Polyionic Ionic Liquid GC Stationary Phases Evaluations

Polyionic Ionic Liquid GC Stationary Phases Evaluations L.M.Sidisky, G. A. Baney, J.L. Desorcie, D.L. Shollenberger, G. Serrano May 20, 2015 ISCC, For...
Author: Regina Ross
0 downloads 0 Views 3MB Size
Polyionic Ionic Liquid GC Stationary Phases Evaluations L.M.Sidisky, G. A. Baney, J.L. Desorcie, D.L. Shollenberger, G. Serrano May 20, 2015 ISCC, Fort Worth, TX

sigma-aldrich.com/analytical

© 2012 Sigma-Aldrich Co. All rights reserved.

1

Overview of Presentation •

Overview of Ionic Liquids



FAME Selectivity



PAH Analysis



Aromatics in Gasoline



New GC Applications



Conclusions

2

© 2012 Sigma-Aldrich Co. All rights reserved.

Ionic Liquids Ionic liquids - a class of ionic solvents with low melting points Unique combination of cations and anions that can provide different selectivities when used as stationary phases in GC Numerous combinations of cations and anions are possible allowing for “tailored” selectivity, application or function

3

© 2012 Sigma-Aldrich Co. All rights reserved.

Desirable IL Properties for GC Use Several properties make ILs desirable as GC stationary phases • • • • • • •

remain liquid over a wide temperature range (Room Temperature350 o+C) very low volatility highly polar nature broadest range of solvation interactions of any known solvent good thermal stability high viscosity easily tailored to provide different polarities/selectivities

4

© 2012 Sigma-Aldrich Co. All rights reserved.

Geminal Dicationic Ionic Liquid Stationary Phase SLB-IL100 1,9-di(3-vinyl-imidazolium) nonane bis(trifluoromethyl) sulfonyl imidate

imidazolium cation

N

+

imidazolium cation

N

N C9 spacer

+

N

vinyl moiety

bis(trifluoromethyl) sulfonyl imidate anion

5

© 2012 Sigma-Aldrich Co. All rights reserved.

SLB-IL76

Phase Structure Tri(tripropylphosphoniumhexanamido)triethylamine bis(trifluoromethylsulfonyl)imide

6

© 2012 Sigma-Aldrich Co. All rights reserved.

sigma-aldrich.com/il-gc

Visual Representation

7

© 2012 Sigma-Aldrich Co. All rights reserved.

sigma-aldrich.com/il-gc

• FAME Selectivity • PAH Analysis • Aromatics in Gasoline • New GC Applications

8

© 2012 Sigma-Aldrich Co. All rights reserved.

SLB-IL111

Phase Structure 1,5-Di(2,3-dimethylimidazolium)pentane bis(trifluoromethylsulfonyl)imide

9

© 2012 Sigma-Aldrich Co. All rights reserved.

sigma-aldrich.com/il-gc

C18:1 cis/trans FAME Isomers in Partially Hydrogenated Vegetable Oil (PHVO) SLB-IL111 vs. SP-2560: 100 m columns

SLB-IL111: Increased retention of cis relative to trans

complimentary selectivity

10

© 2012 Sigma-Aldrich Co. All rights reserved.

sigma-aldrich.com/il-gc

Positional cis/trans FAME Isomers column: SLB-IL111, 200 m x 0.25 mm I.D., 0.20 µm oven: 168 °C isothermal inj.: 250 °C det.: FID, 250 °C carrier gas: hydrogen, 1 mL/min. injection: 1 µL, 100:1 split liner: 4 mm I.D., split liner with cup (2051001)

column: SP-2560, 200 m x 0.25 mm I.D., 0.20 µm oven: 180 °C isothermal inj.: 250 °C det.: FID, 250 °C carrier gas: hydrogen, 1 mL/min. injection: 1 µL, 100:1 split liner: 4 mm I.D., split liner with cup (2051001)

PHVO total FAMEs

27.0

28.0

29.0 30.0 Time (min)

31.0

PHVO total FAMEs

32.0

20

22 Time (min)

PHVO total FAMEs on SLB-IL111 @ 150 °C isothermal 30.0

© 2012 Sigma-Aldrich Co. All rights reserved.

11

31.0

32.0 33.0 Time (min)

34.0

35.0

SLB-IL60

Phase Structure 1,12-Di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide

12

© 2012 Sigma-Aldrich Co. All rights reserved.

sigma-aldrich.com/il-gc

Why SLB-IL60? • Improved inertness over SLB-IL59 • Complimentary selectivity to PEG phases

• Higher maximum temperature than PEG phases • Lower bleed than PEG phases

13

© 2012 Sigma-Aldrich Co. All rights reserved.

Improved Inertness C1-C12 n-Alcohols - 110 °C isothermal

Severe tailing

SLB-IL59 C9-C12 alcohols adsorbed

C8-OL

0

10

20

30

Time (min)

C8-OL

SLB-IL60

C9-OL C10-OL

0 14

© 2012 Sigma-Aldrich Co. All rights reserved.

C11-OL

10

20 Time (min)

C12-OL

30

Complimentary Selectivity to Wax 2 4

1

5 3

Wax

6 7

2

4

6

8

9

8

10 Time (min)

12

14

16

18

2 4 1

3

5

SLB-IL60

6

7

8

2

4

6

15

© 2012 Sigma-Aldrich Co. All rights reserved.

8 Time (min)

10

9

12

14

16

1.

2-Octanone

2.

n-C15

3.

n-Octanol

4.

n-C16

5.

n-C17

6.

n-C18

7.

2,6-Dimethylaniline

8.

2,6-Dimethylphenol

9.

n-C20

Cis/ trans FAMES on SLB-IL60 vs. PEG Type Phase C18:1n9 cis / trans FAMEs @ 180°C

cis

trans

SLB-IL60 11.0

12.0

Time (min)

13.0

14.0

PEG 15.0

21.0

C18:2n6 cis & trans FAME Isomers- 180°C

22.0

Time (min)

23.0

24.0

C18:2n6 tt

C18:2n6 tt C18:2n6 cc

16

10

12

14

© 2012 Sigma-Aldrich Co. All rights reserved.

Time (min)

16

C18:2n6 cc

18

20

26

28

30 Time (min)

32

34

Fame Elution order-

SLB-IL 60 compared to Wax

17: C18:1n9c 18: C18:1n9t 19: C18:2n6c 20: C18:2n6t

26: C20:3n6 28: C20:3n3 35: C22:5n3 36: C24:0 37: C22:6n3

SUPELCOWAX 10

SLB-IL60

Notable elution changes from wax column: 1. C18:1n9t elutes before C18:1n9c 2. C18:2n6t elutes before C18:2n6c 3. C20:3n3 elutes before C20:3n6 4. C22:6n3 elutes before C22:5n3 and C24:0 C24:0

17

© 2012 Sigma-Aldrich Co. All rights reserved.

• FAME Selectivity • PAH Analysis • Aromatics in Gasoline • New GC Applications

18

© 2012 Sigma-Aldrich Co. All rights reserved.

• PAHs are analyzed from a variety of matrices – Soil – Water – Tissues – Foods

• PAHs of interest consist of several isomer sets, including: – Phenanthrene / Anthracene – Benzo[a]anthracene / Chrysene/Triphenylene/Cyclopenta(c,d)pyrene – Benzo[b] / Benzo[k] / Benzo [j] fluoranthene

• Requirements of GC column for analysis – Must resolve isomeric sets – Higher maximum temp.- be able to elute heavier PAHs – Low bleed for MSDs (when used) – Reduced analysis time for high throughput applications

19

© 2012 Sigma-Aldrich Co. All rights reserved.

Structures of EPA 610 PAHs (48743-U) + Benzo(j)fluoranthene Naphthalene [*{BSI}; *{ISO}]

Naphthalene (m/z 128)

Acenaphthene(m/z 154) Acenaphthene

Acenaphthylene (m/z 152)

Fluorene (m/z 166)

Fluoranthene Fluoranthene (m/z 202)

Fluorene

Pyrene Pyrene (m/z 202)

50-32-8 [CAS Number]

Benzo(a)pyrene (m/z 252)

Benzo(a)anthracene (m/z 228)

Benzo(b)fluoranthene (m/z 252) 205-99-2 [CAS Number]

Indeno(1,2,3-cd)pyrene

Anthracene

Phenanthrene

Phenanthrene (m/z 178)

Indeno(1,2,3-cd)pyrene (m/z 276)

Anthracene (m/z 178)

Chrysene (m/z 228)

205-82-3 [CAS Number] Benzo(j)fluoranthene (m/z 252)

53-70-3 [CAS Number](m/z 278) Dibenzo(a,h)anthracene

207-08-9 [CAS Number] Benzo(k)fluoranthene (m/z 252)

191-24-2 [CAS Number] Benzo(ghi)perylene (m/z 276) 20

© 2012 Sigma-Aldrich Co. All rights reserved.

SLB-5MS: Non Polar Silphenylene Stationary Phase • Silphenylene polymer provides extremely low bleed and eliminates backbitting seen in traditional 5% phenyl phases • Low bleed at high temperature is desirable for MS applications and to more quickly elute heavy or “sticky” PAHs • EPA 610 uses a GC method that includes a nonpolar high temperature PAH analysis with the limitation of coelluting isomer sets

CH3 H3C

O

H3C

Si

Si

CH3

CH3

(a)

H3C

O

Si

CH3

H3C

Si

O

Si

O

CH3

CH3

m

n

m

(b)

n

Figure 2. (a)-Polysilphenylene Stationary Phase (SLB 5MS); (b)-poly(diphenyl dimethyl siloxane) (typical 5%phenyl) 21

© 2012 Sigma-Aldrich Co. All rights reserved.

Analysis of Polynuclear Aromatic Hydrocarbons (PAHs) • EPA 610 Polynuclear Aromatic Hydrocarbon Mixture : • 1. • 2. • 3. • 4. • 5. • 6. • 7. • 8.

Naphthalene Acenaphthene Acenaphthalene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene

9. 10. 11. 12. 13. 14. 15. 16.

Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Indenol(1,2,3-cd)pyrene Benzo(ghi)pyrene

22

© 2012 Sigma-Aldrich Co. All rights reserved.

PAH Separation on a Traditional 5% Silphenylene Phase column: oven: det.: flow rate: liner: sample:

SLB® 5ms, 30 m x 0.25 mm x 0.25 µm df (28471-U) 80 C, 15 C/min to 250 C, 8 C/min to 325 C (15 min) MSD, full scan, 45-500 m/z, 300 C interface He carrier gas, 1.2 mL/min, constant flow 4 mm I.D. FocusLiner™ EPA 610 PAH mix + benzo(j)fluoranthene, diluted to 100 µg/mL in methylene chloride 3 4

5,6

7

8

9,10

11,12,13

2 15,16 14 17

1. Naphthalene 2. Acenapthene 3. Acenaphthalene 4. Fluorene 5. Phenanthrene 6. Anthracene 7. Fluoranthrene 8. Pyrene

9. Benzo(a)anthracene 10. Chrysene 11. Benzo(b)fluoranthene 12. Benzo(k)fluoranthene 13. Benzo(j)fluoranthene 14. Benzo(a)pyrene 15. Dibenz(a,h)anthracene 16. Indeno(1,2,3-cd)pyrene 17. Benzo(ghi)pyrene

1

0

10

© 2012 Sigma-Aldrich Co. All rights reserved.

20 Time (min)

30

23

Coelutions with Typical 5% Phenyl Selectivity

18.0

19.0

20.1

20.3

Time (min)

Benzo(a)anthracene/Chrysene

0

© 2012 Sigma-Aldrich Co. All rights reserved.

20.5

20.7 Time (min)

20.9

21.0

Benzofluoranthenes (b,k,j)

10

20 T ime (min)

21.1

23.6

23.8

24.0 Time (min)

24.2

24.4

Dibenzo(a,h)pyrene/Indeno (1,2,3-cd)pyrene

30

24

Ionic Phase Evaluated •SLB-IL111- 1,5-Di(2,3-dimethylimidazolium)pentane nTf2 •SLB-Il82- 1,12-Di(2,3-dimethylimidazolium)dodecane nTf2 •SLB-Il76-Tri(tripropylphosphoniumhexanamido)triethylamine nTf2 •SLB-IL59-1,12-Di(tripropylphosphonium)dodecane nTf2

•nTf2= bis(trifluoromethylsulfonyl)imide anion

25

© 2012 Sigma-Aldrich Co. All rights reserved.

SLB-IL111- Dimethylimidazolium Dicationic Phase column: oven: det.: carrier gas: injection: liner: sample:

SLB-IL111, 30 m x 0.25 mm I.D., 0.20 µm df (28927-U) 150 °C (0), 20 °C/min to 300 °C, 300 °C (hold) MSD, full scan, 45-500 m/z, 300 °C interface He, 1 mL/min, constant flow 250 °C, 1 µL splitless (1 min) 4 mm I.D. FocusLiner™ with taper EPA 610 PAH mix +Benzo(j)fluoranthene, diluted to 100 ppm in methylene chloride

Benzo(a)anthracene and Chrysene coelute

Benzo[g,h,i]perylene did not elute

Benzo[b],[k],[j] fluoranthene isomers

10

20

30

40 Time (min)

Indeno[1,2,3-cd]pyrene

50

Dibenzo[a,h]anthracene

60 26

© 2012 Sigma-Aldrich Co. All rights reserved.

SLB-IL82- Dimethylimidazolium Dicationic Phase column: oven: det.: carrier gas: injection: liner: sample:

SLB-IL82, 30 m x 0.25 mm I.D., 0.20 µm df (29479-U) 150 °C (0), 20 °C/min to 300 °C, 300 °C (hold) MSD, full scan, 45-500 m/z, 300 °C interface He, 1 mL/min, constant flow 250 °C, 1 µL splitless (1 min) 4 mm I.D. FocusLiner™ with taper EPA 610 PAH mix, diluted to 100 ppm in methylene chloride

Benzo(a)anthracene and Chrysene partially resolved Benzo[b],[k] fluoranthene isomers

10

20

30

40 Time (min)

50

Indeno[1,2,3-cd]pyrene, Dibenzo[a,h]anthracene, Benzo[g,h,i]perylene did not elute

60

70

27

© 2012 Sigma-Aldrich Co. All rights reserved.

SLB-IL76-Tripropylphosphonium Tricationic Phase column: oven: det.: carrier gas: injection: liner: sample:

SLB-IL76, 30 m x 0.25 mm I.D., 0.20 µm df (28893-U) 150 °C (0), 20 °C/min to 300 °C, 300 °C (hold) MSD, full scan, 45-500 m/z, 300 °C interface He, 1 mL/min, constant flow 250 °C, 1 µL splitless (1 min) 4 mm I.D. FocusLiner™ with taper EPA 610 PAH mix, diluted to 100 µg/mL in methylene chloride

12

14

16 Time (min)

18

20

Benzo(a)anthracene/Chrysene Benzo[b],[k] fluoranthene

10

© 2012 Sigma-Aldrich Co. All rights reserved.

20

30 T i me (mi n)

40

Indeno[1,2,3-cd]pyrene, Dibenzo[a,h]anthracene, Benzo[g,h,i]perylene did not elute

50

60

28

SLB-IL59-Tripropylphosphonium Dicationic Phase column: oven: det.: carrier gas: injection: liner: sample:

SLB-IL59, 30 m x 0.25 mm I.D., 0.20 µm df (28891-U) 150 °C (0), 20 °C/min to 300 °C, 300 °C (hold) MSD, full scan, 45-500 m/z, 300 °C interface He, 1 mL/min, constant flow 250 °C, 1 µL splitless (1 min) 4 mm I.D. FocusLiner™ with taper EPA 610 PAH mix, diluted to 100 µg/mL in methylene chloride

19.0

20.0

21.0 Time (min)

22.0

23.0

Benzo(a)anthracene/Chrysene Benzo[b],[k] fluoranthene isomers

10

© 2012 Sigma-Aldrich Co. All rights reserved.

20

30 T i me (mi n)

Dibenzo[a,h]anthracene, Indeno[1,2,3-cd]pyrene, Benzo[g,h,i]perylene

40

50

60

29

Selectivity Comparison- Cation Effects •Imidazolium Cations • SLB-IL111 more polar than SLB-IL82- Less retention of PAHs • Polarity of the imidazolium cations results in long retention times • Loss of resolution of Benzo(a)anthracene and Chrysene

•Phosphonium Cations • SLB-IL76 more polar than SLB-IL59- Increased retention of PAHs possibly due to bulky side grups • Increased retention times for SLB-IL82 vs SLB-IL59 • Better resolution of Benzo(a)anthracene and Chrysene • SLB-IL59 shows best resolution of PAHs 30

© 2012 Sigma-Aldrich Co. All rights reserved.

Comparison of Phosphonium IL Chemistries IL66 B

8.90

9.00 Time (min)

9.10

26.0

9.20

16.8 Time (min)

© 2012 Sigma-Aldrich Co. All rights reserved.

20

30 Time (min)

27.0

Benzofluoranthenes

17.0

Benzo(a)anthracene/Chrysene

10

K

Time (min)

Anthracene/Phenanthrene

16.6

J

40

Benzo(ghi)perylene

50

60

31

Comparison of Phosphonium IL Chemistries IL40

J, K

B

8.70

8.80 Time (min)

8.90

26.1

9.00

Anthracene/Phenanthrene

17.70

17.80

17.90 Time (min)

18.00

© 2012 Sigma-Aldrich Co. All rights reserved.

20

30 Time (min)

26.5

26.7 Time (min)

26.9

27.0

27.1

27.3

Benzofluoranthene

51.0 Time (min)

18.10

Benzo(a)anthracene/Chrysene

10

26.3

40

Dibenz(a,h)anthracene/ Indeno(1,2,3-cd)pyrene

50

60

32

Results- Phosphonium Phase Comparison • All four phosphonium phases showed similar PAH retention times • SLB-IL59 and SLB-IL60 had the best selectivity and resolved all of the PAH’s evaluated • Experimental IL66 incorporated a larger anion and showed a marginal increase in improved thermal stability but loss of selectivity • Experimental IL40 incorporated a different phosphonium cation and showed an improved thermal stability up to 320 C, but a loss of selectivity for the benzofluoranthenes and the late eluting PAHs • SLB-IL59 shows best resolution of PAHs and thermal stability and was chosen for further optimization studies.

33

© 2012 Sigma-Aldrich Co. All rights reserved.

Conditions for Comparison of Film Thickness columns: SLB-IL59. 30 m x 0.25 mm I.D. x 0.20 µm df (28891-U) SLB-IL59, 30 m x 0.25 mm I.D. x 0.10 µm df SLB-IL59, 30 m x 0.25 mm I.D. x 0.05 µm df oven: 150 C, 20 C/min to 300 C, (hold) det.: MSD, full scan, 45-500 m/z, 300 C interface flow rate: 1 mL/min, constant flow, He injection: 250 C, 1 µL, 100:1 split liner: 4 mm I.D. FocusLiner with taper sample: EPA 610 PAH mix

34

© 2012 Sigma-Aldrich Co. All rights reserved.

Comparison of Film Thickness – 0.2 µm df

13.0 Time (min)

14.0

Benzo(a)pyrene/Chrysene

20.0

21.0 Time (min)

22.0

Benzo[b],[k] fluoranthene

10

20

30 Time (min)

40

50

60

35

© 2012 Sigma-Aldrich Co. All rights reserved.

Comparison of Film Thickness – 0.10 µm df

10.0 Time (min)

11.0

Benzo(a)pyrene/Chrysene

14.0 Time (min)

15.0

Benzo[b],[k] fluoranthene

10

20

30 Time (min)

40

50

60 36

© 2012 Sigma-Aldrich Co. All rights reserved.

Comparison of Film Thickness – 0.05 µm df

8.2

8.4

8.6

8.8

9.0

Time (min)

Benzo(a)pyrene/Chrysene

10.4

10.6

10.8 Time (min)

11.0

11.2

Benzo[b],[k]fluoranthene

10

© 2012 Sigma-Aldrich Co. All rights reserved.

20

30 Time (min)

40

50

60 37

Results- Film Thickness Comparison • SLB-IL59 with three different film thicknesses were evaluated • The retention times of the PAHs decreased (as expected) mas the film thickness was reduced • The larger PAHs, Dibenz(a,h)anthracene, Indenol(1,2,3cd)pyrene, and Benzo(ghi)pyrene took over 60 minutes to elute on the 0.2µm film thickness • The larger PAHs eluted in under 20 minutes with the 0.05µm film thickness but the was a loss of baseline resolution of the isomer pairs of Benzo(a)pyrene/Chrysene and the Benzofluoranthenes . • Decreased sample capacity was also evident by peak fronting of later eluting compounds with the 0.05µm film. • The film thickness was further optimized and a 0.07 µm df film was chosen for additional studies. 38

© 2012 Sigma-Aldrich Co. All rights reserved.

Comparison of Carrier Gas column: oven: det.: flow rate: injection: liner: sample:

SLB-IL59, 30 m x 0.25 mm I.D. x 0.07 µm df 110 C, 16 C/min to 300 C, (hold) FID, 310 C He: 1.5 mL/min constant flow; H2: 1.5 mL/min constant flow 300 C, 1 µL, 100:1 split 2 mm I.D. FocusLiner with taper EPA 610 PAH mix + Benzo(j)fluoranthene

Helium, 1.5 mL/min

10

20 Time (min)

© 2012 Sigma-Aldrich Co. All rights reserved.

30

39

Comparison of Carrier Gas (contd.) Hydrogen, 1.5 mL/min

10

20

30

T i me (mi n)

H2 provides a faster separation of PAHs compared to He at a comparable flow rate. The heaviest PAHs (Dibenz(a,h)anthracene, Indenol(1,2,3-cd)pyrene, and Benzo(ghi)pyrene) are eluted nearly 5 minutes faster. There is a more stable baseline observed under hydrogen flow. There is no loss in resolution of Benzo(a)anthracene/Chrysene and the Benzofluoranthenes. Use of H2 in an optimal column dimension would serve to further improve run time for these compounds. © 2012 Sigma-Aldrich Co. All rights reserved.

40

Optimization of Column Dimensions • Choose a narrower bore, 0.18mm ID for higher efficiency at a shorter column length in order to provide shorter retention times and retain resolution. • Determined the phase ratio for a 0.25mm ID x 0.07 µm df, column which translates to a 0.05 µm df film thickness for the 180 µm df I.D. • Used H2 carrier gas at an optimum flow rate for this geometry and ran under constant flow conditions. • Optimized inlet and oven conditions to maximize introduction of analytes to the column and reduce band broadening of late eluting PAHs. • Able to elute all of the EPA 610 PAHs in under 15 minutes and achieve baseline resolution of all of the isomer sets.

41

© 2012 Sigma-Aldrich Co. All rights reserved.

PAHs on SLB-ILPAH, 20 m x 0.18 mm I.D., 0.05 µm df

© 2012 Sigma-Aldrich Co. All rights reserved.

sigma-aldrich.com/gc

42

Selected Isomers B J K

6.20 Time (min)

6.30

9.10

10.70

10.80

10.90

11.00

Time (min)

Anthracene/Phenanthrene

9.00

10.60

9.20

Time (min)

Benzo(a)anthracene/Chrysene

Benzofluoranthenes

9.00

9.10 Time (min)

9.20

Triphenylene/Chrysene

9.30

9.10

9.20

9.30

9.40

9.50

Time (min)

Cyclopenta(cd)pyrene/Chrysene

43

© 2012 Sigma-Aldrich Co. All rights reserved.

• FAME Selectivity • PAH Analysis • Aromatics in Gasoline • New GC Applications

44

© 2012 Sigma-Aldrich Co. All rights reserved.

SLB-IL D3606 60m x 0.25 mm ID x 0.20 µm df • Specially prepared and tested ionic liquid column meets the requirements for resolving benzene and toluene from alcohol interferences (i.e. ethanol, butanol) octane

1200

Rs Rs Rs

= 12.6 = 45 = 5.6

benzene

(MIBK/n-propanol)

800

(toluene/isobutanol)

600

ethanol

200 0 0 © 2012 Sigma-Aldrich Co. All rights reserved.

toluene

n-propanol

400

sec-butanol

(ethanol/benzene)

1000

iso-butanol

1400

2

4

6 Time (min)

8

n-butanol MIBK

10

12

Reformulated Gasoline with D3606 Oxygenates 50 ºC (6 min) to 265 ºC (10 min) at 15 ºC/min. 1.Methyl tert-butyl ether (MTBE) 2.tert-Amyl butyl ether (TAME) 3. Ethanol 4. Benzene 5. sec-butanol 6. n-propanol 7. iso-butanol

1800 1600

8. toluene 9. n-butanol 10. ethyl benzene 11. methyl iso-butyl ketone (MIBK 12. p-xylene 13. m-xylene 14. o-xylene.

8

1400 1200 1000

13

800 600

14

1 2

400

10

3

4

200

12 11

5 6 7 9

0 0

10 Time (min)

20

46

© 2012 Sigma-Aldrich Co. All rights reserved.

• FAME Selectivity • PAH Analysis • Aromatics in Gasoline • New GC Applications

47

© 2012 Sigma-Aldrich Co. All rights reserved.

Fusel Oils Separation-

Active amyl alcohol (2-methyl-1-butanol) and Isoamyl alcohol (3-methyl-1-butanol), 90ºC Isothermal Coelution 3-methyl-1-butanol

2-methyl-1-butanol

0

2 4 Time (min)

SLB-IL60 48

© 2012 Sigma-Aldrich Co. All rights reserved.

6

1.0

2.0

3.0 Time (min)

4.0

5.0

6.0

Supelcowax 10

Ionic Liquid Water Separations Column: SLB-IL 94, SLB-IL 107, IL 200 30m x 0.25mm x 0.20umdf Oven: 35˚C, 4˚C/min to 125˚C, 125˚(2min) Det: TCD, 300˚C Flow Rate: 25cm/sec constant pressure He Inj: 250˚C,1uL, split, 100:1 Liner: 4mm ID cup design split liner Samples: IL Solvent Test Mix: MeOH, EtOH, Acetone, IPA, n-propanol, 1-butanol, 1,4-Dioxin in water HO

OH O

O F3 C P+

C5H10

C5H10

N

N

N

O

F3 C

N

SLB-IL 107

O

P+ HN

HN

O-

S

O-

O NH

N O

S

O

O

C5H10 O

O

3 N O

O S

CF 3

S

CF 3

O

(NTF 2-)

P+

_ H 3C

O

SLB-IL 94

O

F3C S O

N _ O

+

N

O O

O

CF3 S

O

IL 200

O

O N

+

N

CH3

49

© 2012 Sigma-Aldrich Co. All rights reserved.

IL Solvent Mix on SLB-IL 94 30m x 0.25mm x 0.20umdf 2

6,7,8,9 4

5 3 1

0

2

4

6

8 Time (min)

10

12

14

Figure 9. Solvent test standard programmed separation on SLB-IL 94; 1) MeOH, 2) MeCl2 3) acetone, 4) ethanol, 5) IPA, 6) n-Propanol, 7) 1,4dioxane, 8) butanol 9) water © 2012 Sigma-Aldrich Co. All rights reserved.

50

IL Solvent Mix on SLB-IL 107 30m x 0.25mm x 0.20umdf 1

9

4,5

6,7

2

3

8 0

2

4

6

8 Time (min)

10

12

14

Figure 8. Solvent test standard programmed separation on SLB-IL 107; 1) MeCl2, 2) acetone, 3) IPA, 4) ethanol, 5)methanol, 6) n-Propanol, 7) 1,4dioxane 8) butanol, 9) water © 2012 Sigma-Aldrich Co. All rights reserved.

51

SLB-IL 107 SPME Fiber Test STD 3

2

1. 2. 3. 4. 5. 6.

6 4

Acetone IPA EtOH/MeOH N-propanol/1,4-Dioxane Butanol H2O

1

5

10

20 Time (min)

Figure 1. Temperature programmed run for SPME Fiber Test Standard on SLB-IL 107. 1uL injection of standard with varied concentrations (10-200ppm) at 100:1 split. Standard is prepared in water. 52

© 2012 Sigma-Aldrich Co. All rights reserved.

Grappa Bassano EtOH

C4-OH’s

C5-OH’s

Silane impurity

H2O

furfural

10

20 Time (min)

Figure 4. Temperature programmed run for Grappa Bassano on SLB-IL 107. . SPME Carboxen extraction. Selected peaks with high confidence of identification.

53

© 2012 Sigma-Aldrich Co. All rights reserved.

Grappino EtOH

C4-OH’s C5-OH’s

H2O

furfural

10

20 Time (min)

Figure5. Temperature programmed run for Grappino on SLB-IL 107. . SPME Carboxen extraction. Selected peaks with high confidence of identification.

© 2012 Sigma-Aldrich Co. All rights reserved.

54

Tito’s Vodka EtOH

H2O

10

20

Time (min) Figure6. Temperature programmed run for Tito’s Vodka on SLB-IL 107. . SPME Carboxen extraction. Selected peaks with high confidence of identification.

© 2012 Sigma-Aldrich Co. All rights reserved.

55

Ouzo EtOH P-anisole H2O

Aromatic derivatives Phthalates and FAMEs

0

10

20 Time (min)

30

Figure9. Temperature programmed run for Ouzo on SLB-IL 107. . SPME Carboxen extraction. Selected peaks with high confidence of identification.

© 2012 Sigma-Aldrich Co. All rights reserved.

56

Summary A series of polar and highly polar Ionic Liquid stationary phases have been evaluated.

Changing the functionality of the cation or anion group will change the selectivity of the IL phase. The GC column polarity scale demonstrates that the Ionic Liquid stationary phases are typically polar to highly polar. A new phase SLB-IL111 is the most polar phase commercially available. Ionic Liquid phases can be tailored to provide unique separations for a variety of applications including FAMEs, PAHs, Aromatics in gasoline and Water and alcoholic beverage samples.

57 © 2012 Sigma-Aldrich Co. All rights reserved.

Acknowledgements Prof. Daniel Armstrong, U. Texas Arlington Prof. Luigi Mondello, U. Messina, Messina, Italy Dr. Pierluigi Delmonte, US FDA Supelco R&D Team Our customers worldwide

58

© 2012 Sigma-Aldrich Co. All rights reserved.

Thank You

59

© 2012 Sigma-Aldrich Co. All rights reserved.

sigma-aldrich.com/il-gc

Suggest Documents