Paris meteorite elemental and structural imaging analysis

Paris meteorite elemental and structural imaging analysis. M. Noun1, 2,*, B. Nsouli2, T. Calligaro3, D. Baklouti4, R. Brunetto4, 4 1 L. d’Hendecourt...
Author: Guest
4 downloads 0 Views 5MB Size
Paris meteorite elemental and structural imaging analysis. M. Noun1, 2,*, B. Nsouli2, T. Calligaro3, D. Baklouti4, R. Brunetto4, 4

1

L. d’Hendecourt and S. Della Negra . 1 : Institut de Physique Nucléaire d’Orsay, UMR 8608, Université Paris Sud/CNRS, 91406 Orsay Cedex, France 2: Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut, Lebanon 3 : Centre de Recherche et de Restauration des Musées de France (C2RMF), a joint laboratory of the French Ministry of Culture and of the Centre National pour la Recherche Scientifique (CNRS - UMR 171) 4 : Institut d’Astrophysique Spatiale, CNRS, UMR-8617, Université Paris-Sud, Bât. 121, 91405 Orsay Cedex, France *present adress: Institut de chimie des Substances Naturelle, UPR 2301, CNRS, 1 Av. de la terrasse, 91198 Gif sur Yvette

The “Paris” meteorite is a fragment from a primitive asteroid or comet. A piece of this meteorite is provided by the Museum National d’Histoire Naturelle in Paris and classified as a carbonaceous chondrite CM type belonging to the undifferentiated family [1,2]. These meteorites keep the memory of their primary history and contain carbonaceous matter which permits to understand the prebiotic chemistry. A piece of this meteorite has been analysed with traditional astrophysical methods (μ-IR, μ-Raman) and these measurements have been completed by Ion Beam Analysis, mainly µPIXE using a micro beam, which permitted to get an image of the elemental compositions of different areas. In this presentation we shall describe the recent results obtained by cluster SIMS imaging. This ToF analyzes are performed using bismuth (Bi+, Bi3+ at 25 keV) and argon Ar1000 (10keV) beams delivered by an ION-TOF V of the Lebanese Atomic Energy Commission (CNRSL-LAEC). ToF-SIMS permits to identify and localize different elements, minerals and different types of organic compounds (CN-CNO, CxHy, CxHyNO and CxHyNO2 ). An additional analysis using the argon clusters is done in order to localize, in depth, the different components and especially the organic ones. These spectra will be compared with a few organic fingerprints and synthesized molecules in the assumed space conditions. In this presentation, we shall discuss the “Paris” meteorite results obtained with μ-IR, μ-Raman with an emphasis on the ToF-SIMS measurements completed by the IBA results [2]. We shall conclude the presentation by showing the advantage of this multi-technique approach. [1] Bourot-Denise, M., et al.: Paris: the slightly altered, slightly metamorphosed CM that bridges the gap between CMs and COs,41st LPSC, 2010. [2] M. Noun, M. Roumie, T. Calligaro, B. Nsouli, R. Brunetto, D. Baklouti, L. d’Hendecourt, S. DellaNegra, On the Characterization of the “Paris” Meteorite Using PIXE, RBS and Micro PIXE, accepted in Nucl. Instr.and Meth. in Phys. Res. B (2013)

Paris meteorite elemental and structural imaging analysis.* M. Noun1,2,*, T. Calligaro3, D. Baklouti4, R. Brunetto4, L. D’Hendecourt4, B. Nsouli2, S. Della-Negra1

1 : Institut de Physique Nucléaire d’Orsay, Université Paris Sud 2 : Lebanese Atomic Energy Commission, National Council for Scientific Research 3 : Centre de Recherche et de Restauration des musées de France, Palais du Louvre, Paris, France. 4: Institut d’Astrophysique Spatiale, CNRS, Université Paris-Sud *present adress: Institut de chimie des Substances Naturelle, UPR 2301, CNRS, 1 Av. de la terrasse, 91198 Gif sur Yvette

*A Multi Technique Analysis Approach 1

600

Paris Meteorite

400

200

5

0

μm 0

250

500

750

3 Video Snapshot at Start of Measurement 1 2 4

1,37 Kg

5 mm

CM (Mighei fell in Ukraine in 1889, Murchison )

1mm

• Very small chondrules (ф: 0.1 - 0.3 mm) • Light colored inclusions • Phyllosilicates , olivine and magnetite • “Rich” in complex organic compounds: amino acids

 Determination of its elemental, mineral and organic composition  Distribution of these components in their environment Bourot-Denise, M., et al.: Paris: the slightly altered, slightly metamorphosed CM that bridges the gap between CMs and COs,41st LPSC, 2010. M. Noun, M. Roumie, T. Calligaro, B. Nsouli, R. Brunetto, D. Baklouti, L. d’Hendecourt, S. Della-Negra, NIM B, 306 (2013), 261–264

2

Multi-Technique Analysis Approach 10-20 µm

Ion Beam Analysis ( µPIXE, µPIGE)  Quantification and localization of :  Elements  Minerals

µ-IR nm to µm

 Identification of:  Minerals  Aromatic carbons

µ-Raman

 Identification, localization and environment of:

nm to µm

 Elements  Minerals and organic compounds

Cluster SIMS Imaging (static and dynamic) 0-10 nm

0-few100 nm

M. Noun, M. Roumie, T. Calligaro, B. Nsouli, R. Brunetto, D. Baklouti, L. d’Hendecourt, S. Della-Negra, NIM B, 306 (2013), 261–264

3

Multi-Technique Analysis Approach

µ-IR nm to µm

 Identification of:  Minerals  Aromatic carbons

µ-Raman nm to µm

4

µ-Infra Red Analysis Confocal reflection NicPlan microscope, coupled to a FTIR spectrometer

Spot ~20 μm 4 cm-1 resolution

Sulfate

Carbonate (+sulfate) CH stretch relative Phyllosilicates depth ~ 5% Anhydrous silicate A.Rivikin,J. P. Emery, Nature, 464 (2010), 1322-1323

5

µ-Raman Analysis Laser 532 nm P = 0,3 -1mW spot ~ 2 μm

DXR Raman spectrometer

6

µ-Raman Analysis Laser 532 nm P = 0,3 -1mW spot ~ 2 μm

Forsterite Mg2SiO4

Calcite CaCO3

Enstatite MgSiO3 Enstatite

Calcium sulfate CaSO4

MgSiO3 D&G Bands

Calcite

DXR Raman spectrometer 7

Multi-Technique Analysis Approach 10-20 µm

Ion Beam Analysis ( µPIXE, µPIGE)  Quantification and localization of :  Elements  Minerals

8 M. Noun, M. Roumie, T. Calligaro, B. Nsouli, R. Brunetto, D. Baklouti, L. d’Hendecourt, S. Della-Negra, NIM B, 306 (2013), 261–264

µPIXE analysis H+, 3MeV, Φ ~20 µm

9

Cu

Ni

Fe

Zn

S

K

Ca

Si

Mg

Cr

Ti

Al

Cl

Na

V

Co

µPIXE analysis H+, 3MeV, 1x1 mm, I

Suggest Documents