PRECISION HIGH SPEED INTEGRATORS

LF155 - LF255 - LF355 LF156 - LF256 - LF356 LF157 - LF257 - LF357 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIERS . . . . .. .. .. . HIGH INPUT I...
Author: Vincent Page
1 downloads 4 Views 173KB Size
LF155 - LF255 - LF355 LF156 - LF256 - LF356 LF157 - LF257 - LF357 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIERS

. . . . .. .. .. .

HIGH INPUT IMPEDANCE J-FET INPUT STAGE HIGH SPEED J-FET OP-AMPs : UP to 20MHz, 50V/µs OFFSET VOLTAGE ADJUST DOES NOT DEGRADE DRIFT OR COMMON-MODE REJECTION AS IN MOST MONOLITHIC AMPLIFIERS INTERNAL COMPENSATION AND LARGE DIFFERENTIAL INPUT VOLTAGECAPABILITY (UP TO VCC+)

N DIP8 (Plastic Package)

D SO8 (Plastic Micropackage)

TYPICAL APPLICATIONS PRECISION HIGH SPEED INTEGRATORS FAST D/A AND A/D CONVERTERS HIGH IMPEDANCE BUFFERS WIDEBAND, LOW NOISE, LOW DRIFT AMPLIFIERS LOGARITHMIC AMPLIFIERS PHOTOCELL AMPLIFIERS SAMPLE AND HOLD CIRCUITS

ORDER CODES Temperature Range

Part Number LF355, LF356, LF357 LF255, LF256, LF257 LF155, LF156, LF157 Example : LF355N

o

o

0 C, +70 C -40oC, +105oC o o -55 C, +125 C

Package N D • • • • • •

PIN CONNECTIONS (top view)

1 DESCRIPTION These circuits are monolithic J–FET input operational amplifiers incorporating well matched, high voltage J–FET on the same chip with standard bipolar transistors. This amplifiers feature low input bias and offset currents, low input offset voltage and input offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth,extremelyfastsettlingtime, lowvoltageand current noise and a low l/f noise corner. November 1995

8

2

-

7

3

+

6 5

4

1 2 3 4

-

Offset null 1 Inverting input Non-inverting input VCC

5 6 7 8

-

Offset null 2 Output VCC+ N.C.

1/14

LF155 - LF156 - LF157 SCHEMATIC DIAGRAM VCC Q1

J3

Q2

D2

C2 10pF

Q4

Offset N2

Q3 Offset N1

Q5 R1 25Ω

D1

J8

Non-inverting input

J7

Output

VCC

J1 J2

J5 Q6

Inverting

D3

Q9

input

J4 Q7 Q8

VCC

J9

R2

R3 30Ω

30Ω

Q10

Q14 Q11 Q12

Q15

C1 10pF

Q13

D5 D6

R4 1k Ω

R5

4kΩ

R6 4kΩ

R7

1.9kΩ

D4

R8

25Ω

J11

J10

VCC

V i o ADJUSTMENT V CC +

N1 -

N2 25k Ω

LF155/6/ 7

V CC -

ABSOLUTE MAXIMUM RATINGS Symbol

Parameter

Value

Unit

Supply Voltage

±22

V

Vi

Input Voltage - (note 1)

±20

V

Vid

Differential Input Voltage

±40

V

Ptot

Power Dissipation

570

mW

VCC

Output Short-circuit Duration Toper

Operating Free Air Temperature Range

Tstg

Storage Temperature Range

2/14

Infinite LF155-LF156-LF157 LF255-LF256-LF257 LF355-LF356-LF357

–55 to +125 –40 to +105 0 to +70

o

–65 to 150

o

C

C

LF155 - LF156 - LF157 ELECTRICAL CHARACTERISTICS LF155, LF156, LF157 -55oC ≤ Tamb ≤ +125oC LF255, LF256, LF257 -40oC ≤ Tamb ≤ +105oC (unless otherwise specified) Symbol Vio

Iio

Iib

Avd SVR ICC

DVio DV io/Vio Vicm CMR ±VOPP GBP

SR

Ri Ci en

in ts

±15V ≤ VCC ≤ ±20V ±15V ≤ VCC ≤ ±20V LF155 - LF156 - LF157 LF255 - LF256 - LF257 Min. Typ. Max.

Parameter Input Offset Voltage (RS = 50Ω) Tamb = +25oC Tmin. ≤ Tamb ≤ Tmax.

Unit mV

3

5 7 6.5

3

20 20 1

pA nA nA

20

100 50 5

pA nA nA V/mV

LF155, LF156, LF157 LF255, LF256, LF257

Input Offset Current - (note 3) o Tamb = +25 C Tmin. ≤ Tamb ≤ Tmax.

LF155, LF156, LF157 LF255, LF256, LF257

Input Bias Current - (note 3) Tamb = 25oC Tmin. ≤ Tamb ≤ Tmax.

LF155, LF156, LF157 LF255, LF256, LF257 Large Signal Voltage Gain (R L = 2kΩ, Vo = ±10V, VCC = ±15V) o Tamb =+ 25 C Tmin. ≤ Tamb ≤ Tmax. Supply Voltage Rejection Ratio - (note 4) Supply Current, (VCC = ±15V, no load) LF155, LF255 Tamb =+ 25oC LF156, LF256 LF157, LF257 Input Offset Voltage Drift (RS = 50Ω) Change in Average Temperature Coefficient with VIO adjust (RS = 50Ω) - (note 2) Input Common Mode Voltage Range (VCC = ±15V, Tamb = 25oC) Common Mode Rejection Ratio Output Voltage Swing (VCC = ±15V) RL = 10kΩ RL = 2kΩ Gain Bandwidth Product (V CC = ±15V, Tamb = 25oC) LF155, LF255 LF156, LF256 LF157, LF257 Slew Rate (V CC = ±15V, Tamb = 25oC) LF155, LF255 AV = 1 LF156, LF256 LF157, LF257 AV = 5 Input Resistance (Tamb = +25oC) Input Capacitance (VCC = ±15V, Tamb = 25oC) Equivalent Input Noise Voltage (VCC = ±15V, Tamb = 25oC, RS = 100Ω) f = 1000Hz LF155, LF255 LF156, LF256 LF157, LF257 f = 100Hz LF155, LF255 LF156, LF256 LF157, LF257 Equivalent Input Noise Current o (VCC = ±15V, Tamb = 25 C, f = 100Hz or f = 1000Hz)

50 25 85

200 100 2 5 5 5 0.5

±11 85

+15.1 -12 100

±12 ±10

±13 ±12

4 7 7 o

µV/ C o µV/ C per mV V dB V

MHz 2.5 5 20 V/µs 7.5 30

5 12 50 1012 3 20 12 12 25 15 15 0.01

o

Settling Time (VCC = ±15V, Tamb = 25 C) - (note 5) LF155, LF255 LF156, LF256 LF157, LF257

dB mA

4 1.5 1.5

Ω pF nV  √ Hz

pA √  Hz µs

3/14

LF155 - LF156 - LF157 ELECTRICAL CHARACTERISTICS LF355, LF356, LF357 0oC ≤ Tamb ≤ +70oC (unless otherwise specified) Symbol Vio Iio Iib Avd

SVR ICC DVio DV io/Vio Vicm CMR ±VOPP GBP

SR

Ri Ci en

in ts

LF355 - LF356 - LF357 Min. Typ. Max.

Parameter Input Offset Voltage (RS = 50Ω) o Tamb = +25 C Tmin. ≤ Tamb ≤ Tmax. Input Offset Current - (note 3) Tamb = +25oC Tmin. ≤ Tamb ≤ Tmax. Input Bias Current - (note 3) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. Large Signal Voltage Gain (R L = 2kΩ, Vo = ±10V) o Tamb =+ 25 C Tmin. ≤ Tamb ≤ Tmax. Supply Voltage Rejection Ratio - (note 4) Supply Current, no Load LF355 Tamb = 25oC LF356, LF357 Input Offset Voltage Drift (RS = 50Ω) - (note 2) Change in Average Temperature Coefficient with VIO adjust (RS = 50Ω) o Input Common Mode Voltage Range (Tamb = 25 C) Common Mode Rejection Ratio Output Voltage Swing Gain Bandwidth Product (Tamb = 25oC) Slew Rate (Tamb = 25oC) AV = 1

RL = 10kΩ RL = 2kΩ LF355 LF356 LF357

o

Unit mV

25 15 80

3

10 13

3

50 2

pA nA

20

200 8

pA nA V/mV

200 100 2 5 5

±10 80 ±12 ±10

0.5 +15.1 -12 100 ±13 ±12 2.5 5 20

dB mA 4 10 o

µV/ C o µV/ C per mV V dB V MHz

V/µs LF355 LF356 LF357

AV = 5 o Input Resistance (Tamb = +25 C) Input Capacitance (Tamb = 25oC) Equivalent Input Noise Voltage (Tamb = 25oC, R S = 100Ω) f = 1000Hz LF355 LF356, LF357 f = 100Hz LF355 LF356, LF357 Equivalent Input Noise Current (Tamb = 25oC, f = 100Hz or f = 1000Hz) Settling Time (Tamb = 25 C) - (note 5)

VCC = ±15V

LF355 LF356, LF357

5 12 50 12 10 3 20 12 25 15 0.01 4 1.5

Ω pF nV  √ Hz

pA √  Hz µs

Notes : 1. Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage. 2. The temperature coefficient of the adjusted input offset voltage changes only a small amount (0.5µV/oC typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment. 3. The inputbias currents are junction leakage currents which approximately double for every 10oC increase in the junction temperature Tamb. Due to limited production test time, the input bias current measured is correlated to junction temperature. In a normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Ptot-Tamb = Tamb + Rth(j-a) x Ptot where Rth(j-a)is the thermal resistance from junction to ambient. Use of a heatsink is recommended if input currents are to be kept to a minimum. 4. Supply voltage rejection is measured for bothsupply magnitudes increasing or decreasing simultaneously, in accordance with common practise. 5. Settling time is defined here, for a unity gain inverter connection using 2kΩ resistors for the LF155, LF156 series. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. For the LF157 series AV = -5, the feedback resistor from output to input is 2kΩ and the output step is 10V.

4/14

LF155 - LF156 - LF157 APPLICATION HINTS The LF155, LF156, LF157 series are op amps with JFETinput transistors.TheseJFETs havelarge reverse breakdown voltagesfromgateto source or drain eliminatingthe need of clamps across the inputs. Therefore large differential input voltages can easily be accommodatedwithouta large increaseofinputcurrents. The maximum differential input voltage is independent of the supply voltage.However,neitherofthenegative input voltages should be allowed to exceedthe negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either inputwillcausea reversalof thephaseto theoutputand force the amplifier output to the correspondinghigh or low state. Exceedingthe negativecommon-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode. Exceedingthe positive common-modelimit on a single input will not changethe phase of the output however, if bothinputsexceedthe limit, theoutputof theamplifier will be forced to a high state. These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-modevoltagecanexceedthepositivesupply by approximately 100 mV independentof supply voltage and overthefulloperatingtemperaturerange.The positive suplly can thereforebe used as a referenceon an input as, for example, in a supply current monitor and/or limiter. Precautionsshould be taken to ensure that the power supply for the integrated circuit never becomes re-

versed in polarity or that the unit is not inadvertentlyinstalled backwards in a socket as an unilimited current surge throughthe resulting forward diode within the IC couldcausefusingof theinternalconductorsandresult in a destroyed unit. Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling. Allof thebiascurrentsintheseamplifiersareset by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltages. As with most amplifiers, care should betaken with lead dress, components placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to theinputto minimiz ”pickup” andmaximize the frequency of the feedback pole by minimizing the capacitancefrom the input to ground. A feedback pole is createdwhen the feedbackaround any amplifier is resistive. The parallel resistance and capacitancefromthe input of thedevice(usually the invertinginput)toacgroundset thefrequencyof thepole. In many instances the frequency of this pole is much greaterthanthe expected3 dB frequencyof the closed loopgain and consequentlythereis negligible effecton stability margin. However, if the feedback pole is less than approximately six time the expected 3 dB frequencya leadcapacitorshouldbeplacedfrom theoutput to the input of the op amp. The value of that added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

5/14

LF155 - LF156 - LF157 TYPICAL CIRCUITS LARGE POWER BW AMPLIFIER

SETTLING TIME TEST CIRCUIT

2kΩ

+15V *400 Ω 2k Ω

10k Ω

eI -1V

1k Ω

VCC+

-

RI

LF155/6/7

0V

100pF 5k Ω *1k Ω

eO

LF157

-

eI

10V

2N 4416 eo 3k Ω

-15V

+1V

5k Ω

+10V

VCC-

Oscilloscope -10V

+15V 2N 4416 2k Ω

For distortion < 1% and a 20 VPP VO swing, power bandwidth is : 500kHz.

6/14

Settling time is tested with the LF155, LF156 connected as unity gain converter RI = 2kΩ and LF157 connected for AV = -5, RI = 0.4kΩ

LF155 - LF156 - LF157 INPUT BIAS CURRENT

10k

1k

VCC VCC VCC VCC

100

= = = =

INPUT BIAS CURRENT

100k

INPUT BIAS CURRENT (pA)

INPUT BIAS CURRENT (pA)

100k

–20V –15V –10V –5V

10

1

LF155

10k

1k

VCC VCC VCC VCC

100

0.1

10

1

LF156, LF157

-25

5

35

95

65

125

-55

CASE TEMPE RATURE ( C)

60 50 40

LF156, LF157 With he a tsink

30

LF155 Fre e-a ir

20 10 LF155 with hea tsink

0 -10

-5

0

5

10

PEAK -TO - PEAK OUTPUT SWING (V)

VCC = – 15V Tamb = +25 C R L = 50kΩ LF156, LF157 F re e -a ir

70

-25

5

35

95

65

125

CASE TEMPE RATURE ( C)

INPUT BIAS CURRENT

80 INPUT BIAS CURRENT (pA)

–20V –15V –10V –5V

0.1 -55

VOLTAGE S WING 40

RL = 2k W Ta mb = +25 c

30

20

10

0 0

COMMON-MODE VOLTAGE (V)

5

10

15

20

S UP P LY VOLTAGE (–V)

S UP P LY CURRENT

S UP P LY CURRENT

4

7

SUPPLY CURRENT (mA)

SUPPLY CURRENT (mA)

= = = =

3

T ca

- 55 se =

C

C +2 5 se = T ca C +1 2 5 se = T ca

2

6

T

= se ca

5

Tc 4

T

0

5

10

15

20

S UP P LY VOLTAGE (–V)

25

5

C

=+ se

+ e= ca s

25 12

C 5C

3

LF156, LF157

LF155

1

a

-

2 0

5

10

15

20

25

S UP P LY VOLTAGE (–V)

7/14

LF155 - LF156 - LF157 SMALL SIGNAL PULSE RESPONSE

TIME (0.5µs/DIV) SMALL SIGNAL PULSE RESPONSE

TIME (0.5µs/DIV)

8/14

SMALL SIGNAL PULSE RESPONSE

TIME (1µs/DIV) SMALL SIGNAL PULSE RESPONSE

TIME (1µs/DIV)

SMALL SIGNAL PULSE RESPONSE

SMALL SIGNAL PULSE RESPONSE

TIME (0.1µs/DIV)

TIME (0.5µs/DIV)

VCC = – 15V

Ta m -10

5

C

0

10

5

15

20

25

30

35

5

0 0

10

15

20

25

30

40

35

OUTPUT SOURCE CURRENT (mA)

MAXIMUM POS ITIVE COMMON-MODE INPUT VOLTAGE

MAXIMUM NEGATIVE COMMON-MODE INPUT VOLTAGE

Tamb

POSITIVE COMMON-MODE INPPPUT VOLTAGE LIMIT(V)

-20

-55 C

+125 C

15

10

5 5

-15

Tamb = +125 C -5

0 10

15

20

-5

PEAK -TO-PEAK OUTPUT SWING (V)

OP EN LOOP VOLTAGE GAIN R L = 2kΩ R s = 50 Ω

Ta mb = -55 C

10 6 Ta m b = +25 C 10 5 Ta mb = +125 C

10 4 10

15

SUP P LY VOLTAGE (–V)

-10

-15

-20

NEGATIVE SUPP LY VOLTAGE (V)

10 7

5

Tamb = 55 C Tamb = + 25 C

-10

P OS ITIVE S UP P LY VOLTAGE (V)

OPEN LOOP VOLTAGE GAIN (V)

5

OUTP UT S INK CURRENT (mA)

20

POSITIVE COMMON-MODE INPPPUT VOLTAGE LIMIT(V)

10

25 C aT m b = +

C

0

VCC = – 15V

aT mb = +12 5 C

5 +2 b=

Tamb = +125 C

-5

b= 5-

MAXIMUM POSITIVE CURRENT 15

Tamb = - 55 C

Tam

NEGATIVE OUTPUT VOLTAGE SWING (V)

MAXIMUM NEGATIVE CURRENT -15

POSITIVE OUTPUT VOLTAGE SWING (V)

LF155 - LF156 - LF157

20

OUTPUT VOLTAGE S WING 28 24

VCC = +15V Ta mb = +25 C

20 18 12 8 0 0

10 0

10 1

OUTPUT LOAD R L (kΩ)

9/14

UNITY GAIN BANDWIDTH PRODUCT (MHz)

GAIN BANDWIDTH PRODUCT (MHz)

LF155 - LF156 - LF157 GAIN BANDWIDTH PRODUCT 5 LF155

4 VCC = – 10 V VCC = – 15 V VCC = – 20 V

3

2

1 -55

-15

25

65

105

AMBIENT TEMPERATURE ( C)

GAIN BANDWIDTH PRODUCT

LF157 curve s ide ntical but X 4 7

6

VCC = – 20 V 4 -55

1 LF155

0.8 0.6 0.4 0.2 0 -55

-15

INVERTE R S ETTLING TIME

OUTPUT VOLTAGE SWING FROM 0 V (V)

5

10mV

-5

-10

1mV LF156, AV = -1 LF157, AV = -5

0

10 -1

1mV

10 0 SETTLING TIME (µs )

105

1mV

5 10mV 0

LF155

-5

1mV 10mV

5 0.5 10 0 SE TTLING TIME (µs )

10 1

OP EN LOOP FREQUENCY RESP ONSE

Tamb = + 25 C VCC = + 15V

10mV

65

INVERTER S ETTLING TIME

-10 0

25 65 105 TEMPERATURE ( C)

25

Tamb = + 25 C VCC = + 15V

OUTPUT VOLTAGE SWING FROM 0 V (V)

1.2

10

10/14

10

OPEN LOOP VOLTAGE GAIN (dB)

NORMALIZED SLEW RATE (V/µs)

VCC = – 15V LF156-LF157

-15

AMBIENT TEMPERATURE ( C)

NORMALIZED S LEW RATE

1.4

VCC { – 10 V – 15 V

5

1.8 1.6

LF156

8

10 1

1 10 VCC

90

= +15V

LF157

70 50

LF156 LF15 5

30 10 0 -10 1 01

10 2

10 3

104

105

106

FREQUENCY (Hz)

10 7

BODE P LOT 10

100 LF156 VCC = –15V

P has e

5

75

GAIN (dB)

Ga in

-5

25 0

-10 -15

-25

2k Ω 20 Ω

-20

-50

PHASE (degrees)

50

0

-

-75

-25 +

-30

-100

-35 0 10

-125 10 1

102

POWER SUPPLY REJECTION RATIO (dB)

LF155 - LF156 - LF157 POWER SUP PLY REJ ECTION RATIO 100 VCC = – 15V T a mb = +25 C

80

P os itive s upply 60

40

Nega tive s upply

20 LF155 0 10 1

10 2

FREQUENCY (MHz)

1 25

5

LF15 6 VCC = –15V

GAIN (dB)

75 50

-5

25

Ga in

-10

0

-1 5

-25

2k Ω

-20

-50

20 Ω

-2 5

-

-75

-30

+

-10 0

-35

PHASE (degrees)

0

1 00

-12 5

-40 10 0

101

10 2

-150

POWER SUPPLY REJECTION RATIO (dB)

BODE P LOT

Pha se

100 LF157 VCC = –1 5V

GAIN (dB)

Ph ase

0 -25

10

-50

5

-7 5

2pF

0 4



-

2k

-1 00



-1 25

+

-15

-150

-25 10 0

-1 75 10 1

FREQUENCY (MHz)

102

PHASE (degrees)

15

-1 0

50 25

Gain

-5

75

COMMON-MODE REJECTION RATIO (dB)

BODE P LOT

20

10 6

12 0 VCC = – 15V T amb = +25 C

10 0

P os itive s upply

80

LF1 56 60

LF1 57

LF157 40

LF1 56 Ne ga tive s upply

20 0 1 02

103

104

105

106

107

FREQUENCY (Hz)

35 25

10 5

P OWER S UPP LY REJECTION RATIO

FREQUENCY (MHz)

30

10 4

FREQUENCY (Hz )

15 10

10 3

COMMON-MODE REJ ECTION RATIO 100 VCC = – 15V R L = 2kΩ T a mb = +25 C

80

60 LF155

LF155 LF156

40

20

0 10 1

102

1 03

10 4

105

106

1 07

FREQUENCY (Hz)

11/14

EQUIVALENT INPUT NOISE VOLTAGE (EXPANDED S CALE)

OUTP UT IMPEDANCE 10 3

100 T a mb = – 2 5 C VCC = – 15V

80

60

40 LF15 5

20

OUTPUT IMPEDANCE (Ω)

EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)

LF155 - LF156 - LF157

LF156 , LF157

0 10 1

10 2

10 3

104

10 2

+

10 1

10 5

10 6

10 7

10 2 140 T a mb = +25 C VCC = – 15V

120

OUTPUT IMPEDANCE (Ω)

EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)

10 4

OUTPUT IMPEDANCE

EQUIVALENT INPUT NOISE VOLTAGE

100 80 60 LF156 LF157

40

LF155

20 0 10 0

10 1

10 2

10 3

T amb = +25 C VCC = – 15V

AV = 1 10

0

+

T amb = +25 C

20

AV = 1

LF156

< 1% Dist

16 12

LF155 LF157 AV = 5

8 4 0 10 4

10 5

10 6

FREQUENCY (Hz)

LF156 10 4

10 5

10 6

10 7

OUTP UT IMPEDANCE 10 2

VCC = – 15V R L = 2kΩ

24

-

FREQUENCY (Hz)

107

OUTPUT IMPEDANCE (Ω)

28

AV = 10

10 -1

10 -2 10 3

10 4

AV = 100

10 1

UNDISTORTED OUTPUT VOLTAGE S WING

SWING (V)

AV = 10

FREQUENCY (Hz)

FREQUENCY (Hz)

PEAK TO PEAK OUTPUT VOLTAGE

AV = 1

LF155

FREQUENCY (Hz)

12/14

AV = 100

10 0

10 -1 10 3

100k

T amb = – 25 C VCC = – 15V

-

T a mb = +25 C VCC = – 15V 10 1 AV = 100 10 0

AV = 10

10 -1

+

10 -2 10 3

LF157 10 4

105

10 6

FREQUENCY (Hz)

10 7

LF155 - LF156 - LF157 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP

Dimensions A a1 B b b1 D E e e3 e4 F i L Z

Min.

Millimeters Typ. 3.32

0.51 1.15 0.356 0.204

Max.

1.65 0.55 0.304 10.92 9.75

7.95

Min. 0.020 0.045 0.014 0.008

Max.

0.065 0.022 0.012 0.430 0.384

0.313

2.54 7.62 7.62

3.18

Inches Typ. 0.131

0.100 0.300 0.300 6.6 5.08 3.81 1.52

0.125

0260 0.200 0.150 0.060

13/14

LF155 - LF156 - LF157 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions A a1 a2 a3 b b1 C c1 D E e e3 F L M S

Min.

Millimeters Typ.

0.1 0.65 0.35 0.19 0.25

Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5

Min.

Inches Typ.

0.026 0.014 0.007 0.010

Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020

0.189 0.228

0.197 0.244

0.004

o

45 (typ.) 4.8 5.8

5.0 6.2 1.27 3.81

3.8 0.4

0.050 0.150 4.0 1.27 0.6

0.150 0.016

0.157 0.050 0.024

o

8 (max.)

Information furnished is believed to be accurate and reliable. However, SGS-THO MSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this pub lication are subject to change without notice. This pub lication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics product s are not authorized for use as critical components in life suppo rt devices or systems without express written approval of SGS-THOMSON Microelectronics.  1995 SGS-THOMSON Microelectronics - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

14/14