PIEZOMAGNETIC Ni-Mn-Co - FERRITES FOR ULTRASONIC AND RADIOELECTRONIC APPLICATIONS

PIEZOMAGNETIC Ni-Mn-Co - FERRITES FOR ULTRASONIC AND RADIOELECTRONIC APPLICATIONS Z. Kaczkowski To cite this version: Z. Kaczkowski. PIEZOMAGNETIC Ni...
Author: Daniel Sanders
4 downloads 2 Views 986KB Size
PIEZOMAGNETIC Ni-Mn-Co - FERRITES FOR ULTRASONIC AND RADIOELECTRONIC APPLICATIONS Z. Kaczkowski

To cite this version: Z. Kaczkowski. PIEZOMAGNETIC Ni-Mn-Co - FERRITES FOR ULTRASONIC AND RADIOELECTRONIC APPLICATIONS. Journal de Physique Colloques, 1985, 46 (C6), pp.C6429-C6-432. .

HAL Id: jpa-00224944 https://hal.archives-ouvertes.fr/jpa-00224944 Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destin´ee au d´epˆot et `a la diffusion de documents scientifiques de niveau recherche, publi´es ou non, ´emanant des ´etablissements d’enseignement et de recherche fran¸cais ou ´etrangers, des laboratoires publics ou priv´es.

JOURNAL DE PHYSIQUE Colloque C6, suppl6ment au n09, Tome 46, septembre 1985

PIEZOMAGNETIC Ni-Mn-Co

-

page C6-429

FERRITES FOR ULTRASONIC AND RADIOELECTRONIC

APPLICATIONS Z.

Kaczkowski

P o l i s h Academy o f S c i e n c e s , I n s t i t u t e o f P h y s i c s , A t . Lotnikdw 32/46, 02-668 Warszawa, Poland

-

R6surnS L'efficacitg glectro-acoustique des ferrites est deux ou mSme cinq fois celle des matgriaux metalliques tels que le nickel ou le Permendur, et elle est superieure 3 75%. Deux sortes de transducteurs ultrasonores 3 bore de ferrites, pour les vibrations longitudinales et radiales jusqu'3 100 kHz, sont discutges.

A b s t r a c t - The e l e c t r o a c o u s t i c a l e f f i c i e n c y o f t h e f e r r i t e s i s two o r even f i v e t h a t of coaaon n e t a l l i c m a t e r i a l s s u c h as n i c k e l o r Permendur and it i s s u p e r i o r t o 75%. Two k i n d s o f u l t r a s o n i c f e r r i t e t r a n s d u c e r s : f o r t h e l o n g i t u d i n a l and t h e r a d i a l v i b r a t i o n up t o 1 0 0 H z a r e d i s c u s s e d .

U l t r a s o n i c v i b r a t i o n can be e a s i l y e x c i t e d i n m a g n e t o s t r i c t i v e f e r r i t e s . The f e r r i t e s as non conducting f e r r i m a g n e t i c s e x h i b i t v e r y low e l e c t r i c a l l o s s e s . T h e i r e l a s t i c d i s s i p a t i o n a t h i g h f r e q u e n c i e s i s a l s o v e r y low. S o l i d piezomagnetic f e r r i t e t r a n s d u c e r s used i n u l t r a s o n i c equiprnents have much h i g h e r e l e c t r o a c o u s t i c e f f i c i e n c y t h a n t h a t of n i c k e l and Permendur. T h e i r C u r i e t e m p e r a t u r e i s u s u a l l y h i g h e r t h a n t h a t o f n i c k e l and it i s s u p e r i o r t o a l l p i e z o e l e c t r i c m a t e r i a l s . T h e i r m a g n ? t o s t r i c t i o n and piezomagnetic p r o p e r t i e s a r e t h e same o r d e r of magnitude as t h e s e o f m e t a l l i c m a g n e t o s t r i c t i v e m a t e r i a l s , i n cor~lmonu s e , e.g. /I-8/.

I1

-

PLAGN~OSTRZCTION AID UTISOT1IOPY

I n t h e a l l c l a s s i c a l a p p l i c a t i o n s , a h i g h v a l u e of ma:n?tostriction

i s c o n s i d e r e d unfavourable. On t h e o t h e r h x d , , n a g n e t o s t r i c t i o n can be a s o u r c e of u l t r a s o u n d s . For T a b l e 1. S a t u r a t i o n i n d u c t i o n Bs, good piezoaagne t i c t r a n s d u c e r s Curie temperature Tc, s a t u r a t i o n - except high n a g n e t o s t r i c t i o n m a g n e t o s t r i c t i o n As and aagneto(A z 20 x. 10-6) - a very low ma&c r y s t a l l i n e a n i s o t r o p y c o n s t a n t K? n e t o c r y s t a l l i n e anisocropy is of t h e s i m p l e f e r r i t e s from lists n e c e s s a r y . The m a g n e t o c r y s t a l l i g i v e n by /9-11/ lie a n i s o t r o p y /9-12/ depends mainly on t h e chemical composit i o n . Revalent d a t a f o r tile simple P e r r i t e s a r e l i s t e d i n T a b l e 1. A l l t h e s e f e r r i t e s have n e g a t i v e c o n s t a x Kq except Cof e r r i t e mhich h a s Kq p o s i t i v e and i t s a b s o l u t e v a l u e is one o r d e r o f magnitude h i g h e r t h a n t h a t o f t h e o t ~ i e rs i m p l e f e r r i tes. Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985682

C6-430

I11

JOURNAL DE PHYSIQUE

- PIEZO~~G~TE31 IC FERXIYES

Piezomagnetic f e r r i t e s a r e t h e s o f t magnetic f e r r i t e s i~ihiche x h i b i t h i g h m a g n e t o s t r i c t i o n , v e r y low m a g n e t o c r y s t a l l i n e a n i s o t r o p y and A s o l i d s o l u t i o n of good piezomagnetic p r o p e r t i e s , e.g. /2-6,13,14/. s i m p l e f e r r i t e s having n e g a t i v e m a g n e t o c r y s t a l l i n e a n i s o t r o p y const a n t Kq w i t h few p e r c e n t c o b a l t f e r r i t e may e x h i b i t a z e r o t r a n s i t i o n p o i n t around room t e m p e r a t u r e o r o t h e r d e s i r e d t e m p e r a t u r e /1214/. The 9oLf i o n s produce a l a r g e p o s i t i v e c o n t r i b u t i o n t o KI. Copp e r f e r r i t e i n a s o l i d s o l u t i o n of t h e s e f e r r i t e s a c t s a s a f l u x deminishing t h e p o r o s i t y . The piez0:::agneti.c p r o p e r t i e s were i n v e s t i f e r r i t e s T h e i r compositions mere d e f i n e d g a t e d i n t h e Ni-I&-Co-Cu by t h e f o r n u l a : N i 3 08~x,y~;ln0~02CoxCuyFe204, where x was changing * J froin 0 ( A 1 f e r r i t e ) t o 0.027 ( E l f e r r i t e ) . Copper was dopped o n l y i n t i l e c a s e o f X j f e r r i c e (y = 3.14). Author o f t h e f e r r i t e technology was P r o f . d r R.dadas. The chernical c o m p o s i t i o n , d e n s i t y and u a g n e t i c p r o p e r t i e s Ere g i v e n i n -Table 2 /15/. The m a t e r i a l i n v e s t i g a t i o n s were c a r r i e d o u t on t h e t o r o i d - a 1 shape s a n p l e s /13-15/.

.

T a b l e 2. Chemical co~dposir;ion, s a t u r a t i o n i n d u c t i o n Bs r e l a t i v e v a l u e s o f i n i c i a l ( p 1 ) a n d n a s i m u r r ( p ~ ) s t a t i cp e r m e a b i l i t y and Censit; /15/ Type

>1 h2 "2

Composition

BS T 0.242 0320

Nio.980~mo. 02Fe204 N~0.~68~~0.02C00.012Fe2 Fe 04 N 1 3 . 8 1 8 1 d n ~ . ~ 2 C 0 0 . 0 1 2 ~ ~ 02041 ~ 0:299 0.284 IYiO. 9 5 3 f E 3 . 0 2 ~0~. 0 2 7 ~ ~ 2 ~ 4 0.265 Ni0.965 0.02~~0.0152 4

~ ( i PI, c-3 r-1 25 34 48

65

52

103 134 302 303 265

f hlg/m3] 5.09 510

5:23 5.11 5.12

T h e i r mean d i a m e t e r mas 1 7 mm and h i g h t f r o n 5.5 t o 6.0 mm. The weight o f samples &as about 5g. T h e i r 2emanence Br was about h a l f o f s a t u r a t i o n inc'u.ction Bs ( B /Br = 0.49-3.64) and c o e r c i v i t y Hc was changing from 290 t o 540 ~ 7 /15/. n S a t u r a t i o n u a g n e t - o s t r i c t i o n was changing Ln t h e r a n & e from -25 x 10-6 t o -28 10-6. The mnagnetomechanical c o u p l i n g c o e f f i c i e n t k a n c o t h e r magnetic, mechanical and piezomabnetic p r o p e r t i e s , s u c h a s r e v e r s i b l e p e r m e a b i l i t y f r e e v i b r a t i n g ( f u r ) and c l a n p e ? sample ( / u s ) , nodu.li o f e l a s t i c i t y a t const a n t magnetlc l ' i e l d E x and a t c o n s t a n t i n 2 u c t i o n %, p i e z o n a g n e t i c o r s t r e s s s e n s i t i v i t y c o e f f i c i e n t d , d p a n i c e l ma.;ne t o s t r i c t i o n coeff i c i e n t h and -Lao o t h e r piezoaat;ne-cic coefficients e and g , were i n Sone c h a s a c t e r i s t i c f o r t:rese f e r r i t e s a r e l i s t e d v e s t i g a t e d /13-23/. i n T a b l e 3. T a b l e 3 . Piezoma+nei-ic p r o p e r t i e s o f i n v e s t i g a t e d f e r r i t e s i n i t i a l -. , maximum -,, ; i i i r i m u ~-min end a t maximum o f Ir -kn v a l u e s ) /k-8, l 3 - 2 l /

{

These d a t a a r e comparable w i t h r e s u l ' t s p r c s e n t e Z 5y van d e r B u r g t , Golyamina, Ki.kuchi and o t h e r s /I-61.

C l a s s i c a l piezoma;.netic resona-Lor i s a r o d i n s i d e e x c i t a t i n g c o i l magnetized by a h o r s e s h o e magnet. I f t h e f r e q u e n c y o f AC i s aiade t h e equency of l o n g i t u d i n a l v i b r a t i o n o f t h e r o d same a s t h e n a - t u r a l ) ( E d p ) l f 5 , Lhe a l o u n t of n o t i o n produced by a g i v e n , f = a ~ ~ p l i t u dofe c u r r e n t is g r e a t l y i n c r e a s e d , dependly on m e c l ~ a n i c a l q u a l i t y f a c t o r 2 /17,21,22/. The f r e e p o l e s developed a t t h e r o d ends by a a g n e t i z a t i o n a r e o f t e n s u f f i c i e n t t o demagnetize t h e f e r r i t e r o d i f t h e magnet i s removed. If, i n s t c a d of a r o d , @ t o r o i d a l f e r r i t e sample i s n a g n e t i z e d by d i r e c t c u r r e n t f l o w i n g i n a p o l a r i z i n g minding, no f r e e p o l e s a r e c r e n t c d . T h i s f e r r i t e sample, e x c i t e s by AC f i e l d , d-ue m a g n e t o s t r i c t i o n w i l l v i b r a t e and t h e resonan' f r e q u e ncy of r a d i a l v i b r a t i o n s i l l b e g i v e n by f r = ( n / n d ) ( ~ ~ / ~ ) la?h ~e r,e 1 is l e n g h t of r o d d - mean d i a a e t e r , 33 - modulus o f e l a s t i c i t y a t c o n s t a n t magnetic f i e l d and P - d e n s i t y . If trwo o r more r o d s a r e j o i n e d by t ~ por ~ e p e n d i c u l a r arms it w i l l b e a v1ind.o~t r a n s d u c e r which can v i b r a t e v ~ i t hl o n g i t u d i n a l v i b r a t i o n and t h e n a g n e t i c c i r c u i t w i l l b e c l o s e d . The window and r a d i a l t r a n s d u c e r c o r e s made from f e r r i t e s a r e p r e s e n t e d i n F i g . 1. The dependences of t h e r e s o n a n t f r e q u e n c i b s , ragnei-o!mchnnical c o u p l i n g c o e f f i c i e n t k and

-

Yindow and r a d i a l f e r r i t e t r a n s d u c e r c o r e s of r e s o n a n c e Pig. 1 f r e q u e n c i e s 2 7 , 69, 84 an6 1 0 3 kHz and t r z n s d u c e r f o r 6 9 1612 magnetic permeabill-ky on tlie magnetic p o l a r i z a t i o n f o r t h e window t r a n s d u c e r s a r e g i v e n i n Pig. 2 a and b. These t r a n s d u c e r s ivere made from A 2 f e r r i t e , which have t h e h i g h e s t mechanical q u a l i t y f a c t o r ( F i g . 2c ) /17,19/.

V

- SOi;s

;?x;il;vS

ON APPLICATIOI$E

P i e z o s a g n e t i c f e r r i t e s because of t h e i r v e r y h i g h r e s i s t i v i t y , h i g h m a g n e t o s t r i c t i o n and good p i e z o n a g n e t i c p r o p e r t i e s a r e s u i t a b l e m a t e r i a l s f o r t h e c o r e s o f t h e 1ol-l and mediura power u l t r a s o n i c t r a n s d u c e r s up t o 1 0 3 kHz. These t r a n s d u c e r s have found a p p l i c a t i o n s i n echo r a n g i n g d e v i c e s f o r d e t e c t i n g f i s h s h o a l s i n u l t r a s o n i c process o r s , w e l d e r s and i n u l t r a s o n i c c l e a n i n g equipments. The a c o u s t i c power i s r a n g i n g from 5 t o 1 0 ~ / c m 2 o f r a d i a t i n g s u r f ace. Minizum e l e c t r o a c o u s t i c a l e f f i c i e n c y i s changing from 75 t o 93%. F e r r i t e s a r e c h e a i c a l l y i n e r t and c a v i t a t i o n e f f e c t s a r e developed s l o w l y . Their corrosion resisCance is f a r highcr than n e t o l l i c transducers. f~laxiuuma l l o a a b l e a n p l i t u d e o f t h e ~ e c h z i n i c a lv i b r a e i o n s i s changing

JOURNAL DE PHYSIQUE

C6-432

-

Pig. 2 Resonznt f r e q u e n c y f r , magnetoneclnanical c o u p l i n g k a ~ d r e v e r s i b l e permeability o f f r e e v i b r a t i n g viindow f e r r i t e 27 (a) and 6 9 kHz (b) t r a n s d u c e s and motional impedance c i r c l e s of t h e r a d i a l A2 f e r r i t e t r a n s d u c e r s (c )

c

from I ' to 13 in r e s p e c t i v e l y f o r 1 0 3 and 20 kHz. Another group of a p p l i c a t i o n s s r a d i o e l e c t r o n i c s , e.g. m a , n c t o s t r i c t i v e f i l t e r s , e l e c t r o m e c h a n i c a l f i l t e r s , o s c i l i a ~ o r sand m a g n e t o s t r i c t i v e d e l a y 33.1 t h e s e c a s e s t h e s t a b l e magnetic, mechanical and l i n e s /2,4-6,11/. piezomagnetic p r o p e r t i e s i n t h e t e m p e r a t u r e ran,e from 230 t o 400 K a r e n e c e s s a r y /I-6/. S m a l l additions of c o b a l t i n n i c k e l f e r r i t e s i n p r o v e t h e magnctomechanical c o u p l i n g and change t h e t e a p e r a t u r e dependences o f t h e piezot1a:net i c p r o p e r t i e s /2-6, 1 3 , 1 4 , 18/. \

rnP~LIENC%S

/I/ 2

/3/

/4/

/5/ /6/

..,

vaa d e r B u r $ t , C.,. , i4i;lips 2 e s . Rep. 8 / 1953) 91. van d e r B u r g t , C.,(I~. ~ l e c t r o n i clecr~nolo+.y (19601 333. Golyamina, I.E., S o v i e t Pro,ress i n A p p l i c a t l o a U l t r a s o n i c s ( l 9 6 4 ) 183. K i k u c h i , Y., [ ed.) U l t r a s o n i c T r a n s d u c e r s , Ccrona Publ. Go. Ltd. Tokyo 7969. B e r l i n c o u r t , D.A., C u r r a n , D.9. and J a f f e , 2 h y s i c e l A c o u s t i c s , ?A (1964) 169. X j e w s k i , li., Kacr;koaski, Z., S t o l a r s k i , Ti., P i e z o t r o n i s c i i e Bauelemente, i n : Handbuch d e r E l e k t r o n i k , F r a n c i s - T e r l z gMiinchen (1979 ) 268. Kaczkowski, Z . , B u l l . Acad. P o l . S c i . S e r . S c i . Teclln. (1965) 41. ICaczkov!ski, Z., Sov. khys. Acoust. 2 (1965) 29. S m i t , J. an? , r i j n , 9.1.J., F e r r i t e s , P h i l i p s T e c h . L i b r . , Eindhoven 1959. ~ r u ~ i z l r aS., , Physik d e r Z e r r i t e , Alrcdernia Ver. I r a g . 1973. Darby , X. I. and I s a a c , B.C. , IS= Trans. :,:zgn. ILLG-I 3 (1574) 2.59. Slonczewski, J., J. Pliys. Chen. S o l i d s , 1 8 ( 1 4 0 m . Kaczkowski, Z., X l e c t r o n TechaoloLy 2 , 3 n (1974) I S . K a c z k o ~ ~ s k iZ., , J. de 2hys. 38 (1977) C1-233. Kaczkowski, Z., X l e c t r o n Technology 6 , 3/LC (1972) 103. Kaczkowski, Z . , E l e c t r o n Technology 7, 1 / 2 (1974) 91. Kaczkowski, Z . , Proc. 7 t h I n t . C o a z r e s s on A c o u s t i c s 4 (1971) ;4l. Kaczkowski, Z., J. ~ ~ ~ a gJaagn. n. hiat. 41 (1984) 338. Kaczkowski, Z., Arch. :lech. 22 ( l c / 8 1 r 4 9 1 . Kaczkoaski, Z . , Proc. o f Vibr. T r o b l . 2 (1956) 237. Kaczko.rski, Z . and Walecki, T., P e r r i t e s : Proc. Inc. ConI. 1989 ~ a ~ a(1981) n 229. Kaczkowski, 2 . an2 lilalecki, T., J.Magn.?!Iagn.:lat. 9 (1984) 335.

-

,