Overview of geothermal development

Overview of geothermal g development Ruggero Bertani Geothermal Center of Excellence Enel Green Power October 2014 Enel Green Power FY 2013 consoli...
Author: Jeffry Jennings
4 downloads 0 Views 15MB Size
Overview of geothermal g development

Ruggero Bertani Geothermal Center of Excellence Enel Green Power October 2014

Enel Green Power FY 2013 consolidated results Gl b l l d hi i Global leadership in renewables bl development d l t Iberia&Latam

North America

Italy&Europe

‰ Capacity: 3,072 MW ‰ Production: 8.8 TWh ‰ Technologies:

‰ Capacity: 1,683 MW ‰ Production: 5.4 TWh ‰ Technologies:

‰ Capacity: 4,128 MW ‰ Production: 15.3 TWh ‰ Technologies:

1

Capacity by technology

Production by technology 41%

58% 19%

9% 29%

2%

1% 2 1

3% 1%

37%

2 2

Geo

Total = 8.9 GW 1.

Including co-generation

Hydro

Wind

Biomass

Solar

Total = 29.5 TWh

1

EGP Gross Pipeline – March 2014

Emerging marrkets

Pi li di Pipeline diversification in tune with strategic guidelines ifi ti i t ith t t i id li

March 2013

84%

16% 9.1

March 2014

73%

27%

March 2014 gross pipeline 20.4 GW 10.7

North N Am merica

78% March 2013

5.4

March 2014

5.0

15%

3%

Italy &  Europe

3% 1% March 2013 March 2014

New markets Latin America

8.0 47 4.7

Emerging markets take the lead  with over 50% of the pipeline with over 50% of the pipeline Geo

Hydro

Wind

Biomass

Solar

2

GEOTHERMAL WORLD at‐a‐glance Geothermal Geothermal electricity growing electricity growing

World Geothermal Electricity 25,000 22.000 15.000 20 000 20,000

MW

15,000

10,000

6,832

7,973

8.903

10.899

13.009

5,000 0 1995

2000

2005

2010

Years

2015

2020 3

GEOTHERMAL WORLD at‐a‐glance Geothermal electricity growing Geothermal electricity growing

Permitted; 5%

Announced;  39%

Commissioned;  48%

Under  construction;  ; 8%

The global project pipeline totals 20 GW across all development stages

Bloomberg New Energy Finance 2012

4

GEOTHERMAL WORLD at‐a‐glance Geothermal Geothermal electricity map electricity map 2015 Geothermal Installed Capacity (MW) 500 MW Installed

Russia: 82 MW

Germany: 27 MW Austria: 1 MW Iceland: 665 MW

North America: 3.4 GW

Asia Pacific: 5.2 GW

France: 17 MW Italy: 916 MW

Japan: 537 MW

USA: 3,408 MW Portugal: 29 MW Mexico: 1,014 MW

Turkey: 397 MW

China: 27 MW

Ethiopia: 7 MW

Philippines: 1,870 MW

Guatemala: 52 MW El Salvador: 204 MW

p Nuova Guinea: 50 MW Papua

Kenya: 654 MW

Nicaragua: 160 MW Costa Rica: 207 MW

Indonesia: 1,672 MW

Latin America: 1.6 GW

Africa: 0 0.6 6 GW

Australia: 1 MW

New Zeland: 1,008 MW

2005‐2020 Installed Capacity (GW) 89 8.9

Source: NEF, EGP estimate

2005

10.9

2010

13.0

2015

22.0

MAX

15.0

MIN

2020

5

GEOTHERMAL WORLD at‐a‐glance Geothermal electricity forecasting Geothermal electricity forecasting

24000 22000 20000 18000 16000

22 GW

カメ( ライオン

15 GW

MW

14000

13 GW

12000 10000

キツネ

8000 6000 4000 2000 0 1950

1960

1970

1980

1990

Years

2000

2010

2020 6

Global Geothermal Power Market Key Barriers and Actions Needed Key Barriers and Actions Needed Barrier

Description

Actions Needed

Resource

• Geothermal resource availability • R&D activity: technology improvements to identify the resource  • Well productivity & field capacity and to exploit geothermal resources at different temperatures     • Presence of earthquakes‐volcanic activity near  • Coordination of activities to share exploration results (i.e. public  GROWTH the resource GEOTHERMAL EXPONENTIAL the resource databases databases providing location of resources)    providing location of resources)

Environment

• Regulation for construction and operations • Air emissions & noise pollution • Visual impact l

Project economics

• High initial investment costs n R • High O&M costs v • Financial support and incentives pp e

• Coordination at EU, national and regional levels to support and  p Sregulate the sector, providing visibility D • Support bank financing  pp g o

• • •

• •

E

Social 

Demand

• •

E c o n i s Misleading information o r Lack of knowledge o m o Local hostile institutions / environmental  u associations i n r c m c of energy demand Trend s e Competition from other renewable sources e n t

• Coordination of activities to address permitting issues • Technological solutions (i.e. Enel development of AMIS  technology) • Architecture solutions  O

p

• •

o e r c m Creation of consensus through information and communication t iImprovement of the relationship with communities a u a n n l d i Planning of geothermal projects with grid access Support to distributed generation/smart grids  t y

7

Geothermal technologies Past present and future Past, present and future Medium term outlook 5-10 years

Past 5-10 years

Brea akthro ough Conve C ntiona al



Long-term outlook 10+ years

Today • Mostly proven and cost-effective technologies

• Dry y steam ((~3 GW of capacity p y today) y)

• Incremental plant technological advances going forward

• Flash steam (~8,4 GW of capacity today)

• Binary only as an ancillary application due to infancy stage of technological development (i.e., higher costs)

Binary cycle (~1,7 (~1 7 GW of capacity today)

• Binary proven to be a self-standing technology, increasing overall installable potential

Binary cycle

• Economics not yet in line with steam technologies (dry and flash), expected to improve in the long term

Cascade utilization

EGS (Pilot project in France)

• Technology still in “development” phase

Supercritical Fluid (Pilot project in Iceland, y, Japan) p ) Italy,

• Under certain technological development outlook (i.e., fast decrease in technology costs), expected to increase installable potential

Hybridization; Cascade utilization

• Cascade utilization are already present in the market

8

Is it possible a second exponential growth? Bi Binary plants l t

Geothermal binary power plant

9

Is it possible a second exponential growth? Binary plants The Mt. Amiata geothermal field is characterized by a deep water dominated reservoir, at very high temperature >300°C. The fluid is separated at 20 bar, water at 210°C is reinjected and steam is used for power production. There are available 250 t/h of 160°C hot water. The presence of silica does not allow the direct utilization of the water, but it is possible to have a second flash at 5 bar, producing 20-30 t/h of steam at 160°C; half of this steam is used in a 1 MW binary plant. plant The system is connected with the 20 MW Bagnore 3 plant, and it is even more complex for the presence of a geothermal heating station.

10

Is it possible a second exponential growth? Binary plants

Heat Exchanger

Turbine

11

Is it possible a second exponential growth? Bi Binary plants l t Experimental campaign – ORC power plant prototype realization •COD 20-3-2012 •Calibration Calibration and initial performance tests •August: final set up with improvement in heat exchangers •Long run test •Performance tuning with manufacturer •Preliminary Preliminary results are promising

12

Is it possible a second exponential growth? Bi Binary plants l t

13

Is it possible a second exponential growth? EGS l t EGS plants

1.5 + 4.5 MWe Observation well

Observation well

Enhanced Geothermal System: European Soultz project

production 50 kg/s

production 50 kg/s

Injection 100 kg/s 1400 m geophone

depth 5000 m

GPK3 (existing)

GPK2 (existing) 600 m

GPK4 (drill 2003) geophone

600 m

200oC

14

Is it possible a second exponential growth? EGS l t EGS plants 1984‐1987 Preparatory  phase

Literature compilation

1987‐1991

1991‐1998

1999‐2007

2007‐2009

Exploration  phase

Creation of the 2  Creation of the 2 3 well system  ll well system  GPK2 to 4 at  GPK1/GPK2 at  5000 m 3600 m

Drilling GPK1 at 2000 m

Deepening of GPK1 at 3600  Deepening of GPK2 at 5080  Power plant construction m and stimulation m and stimulation

Seismic survey reprocessing and  interpretation

Hydraulic testing in GPK1

Permitting and drilling preparation

Coring EPS1 at 2227 m

2010‐2012

Construction of  Construction of Scientific and  Scientific and the first  technical  production unit  monitoring of  ORC ‐ 1.5 MWe the power plant Monitoring  (hydraulic, seismic,  chemical)

LSP tests in  S i different flow  conditions (from  18L/s to 26 L/s)  i f Installation and test of the  Integration of GPK1  ESP in GPK4 pump at ‐500  as a reinjection  m  well Circulation test  Power plant preliminary Power plant preliminary  b between 3 wells  ll tests (11 months)

Installation and test of the  Drilling of GPK2 at 3880 m  Drilling of GPK3 at 5100 m  LSP in GPK2 pump at ‐250  and stimulation and stimulation m 

Circulation test between  Drilling of GPK4 at 5270 m  the 2 wells GPK1/GPK2 (4  and stimulation months) Circulation test between 3  Circulation test between 3 wells (5 months)

Complementary chemical  Inter wells circulation tests stimulations

Power plant tests Connected to the  grid from early  2011

15

Is it possible a second exponential growth? H b id l t Hybrid plants •







World’s first solar/geothermal hybrid project combines the continuous generation capacity of the medium di enthalpy th l geothermal th l binary bi cycle l with ith the th peak capacity of solar power thus allowing for synergies to be explored. Integrates 26 MW of solar photovoltaic capacity to EGPNA’s operating 33 MW Stillwater Geothermal Project Consists of over 89,000 , polycrystalline p y y silicon PV panels built on 240 acres. It will generate enough energy to meet the needs of 16,000 American households. In 2012, this state-of-the art plant won EGPNA the Geothermal Energy Association Honor Award for Technology Advancement which recognizes companies that develop innovative or pioneering technology to further geothermal development.

Stillwater Solar Geothermal Hybrid Project  16

Is it possible a second exponential growth? H b id l t Hybrid plants

Stillwater Solar Geothermal Hybrid Project 

17

Is it possible a second exponential growth? H b id l t Hybrid plants

• 2009 – began w/ nominal capacity 33.1 MW. photovoltaic capacity p y added. • 2012 – 26 MW of p • Production impaired during warm weather, because of dry cooling. • Geothermal brine temperature lower than design so power island underutilized design, underutilized. • Integration with CSP designed to increase the power output. output Stillwater Solar Geothermal Hybrid Project  18

Is it possible a second exponential growth? H b id l t Hybrid plants

• • • •

17 MWth 24,000 m2 of parabolic trough collectors 11 parallel loops H tT Heat Transfer f Fluid Fl id (HTF) iis demineralized d i li d water with a corrosion inhibitor added • Solar inlet temperature – 300°F/149°C p - 390°F/ 199°C • Annually Solar youtlet temperature • • •

Solar energy in = 56,346 MWh Thermal out (net) = 28,746 MWh Solar electric out (net) = 3,537 MWh-e

Stillwater Solar Geothermal Hybrid Project 

19

Is it possible a second exponential growth? H b id l t Hybrid plants STEAM FROM THE WELLS Site

Technology

Cornia 2

Geothermal steam h t with ith superheater biomass firing by combustion grate

IRR % BIOMASS

Biomass type

Forest & i lt l agricultural residues, power crops

BOILER

Biomass Bi need [kt/y]

Capacity [MWe]

43

4.8

GEO PLANT

20

15

10

5

0 100

150

200

250 20

Is it possible a second exponential growth? C Cogeneration plants ti l t

heat generation

production geothermal water drill hole

ORC

injection drill hole

Æ According to heat demand the geothermal water mass flow is splitted

Æ District Di t i t H Heating ti system t 21

Is it possible a second exponential growth? C Cogeneration plants ti l t

80% Production well

20% Reinjection well

steam 200 - 220 °C

water

40 °C water

30 °C water

Æ Agricultural Applications 22

Is it possible a second exponential growth? C Cogeneration plants ti l t

Æ Cascade Utilizations

23

Is it possible a second exponential growth? U Unconventional plants ti l l t

Conceptual model of a geothermal reservoir i at Supercritical Conditions

3,5 km Minimum Casing depth 4 - 5 km Target depth

24

Is it possible a second exponential growth? U Unconventional plants in Italy ti l l t i It l 1) H Horizon: it is relatively shallow (2500 (2500-3500m), 3500m), non non-continuous, continuous, and it represent a target for deep wells in the metamorphic basement, with a significative permeability, even if not-homogeneous 2) K Horizon: it is deeper (3000-10000m), almost continuous, present in all the area of the geothermal system, and its meaning is still unclear

H horizon

K horizon

25

Is it possible a second exponential growth? U Unconventional plants in Italy ti l l t i It l Worldwide a few attempts at drilling in very high temperature/pressure conditions: •San Pompeo 2 well in Italy: drilled by EGP in 1979, with the target of a deep fractured layer inside the metamorphic basement in Larderello. At about a 3 km depth it produced a very different fluid from earlier experiences in the exploited hydrothermal reservoir. reservoir Its pressure was above 24 MPa (five times higher than the standard) and the extrapolated temperature exceeded 400°C. The well was closed after a hydrogen gas explosion, which severely damaged the drilling string. Sampling of the deep fluids highlighted the important presence of gases, and a strongly corrosive environment. •Deep Seated Geothermal Resources Survey well in Japan: drilled in 1994-1995 by NEDO to investigate the characteristics of the deep-seated part of the Kakkonda geothermal field field, one of the largest liquid dominated geothermal systems in Japan. When a depth of 3.7 km was reached, the operation stopped for safety concerns, principally due to a H2S discharge and difficulty in controlling the drilling. The inferred temperature was above 500°C. •IDDP-1 well in Iceland: in 2009 the drilling of the first IDDP well, designed to reach a 4.5 km depth, was attempted at Krafla. The drilling terminated abruptly at only a 2.1 km depth when the drill bit hit 900 °C C hot rhyolitic magma magma. The IDDP consortium decided to complete the well as a subcritical well designed to produce from the contact zone of the intrusion, which in its first few months to operations has proved to be highly productive. A new well is planned.

26

Is it possible a second exponential growth? DESCRAMBLE P j t DESCRAMBLE Project

THE PROJECT Our proposal is aimed to the exploration  of the K horizon, in order to investigate  f h Kh i i d i i the presence of supercritical fluids  and  their characterization, physical and  chemical The project will be realized chemical. The project will be realized  through the deepening of an existing dry  well Venelle 2 in Larderello, which has  been halted quite near to such a target been halted quite near to such a target. The thermodynamical conditions could be  very challenging and rich of perspectives: •Temperature > 450°C •Pressure >250 bar •Supercritical fluids S iti l fl id •Chemical components

EXPECTED OUTCOMES ¾Well with high specific productivity  = up to 30 MW per single well ¾Closed loop production ¾Reassessment of the reserves in  our leases ¾Possibility of high value chemical  component extractions ¾Technological and scientific ¾Technological and scientific  challenge‐ fruitful international  cooperation

27

Is it possible a second exponential growth? DESCRAMBLE P j t DESCRAMBLE Project

Expected VENELLE_2 contact with K horizon : Depth 2900±200 m 28

Is it possible a second exponential growth? DESCRAMBLE P j t DESCRAMBLE Project

Enel Green Power Project Leader Consortium members from three countries: ¾ CNR/IGG (Italy): geochemical and numerical modelling; ¾ Aachen, Kiel and Freiberg Universities (Germany): petrological analysis, geophysical acquisition and elaboration, numerical modeling, well log analysis and interpretation; ¾ SINTEF (Norway), an important oil/gas research company, with experience also in drilling instrumentation and ICT, drilling, ICT for high pressure and temperature measuring tool and drill control techniques in severe conditions.

29

Is it possible a second exponential growth? DESCRAMBLE P j t DESCRAMBLE Project If the experimental e perimental phase would o ld be successful, s ccessf l a second phase with ith the project and design of a pilot plant could be planned, which could be able to open new exploration horizons for the geothermal research in Larderello, where several additional sites, with the same characteristic of the Venelle 2 one at an acceptable p depth p are already y known. The economy y of scale and the learning curve will allow a substantial reduction of the costs, both for the well and the surface equipment. A 30 MW geothermal power plant fed by a single supercritical well, well with its associated reinjection one, could be realized with a reduction of the cost from the actual

4,5 M€/MW down to 2,9 M€/MW, only due to the 75% reduction of the mining costs, with additional possibility of a further 10% cost abatement due to the learning curve effect.

The e success o of tthe e research esea c will ope open g great eat pe perspectives spect es both in term of increasing the installed capacity, and in term of cost reduction for the new projects.

30

Suggest Documents