Piezoelectric Sensor. Gurkan Erdogan March 28, 2008

Piezoelectric Sensor Gurkan Erdogan March 28, 2008 Content • Piezoelectric Sensor Design – Strain to Voltage Equation • Interface Circuit for – Dec...
Author: Eileen Burns
88 downloads 0 Views 604KB Size
Piezoelectric Sensor Gurkan Erdogan March 28, 2008

Content • Piezoelectric Sensor Design – Strain to Voltage Equation

• Interface Circuit for – Decreasing HP Filter Cut-off Frequency – Adding Offset Voltage • Wireless Transmission

(-6V

+6V)

(-3V (0V

+3V) +6V)

– Voltage to Frequency Conversion (expects 0V 8V) – Antenna Transmission (what is the loss here?) – Frequency to Voltage Conversion

• S626 Data Acquisition

Piezoelectric Sensor Geometry Strain to Voltage Equations

Sensor Equation

D(3×1) = d

d (3×6 )

σ (6×1)

D(3×1) d (d3×6 )

Electric Displacement Coulomb meter 2 Direct Piezoelectric Coefficient Matrix Coulomb Newton or meter Volt

σ (6×1)

Stress Vector

Newton meter 2

Why do we need to use double layer? •

When force is applied to a long piezoelectric cantilever beam, one side is in tension while the other side will be in compression. No electrical output can be obtained from this homogenous body by bending.

Bimorphs •

Bimorphs made with two halves of separate beams with electrodes in between, on the top and bottom surfaces a) series connection: If the beams are poled in the opposite direction then on the application of a force 'F' the voltage generated on the outer electrodes will be additive b) parallel connection:If the beams are poled in the same direction, the additive output can be obtained by connecting the outer electrodes and the center electrode

Approximation of Normal Stress • There are two ways to approximate the stress distribution. – Calculate an average stress – Maximum stress at the root of the cantilever beam is assumed to be the same throughout the beam surface.

1st Way: From Strain to Voltage v& p =

D& 3 = d 31σ&11 i = q& = ∫∫ D& 3 dA3 v& p C p = ∫∫ d 31σ&11 dl c dbc

=

q = vin C p

ε = scσ Ycε = σ

d 31Yc Cp

∫∫ ε&

11

dl c dbc

d 31Ycbc ε&11dl c C p l∫c

 d 31Ycbc l c  1 ε&11dl c  = ∫   Cp  l c lc  =

= ∫∫ d 31Ycε&11dl c dbc ε&11 =

Sq Cp Cp Sq

ε&11

v& p

S q = d 31Yc bc l c 1  ε&11 =  ∫ ε&11dl c   lc l  c  

Real Values for Piezo-Crystal ε 0 = 106 − 113 [ pF m] dielectric tc = 40 [µm]

C p = 1.38 [nF ]

C N 2  S q = 2.48 × 10 −6  m = C 2  N m

Yc = 2 − 4 [GPa ] bc = 12 [mm]

l c = 30 [mm]

1.38 ×10 −9 C V 1 −3  F = = . 56 × 10 = =   C S q 2.48 × 10 −6 C V

Cp

S q = ...

∆l max = 100 [µ m]

kε o A tc

S q = d 31Ycbc l c

d 31 = 23 [ pico(C N )]

∆l min = 1 [µ m]

Cp =

ε min

∆l min 1×10 −6 = = = 100 µ − strain lc 30 ×10 −3

V pmin =

ε max

∆l max 100 ×10 −6 = = = 10000 µ − strain −3 lc 30 × 10

V pmax =

Sq Cp Sq Cp

ε min ≅ 0.6volt ε max ≅ 6volt

2st Way: Maximum Stress M ( x ) = F (L − x ) Fx 2 (3L − x ) w(x ) = 6 EI y σ (x ) = M (x ) Ix ymax I 1T = FL I 2 3EI 1 T = wmax 3 L L I 2 3ET = wmax 2 2L

σ max = M max

σ max

M max = M (x ) x =0 = FL wmax = w(x ) x = L

ymax =

L3 =F 3EI

F = wmax

3EI L3

T 2 1T I 2  12  T  = FL  3  W T  2 = FL

OR

σ max =

6L F 2 WT

σ avr =

σ max 4

2st Way: Max Stress

http://piezo.com/tech2intropiezotrans.html

D3 = d 31σ 11

http://www.morganelectroceramics.com/capacitors/index.html

Q = ∫∫ D3 dA = ∫∫ d 31σ 11 dA 6 L2 3L2 = d 31 F WL′ = d 31 2 F 2 4WT 2T kε (WL′) Q C= o C T   3L2  T 3L = d 31 2 F  F  = g 31 ( ) 2 T k ε WL 2 WT   o 

V=

Interface Circuit

Why do we use Interface Circuit? Two Main Parts for Two Main Reasons; • Extra Capacitor for Decreasing the Cut-off Freq. – Piezo Sensor coupled with a load resistor acts like a high pass filter. In order to read low frequency signal we need to decrease the cutoff frequency.

• Voltage Divider for Adding Offset Voltage – We can only transmit positive voltage signal so we need to add an offset voltage to the circuit. Maybe we could have done this with an OpAmp.

Elements of the Circuits • • • • • •

Vp Cp RL Ce Vos R1,R2

: : : : : :

Voltage Generated in Piezo Sensor Piezoelectric Strip Capacitor Load Resistor Extra Capacitor Offset Voltage Resistors of Voltage Divider

Simple Connection with a Load Resistor Time Domain

iC (t ) = iR (t ) C p [v&P (t ) − v&L (t )] =

vL (t ) RL

C p RL v&L (t ) + vL (t ) = C p RL v&P (t )

τ HP = C p RL

τ HP v&L (t ) + vL (t ) = τ HP v&P (t )

Frequency Domain C p = 2.6 [nF ] RL = 22 [M Ω] f cHP =

1 ≅ 2.8 [Hz ] 2π × τ HP

τ HP sVL (s ) + VL (s ) = τ HP sVP (s ) VL (s )(τ HP s + 1) = τ HP sVP (s ) τ s V (s ) H (s ) = L = HP VP (s ) τ HP s + 1

Connecting an External Capacitor - 1 Time Domain

iC p (t ) = iCe (t ) + iRL (t ) C p [v&P (t ) − v&L (t )] = Ce v&L (t ) +

(C

p

vL (t ) RL

+ Ce )RL v&L (t ) + vL (t ) = RLC p v&P (t )

τˆHP v&L (t ) + vL (t ) = τ HP v&P (t ) C p = 2.6 [nF ] Ce = 22 [nF ]

RL = 22 [M Ω]

τˆHP = (C p + Ce )RL fˆcHP =

1 ≅ 0.3 [Hz ] 2π × τˆHP

Frequency Domain

τˆHP sVL (s ) + VL (s ) = τ HP sVP (s ) VL (s )(τˆHP s + 1) = τ HP sVP (s ) V (s ) τ s H (s ) = L = HP VP (s ) τˆHP s + 1

Connecting an External Capacitor - 2

 VL H = 20 log10  VP VL = 10 ≅

−19.5 20

VP 10

VP

  = −19.5  

Adding an Off-Set Voltage - 1

Time Domain

[

]

C p v& p (t ) − v& L (t ) = iC p (t ) C e v& L (t ) = iCe (t )

v L (t ) = i R2 (t ) × R2

Frequency Domain

[

]

C p s V p − VL = I C p Ce sVL = I Ce VL = I R2 × R2

vos (t ) − v L (t ) = i R1 (t ) × R1

Vos − VL = I R1 × R1

iC p (t ) + i R1 (t ) = iCe (t ) + i R2 (t )

I C p + I R1 = I Ce + I R2

Adding an Off-Set Voltage - 2 I C p + I R1 = I Ce + I R2

Cont. in Frequency Domain

[

]

C p s V p − VL + C p sV p − C p sVL +

Vos − VL V = Ce sVL + L R1 R2

1 1 1 Vos − VL = Ce sVL + VL R1 R1 R2

 1 1  1  C p s + + Ce s +  VL = C p sV p + Vos R1 R2  R1   1  1  (C p + Ce )s +  VL = C p sV p + Vos RL  R1  (RL (C p + Ce )s + 1)VL = RLC p sVp + RL Vos R1

(τˆHP s + 1) VL = τ HP sV p + RL Vos R1

VL =

τ HP s

(τˆHP s + 1)

Vp +

RL 1 Vos R1 (τˆHP s + 1)

Adding an Off-Set Voltage – 3 AC Equivalent

1 1 1 = + RL R1 R2

R1 R2 RL = R1 + R2

τˆHP = (C p + Ce )RL VL =

τ HP s

(τˆHP s + 1)

Vp

Exact same thing as back in slide 11

Wireless Transmitter 390 Ω

1000 pF

G + 12 V

G

G

G G

3 .6 V

G

G

250 kΩ

G

100 MΩ 1000 pF

100 MΩ

1000 Ω

G V piezo

+ parallel180k

Voltage to Frequency Conversion AD 654

Voltage to Frequency Conversion •

Output Frequency Range

– pin 1:

f = 0−5

[kHz]



Digital Ground

– pin 2:

VDGND = 0

[volt ]



Timer Resistor

– pin 3:

RT = 250

Vin = Vmin : Vmax



Input Voltage Range

– pin 4:



Positive Voltage Supply

– pin 5:



Timer Capacitor

– pin 6&7: (see below)



Positive Voltage Supply

– pin 8:

(

= 0.1 : Vs+ − 4 = ~ 0− ~ 8

[kΩ]

)

[volt ] Vs− = 0

[volt ]

CT = 0.64

[nF ]

Vs+ = 12

[volt ]

Conversion Equation Q CT = VCT

Vin IT = RT

Q = VCT CT f out Q = f out VCT CT I T = f out VCT CT Vin = = f out VCT CT RT

VCT = 10 V RT = 250 kΩ

f out

Vin 1 = VCT RT CT

f out

Vin+ 1 = 10 RT CT

CT = 1000 pF

τ = RT CT = 250 µ sec

AD654 Block Diagram VS = +12 Volt

CT = 1 picoFarad VLOGIC = + 4.9 Volt

VIN = + 5 Volt

RPU = 980 Ohm

R1 + R2 = RT = 250 kiloOhm

VS = 0 Volt

f out

Vin 1 = = 400 × Vin 3 −9 10 250 ×10 × 1×10

(

) (

)

FOUT vs. VIN(piezo)

Wireless Receiver + Frequency to Voltage Conversion AD 650

F/V Converter

Complete Circuit

F/V Converter Equations t os − 3 × 10 −7 Cos = 6.8 × 10 3

RINT

max Vout = max f in × α × tos

C INT =

Mechanical Response Time # of Time Constants × R INT

F/V Conversion – Ripples (1) 1 Vout (s ) C INT = 1 I IN (s ) s + RINT CINT

v&out (t ) +

vout (t ) i (t ) = RINT C INT C INT v&out (t ) = − v(t ) = e



vout (t ) i (t ) + RINT CINT C INT t

τ INT

t

v(0) + ∫ e



(t −τ ) τ INT

0

α i (τ ) =  0 x(t ) = e

1 i (τ ) dτ C INT

0 ≤ τ ≤ tos tos < τ ≤ T

A(t − t o )

t

x(to ) + ∫ e A(t −τ ) B u (τ ) dτ to

F/V Conversion – Ripples (2) vmax = e



t os

τ INT

t os

vmin + ∫ e



(t os −τ ) τ INT

0

v(t ) = e



t

τ INT

t

v(0) + ∫ e



(t −τ ) τ INT

0

α 0 ≤ τ ≤ tos i (τ ) =   0 tos < τ ≤ T

1 i (τ ) dτ C INT

=e =e

=e

vmin = vmax e









t os

τ INT

vmin + e

t os

τ INT

vmin + e

t os

τ INT

vmin + e



t os

τ INT

=e



t os

τ INT

vmin + e

α C INT



t os

τ INT

α C INT



t os

τ INT

(T −tos ) τ INT

1 α dτ C INT



t os

τ INT

t os

∫e

τ τ INT



0 t os

∫e

τ τ INT



0

τ  α  τ INT τ INT e  C INT  

τ INT α 

t os

τ INT

e C INT  t t − os − os  = e τ INT vmin + RINT α 1 − e τ INT  

   

t os

0

 − 1  

   

F/V Conversion – Ripples (3) vmin = vmax e vmax = e



t os

τ INT



(T −tos ) τ INT

t − os  τ vmin + RINT α 1 − e INT  

   

(T −tos )

t − os   τ vmax = e vmax e + RINT α 1 − e INT      (T −t os ) t t − os − − os     vmax 1 − e τ INT e τ INT  = RINT α 1 − e τ INT          −

t os

τ INT

vmax = RINT α



1− e 1− e

vmin = RINT α

1− e 1− e

vmax − vmin

τ INT









vmax − vmin

vmax − vmin

t os

τ INT

vmax − vmin

T

τ INT tos

τ INT T

τ INT



e

(T −tos ) τ INT

t (T −tos ) t (T −t os ) − os − − os −   τ τ τ INT INT INT 1− e e −e e τ INT  = RINT α  −  T T − −   τ INT τ INT 1− e 1− e 

(T −t os ) t T − os − −    1 − e τ INT − e τ INT + e τ INT  = RINT α   T −   1 − e τ INT   t (T −tos ) T T T T − os − −  τT  − e INT + e τ INT e τ INT + e τ INT e τ INT − e τ INT e τ INT = RINT α  T T T −  τ INT τ INT τ INT −e +e e  (T −tos ) tos  τT  τ τ  − e INT + e INT + e INT − 1  = RINT α   T   1 − eτ INT  

    

Ripple Simulation – Limit Cycle