Book Title:-Engineering Thermodynamics Author :-D.P. Mishra ISBN :-9788131515969 Price :-INR 475 Pages :-522 Edition :-1 Binding :-Paperback Imprint :-Cengage Learning India © Year :-2012

Overview : 'Engineering Thermodynamics is designed for undergraduate and postgraduate engineering students interested in learning fundamental aspects of engineering thermodynamics. The text presents the subject using a precise and logical presentation of basic concepts and principles, which is essential for a better understanding of engineering thermodynamics. It focuses on using simple level mathematics to derive the fundamental equations behind concepts and principles and exposes students to realistic problems to be encountered in general engineering practices.

Table Of Content : '1. Introduction 2. Energy Interactions 3. Thermodynamic Properties 4. First Law of Thermodynamics 5. First Law of Thermodynamics. Control Volume Analysis 6. Second Law of Thermodynamics 7. Entropy 8. Availability and Irreversibility 9. Gas Power Cycles 10. Vapour Power Cycles 11. Refrigeration Cycle 12. Non-reacting Mixtures and Psychrometry 13. Chemically Reacting Mixtures 14. Thermodynamic Property Relations Appendix A. Physical and Critical Constants Appendix B. Data Tables for Steam and Refrigerants Appendix C. Triple-Point Data Table Appendix D. Thermochemical Data Table Appendix E. Fuel Property Table Appendix F. Air Property Table Appendix G. Requisite Charts and Figures

Book Title:-Thermal Sciences Author :-Merle C. Potter ISBN :-9788131529461 Price :-INR 750 Pages :-798 Edition :-1 Binding :-Paperback Imprint :-Cengage Engineering © Year :-2004

Overview : 'This book allows a school to use a common text for two key subjects: thermodynamics and fluid mechanics, with a short introduction to heat transfer. Taking a well-balanced approach, the authors clearly demonstrate the connections among the three interrelated subjects. Because of the consistent terminology and continuity, students will find it easier to learn the three subjects. Instructors will also find it easier to refer to material covered earlier (e.g. thermodynamic laws as applied in fluid mechanics and heat transfer). The book provides the appropriate amount of material for non-mechanical engineering students. Addressing various levels of difficulty, the authors provide a wealth of examples and exercises, including synthesis problems and design problems.

Table Of Content : 'Part 1: THERMODYNAMICS. 1. CONCEPTS, DEFINITIONS, AND BASIC PRINCIPLES. Introduction. Thermodynamic Systems and Control Volumes. Macroscopic Description. Properties and State of a System. Equilibrium Processes and Cycles. Units. Density, Specific Volume, Specific Weight. Pressure. Temperature. Energy. 2. PROPERTIES OF PURE SUBSTANCES. Introduction. The p-T-v Surface. The Liquid-Vapor Region. Steam Tables. Equations of State. Equations of State for a Nonideal Gas. Summary. 3. WORK AND HEAT. Introduction. Definition of Work. Quasiequilibrium Work Due to a Moving Boundary. Nonequilibrium Work. Other Work Modes. Heat Transfer. Summary. 4. THE FIRST LAW OF THERMODYNAMICS. Introduction. The First Law of Thermodynamics Applied to a Cycle. The First Law Applied to a Process. Enthalpy. Latent Heat. Specific Heats. The First Law Applied to Various Processes. General Formulation for Control Volumes. Applications of the Energy Equation. Transient Flow. The First Law with Heat Transfer Applications. 5. THE SECOND LAW OF THERMODYNAMICS. Introduction. Heat Engines, Heat Pumps, and Refrigerators. Statements of the Second Law of Thermodynamics. Reversibility. The Carnot Engine. Carnot Efficiency. Entropy. Entropy for Ideal Gas with Constant Specific Heats. Entropy for Ideal Gas with Variable Specific Heats. Entropy for Substances such as Steam, Solids, and Liquids. The Inequality of Clausius. Entropy Change for an Irreversible Process. The Second Law Applied to a Control Volume. 6. POWER AND REFRIGERATION VAPOR CYCLES. Introduction. The Rankine Cycle. Rankine Cycle Efficiency. The Reheat Cycle. The Regenerative Cycle. Effect of Losses on Power Cycle Efficiency. The Vapor Refrigeration Cycle. The Heat Pump. 7. POWER AND REFRIGERATION GAS CYCLES. Introduction. The Air Standard Cycle. The Carnot Cycle. The Otto Cycle. The Diesel Cycle. The Brayton Cycle. The Regenerative Gas-Turbine Cycle. The Combined Rankine-

Brayton Cycle. The Gas Refrigeration Cycle. 8. PSYCHOMETRICS. Introduction. Gas-Vapor Mixtures. Adiabatic Saturation and Wet-Bulb Temperatures. The Psychometric Chart. Air-Conditioning Processes. 9. COMBUSTION. Combustion Equations. Enthalpy of Formation, Enthalpy of Combustion, and the First Law. Adiabatic Flame Temperature. Part 2: FLUID MECHANICS. 10. BASIC CONSIDERATIONS. Introduction. Dimensions, Units, and Physical Quantities. Continuum View of Gases and Liquids. Pressure and Temperature Scales. Fluid Properties. Conservation Laws. Thermodynamic Properties and Relationships. 11. FLUID STATICS. Introduction. Pressure at Point. Pressure at Variation. Fluids at Rest. Linear Accelerating Containers. Rotating Containers. 12. INTRODUCTION TO FLUIDS IN MOTION. Introduction. Description of Fluids in Motion. Classification of Fluid Flows. The Bernoulli Equation. 13. THE INTEGRAL FORMS OF THE FUNDAMENTAL LAWS. Introduction. The Three Basic Laws. System-to-Control-Volume Transformation. Conservation of Mass. Energy Equation. Momentum Equation. 14. DIMENSIONAL ANALYSIS AND SIMILITUDE. Introduction. Dimensional Analysis. Similitude. 15. INTERNAL FLOWS. Introduction. Enhanced Flow and Developed Flow. Laminar Flow in a Pipe. Laminar Flow Between Parallel Plates. Laminar Flow Between Rotating Cylinders. Turbulent Flow in a Pipe. Uniform Turbulent Flow in Open Channels. 16. EXTERNAL FLOWS. Introduction. Separation. Flow Around Immersed Bodies. Lift and Drag on Airfoils. Potential Flow Theory. Boundary Layer Theory. 17. COMPRESSIBLE FLOW. Introduction. Speed of Sound and the Mach Number. Isentropic Nozzle Flow. Normal Shock Wave. Shock Waves in Converging-Diverging Nozzles. Oblique Shock Wave. Isentropic Expansion Waves. APPENDIX. ANSWERS TO ED PROBLEMS. INDEX.

Book Title:-Thermodynamics for Engineers with MindTap Author :-Kenneth A. Kroos | Merle C. Potter ISBN :-9788131520468 Price :-INR 699 Pages :-596 Edition :-1 Binding :-Paperback Imprint :-Cengage Engineering © Year :-2015

Overview : Table Of Content : PART I. CONCEPTS AND BASIC LAWS. 1. Basic Concepts and Systems of Units. 1.1. Introduction. 1.2. Dimensions and Units. 1.3. Properties, Processes, and Equilibrium. 1.4. Pressure. 1.5. Temperature. 1.6. Energy. 1.7. Summary. 2. Properties of Pure Substances. 2.1. Phases of a Substance. 2.2. Internal Energy and Enthalpy. 2.3. Refrigerants. 2.4. Ideal Gas Law.

2.5. Real Gas Equations of State. 2.6. Internal Energy and Enthalpy of Ideal Gases. 2.7. Specific Heats of Liquids and Solids. 2.8. Summary. 3. The First Law for Systems. 3.1. Work. 3.2. Heat Transfer. 3.3. Problem Solving Method. 3.4. The First Law Applied to Systems. 3.5. The First Law Applied to Various Processes. 3.6. Cycles. 3.7. Summary. 4. The First Law Applied to Control Volumes. 4.1. The Conservation of Mass for Control Volumes. 4.2. The First Law for Control Volumes. 4.3. Unsteady Flow. 4.4. Devices Combined into Cycles. 4.5. Summary. 5. The Second Law of Thermodynamics. 5.1. Second Law Concepts. 5.2. Statements of The Second Law of Thermodynamics. 5.3. Cycle Performance Parameters. 5.4. The Carnot Cycle. 5.5. Summary. 6. Entropy. 6.1. Inequality of Clausius. 6.2. Entropy. 6.3. of an Entropy Change in Substances.

6.4. Entropy Changes for a Control Volume. 6.5. Isentropic Efficiency. 6.6. Exergy (Availability) and Irreversibility. 6.7. Summary. 7. Thermodynamic Relations. 7.1. The Maxwell Relations. 7.2. The Clapeyron Equation. 7.3. Relationships for Internal Energy, Enthalpy, Entropy, and Specific Heats. 7.4. The Joule-Thompson Coefficient. 7.5. Real Gas Effects. 7.6. Summary. PART II. APPLICATIONS. 8. The Rankine Power Cycle. 8.1. Energy Sustainability. 8.2. The Rankine Cycle. 8.3. Modified Rankine Cycles. 8.4. Cogeneration Cycles. 8.5. Losses in Power Plants. 8.6. Summary. 9. Gas Power Cycles. 9.1. Air-Standard Analysis. 9.2. Reciprocating Engine Terminology. 9.3. The Otto Cycle. 9.4. The Diesel Cycle. 9.5. Other Gas Power Cycles. 9.6. Brayton Cycle. 9.7. The Combined Brayton-Rankine Cycle. 9.8. Summary.

10. Refrigeration Cycles. 10.1. The Vapor Compression-Refrigeration Cycle. 10.2. Cascade Refrigeration Systems. 10.3. Absorption Refrigeration. 10.4. Gas Refrigeration Systems. 10.5. Summary. 11. Mixtures and Psychrometrics. 11.1. Gas Mixtures. 11.2. Air-Vapor Mixture and Psychrometry. 11.3. Air-Conditioning Processes. 11.4. Summary. 12. Combustion. 12.1. Introduction. 12.2. Combustion Reactions. 12.3. The Enthalpy of Formation and the Enthalpy of Combustion. 12.4. Adiabatic Flame Temperature. 12.5. Actual Flame Temperature. 12.6. Equilibrium Reactions. 12.7. Summary. PART III, CONTEMPORARY TOPICS. 13. Alternative Energy Conversion. 13.1. Biofuels. 13.2. Solar Energy. 13.3. Fuel Cells. 13.4. Thermoelectric Generators. 13.5. Geothermal Energy. 13.6. Wind Energy. 13.7. Ocean and Hydroelectric Energy.

13.8. Summary. 14. Thermodynamics of Living Organisms. 14.1. Energy Conversion in Plants. 14.2. Energy Conversion in Animals. 14.3. Generation of Biological Work. 14.4. Summary. Appendix. A Conversion of Units. B Material Properties. C Steam Tables &ndash SI Units. Steam Tables &ndash English Units. D Thermodynamic Properties of R134a&ndash SI Units. Thermodynamic Properties of R134a &ndash English Units. E Properties of Ammonia&ndash SI Units. F Ideal-Gas Tables &ndash SI Units. G Psychrometric Chart. H Compressibility Chart. I Enthalpy Departure Charts. J Entropy Departure Charts. Index

Book Title:-Principles of Engineering Thermodynamics with MindTap Author :-John R. Reisel ISBN :-9789386650368 Price :-INR 550 Pages :-576 Edition :-1 Binding :-Paperback Imprint :-Cengage Engineering © Year :-2016

Overview : Written in an informal, first-person writing style that makes abstract concepts easier to understand, PRINCIPLES OF ENGINEERING THERMODYNAMICS transforms the way students learn thermodynamics. While continuing to provide strong coverage of fundamental principles and applications, the book asks students to explore how changes in a particular parameter can change a device's or process' performance. This approach helps them develop a better understanding of how to apply thermodynamics in their future careers and a stronger intuitive feel for how the different components of thermodynamics are interrelated. Throughout the book, students are encouraged to develop computer-based models of devices, processes, and cycles and to take advantage of the speed of Internet-based programs and computer apps to find thermodynamic data, just as practicing engineers do.

Table Of Content : 1. INTRODUCTION TO THERMODYNAMICS AND ENERGY. Basic Concepts: Systems, Processes, and Properties. An Introduction to Some Common Properties. Zeroth Law of Thermodynamics. Phases of Matter. Summary. 2. THE NATURE OF ENERGY. What is Energy? Types of Energy. Transport of Energy. Heat Transfer. Work Transfer. Energy Transfer via Mass Transfer. Analyzing Thermodynamics Systems and Processes. Platform for Performing Thermodynamics Analysis. Summary. 3. THERMODYNAMIC PROPERTIES AND EQUATIONS OF STATE. Phase Diagrams. The State Postulate. Internal Energy, Enthalpy and Specific Heats. Equations of State for Ideal Gases. Incompressible Substances. Property Determination for Water and Refrigerants. Summary. 4. THE FIRST LAW OF THERMODYNAMICS.

Conservation of Mass. First Law of Thermodynamics in Open Systems. First Law of Thermodynamics in Closed Systems. Thermal Efficiency of Heat Engines, Refrigerators, and Heat Pumps. Summary. 5. INTRODUCTION TO THE SECOND LAW OF THERMODYNAMICS. The Nature of the Second Law of Thermodynamics. Summary of Some Uses of the Second Law. Classical Statements of the Second Law. Reversible and Irreversible Processes. A Thermodynamic Temperature Scale. Carnot Efficiencies. Perpetual Motion Machines. 6. ENTROPY. Entropy and the Clausius Inequality. Entropy Generation. Evaluating Changes in the Entropy of a System. The Entropy Balance. Isentropic Efficiencies. Consistency of Entropy Analyses. Entropy Generation and Irreversibility. Summary. 7. POWER CYCLES. Introduction. The Ideal Carnot Power Cycle. The Rankine Cycle. Gas (Air) Power Cycles and Air Standard Cycle analysis. Brayton Cycle. Otto Cycle. Diesel Cycle. Dual Cycle. Summary. 8. REFRIGERATION CYCLES. Introduction. The Vapor-Compression Refrigeration Cycle. Absorption Refrigeration. Reversed Brayton Refrigeration Cycle. Summary. 9. IDEAL GAS MIXTURES. Introduction. Defining the Composition of a Gas Mixture. Ideal Gas Mixtures. Solutions of Thermodynamics Problems Incorporating Ideal Gas Mixtures. Introduction to Real Gas Mixture Behavior. Summary. 10. PSYCHROMETRICS: THE STUDY OF "ATMOSPHERIC AIR." Introduction. Basic Concepts and Terminology of Psychrometrics. Methods of Determining Humidity. Comfort Conditions. Cooling and Dehumidifying of Moist Air. Combining the Cooling and Dehumidifying Process with Refrigeration Cycles. Heating and Humidifying Air. Mixing of Moist Air Streams. Cooling Tower Applications. Summary. 11. COMBUSTION ANALYSIS. Introduction. The Components of the Combustion Process. A Brief Description of the Combustion Process. Balancing Combustion Reactions. Methods of Characterizing the Reactant Mixture. Determination of Reactants from Known Products. Enthalpy of a Compound and the Enthalpy of Formation. Further Description of the Combustion Process. Heat of Reaction. Adiabatic Flame Temperature. Entropy Balance for Combustion Processes. The Gibbs Function. Fuel Cells. Introduction to Chemical Equilibrium. The Water-Gas Shift Reaction and Rich Combustion. Summary and the Limitations of Combustion Analysis.