5.9  

0.8-­‐42.0  

 

Moderate  

3  

145.7  

20.6  

6.6-­‐63.8  

 

Severe  

0  

81.6  

0  

 

Ulcer  

No  

31  

1576.8  

19.7  

13.8-­‐27.9  

 

Yes  

4  

190.7  

20.9  

7.9-­‐55.9  

BE  length  

<  3  cm  

10  

772.6  

12.9  

6.9-­‐24.1  

 

≥  3  cm  

18  

600.9  

29.9  

18.9-­‐47.5  

Mucosal  irreg.  

No  

31  

1643.5  

18.9  

13.3-­‐26.8  

 

Yes  

4  

124.1  

32.2  

12.1-­‐85.9  

Stricture  

No  

32  

1679.8  

19.1  

13.5-­‐26.9  

 

Yes  

3  

87.8  

34.2  

11.0-­‐105.9  

Total  

 

35  

1767.6  

19.8  

14.2-­‐27.6  

   

58  

0.40 0.30 0.20

Male

0.00

0.10

Female

0

24

48

72

96

120

Follow-up (months)          Figure  6,  Cumulative  incidence  of  progression  to  dysplasia  or  cancer  by  gender.  

0.40

 

P  =  0.098  

0.20

0.30

 

60+ years

0.00

0.10

= 3 cm

0.00

0.10

0.20

Suggest Documents