Optimal RSOM-hub Locations for Northern Operations

Optimal RSOM-hub Locations for Northern Operations A MAJAID Scenario Analysis A. Ghanmi CANOSCOM OR&A Team DRDC CORA TM 2011-122 August 2011 Defenc...
Author: Anis Clarke
2 downloads 4 Views 732KB Size
Optimal RSOM-hub Locations for Northern Operations A MAJAID Scenario Analysis

A. Ghanmi CANOSCOM OR&A Team

DRDC CORA TM 2011-122 August 2011

Defence R&D Canada Centre for Operational Research and Analysis Canadian Operational Support Command Operational Research & Analysis

Form Approved OMB No. 0704-0188

Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE

3. DATES COVERED 2. REPORT TYPE

AUG 2011 4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

Optimal RSOM-hub Locations for Northern Operations - A MAJAID Scenario Analysis

5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Defence R&D Canada ? CORA,101 Colonel By Drive,Ottawa, Ontario K1A 0K2, , 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT

This paper presents an analysis of a Reception, Staging and Onward Movement hub (RSOM-hub) conceptto support Canadian Forces Major Air Disaster (MAJAID) operations in the North and provides insightsinto the optimal RSOM-hub locations. RSOM-hubs are permanent or temporary staging bases for cross-loading between strategic and tactical lift during military deployment and sustainment operations. In thisstudy, performance measures were formulated to assess the effectiveness and the responsiveness ofdifferent RSOM-hub options to support MAJAID deployments. A simulation-based optimization modelwas also developed to determine the optimal number and locations of hubs in the North. The model wasconsidered in a multi-objective framework and solution trade-offs were determined through an exhaustivesearch methodology. An illustrative scenario and associated data were used to simulate deployment lift tovarious MAJAID locations and to demonstrate the methodology. Sensitivity analysis was conducted toexamine the impact of different operational parameters on hub performance and optimal locations. Thestudy indicated that the optimal number of RSOM-hubs for MAJAID operations in the North would betwo, corresponding to Iqaluit and Yellowknife. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF:

17. LIMITATION OF ABSTRACT

a. REPORT

b. ABSTRACT

c. THIS PAGE

unclassified

unclassified

unclassified

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

55

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

Optimal RSOM-hub Locations for Northern Operations A MAJAID Scenario Analysis Ahmed Ghanmi CANOSCOM Operational Research & Analysis

Defence R&D Canada – CORA Technical Memorandum DRDC CORA TM 2011-122 August 2011

Principal Author Original signed by Ahmed Ghanmi

Ahmed Ghanmi CANOSCOM Operational Research & Analysis

Approved by Original signed by Peter Archambault

Peter Archambault Acting Section Head, Land and Operational Command Operational Research

Approved for release by Original signed by Paul Comeau

Paul Comeau Chief Scientist, DRDC CORA

The information contained herein has been derived and determined through best practice and adherence to the highest levels of ethical, scientific and engineering investigative principles. The reported results, their interpretation, and any opinions expressed therein, remain those of the authors and do not represent, or otherwise reflect, any official opinion or position of DND or the Government of Canada.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2011 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2011

Abstract …….. This paper presents an analysis of a Reception, Staging and Onward Movement hub (RSOM-hub) concept to support Canadian Forces Major Air Disaster (MAJAID) operations in the North and provides insights into the optimal RSOM-hub locations. RSOM-hubs are permanent or temporary staging bases for cross-loading between strategic and tactical lift during military deployment and sustainment operations. In this study, performance measures were formulated to assess the effectiveness and the responsiveness of different RSOM-hub options to support MAJAID deployments. A simulation-based optimization model was also developed to determine the optimal number and locations of hubs in the North. The model was considered in a multiobjective framework and solution trade-offs were determined through an exhaustive search methodology. An illustrative scenario and associated data were used to simulate deployment lift to various MAJAID locations and to demonstrate the methodology. Sensitivity analysis was conducted to examine the impact of different operational parameters on hub performance and optimal locations. The study indicated that the optimal number of RSOM-hubs for MAJAID operations in the North would be two, corresponding to Iqaluit and Yellowknife.

Résumé …..... Ce document présente une analyse du concept de plaque tournante pour l’accueil, le stationnement transitoire et le mouvement vers l’avant (plaque tournante du RSOM) à l’appui des opérations nordiques des Forces canadiennes (FC) en cas de catastrophe aérienne (CATAIR), et donne un aperçu des emplacements les plus indiqués pour l’installation de la plaque tournante du RSOM. Les plaques tournantes du RSOM sont des zones d’étape utilisées pour la répartition de la charge de travail entre le transport stratégique et tactique durant les déploiements militaires et les opérations de maintien en puissance. Au cours de cette étude, les mesures de rendement ont été établies en vue d’évaluer l’efficacité et la capacité à réagir des différentes options de plaque tournante du RSOM à l’appui des déploiements en cas de CATAIR. Un modèle d’optimisation par simulation a également été élaboré afin de déterminer le choix optimal relatif au nombre et aux emplacements des plaques tournantes dans le Nord. Le modèle a été évalué en tenant compte de multiples objectifs et le choix de la solution a été fait à l’aide d’une méthodologie de recherche exhaustive. Un scénario a été utilisé, aux fins d’illustration, pour simuler le transport vers divers endroits dans le cadre de déploiements effectués en situation de CATAIR et pour démontrer la méthodologie. Une analyse de sensibilité a été effectuée afin d’évaluer l’impact des différents paramètres opérationnels sur le rendement et l’emplacement optimal de la plaque tournante. L’étude a révélé qu’idéalement, pour appuyer les opérations nordiques en cas de CATAIR, deux plaques tournantes du RSOM seraient nécessaires et devraient être installées à Iqaluit et Yellowknife.

DRDC CORA TM 2011-122

i

This page intentionally left blank.

ii

DRDC CORA TM 2011-122

Executive Summary Optimal RSOM-hub location for Northern operations − a MAJAID scenario analysis Ahmed Ghanmi; DRDC CORA TM 2011-122; Defence R&D Canada – CORA; August 2011.

Introduction To examine the support requirements for future Canadian Forces (CF) deployments in the North, Canadian Operational Support Command (CANOSCOM) has initiated the Northern Lines of Communication (NORLOC) project. The aim of NORLOC is to develop the logistics requirements and to identify mitigation strategies for improving the deployability and sustainability of assets in response to potential events in the North. One of the strategies being examined by CANOSCOM for NORLOC would be the establishment of Reception, Staging and Onward Movement hubs (RSOM-hubs) at different Northern airfields. RSOM-hubs are permanent or temporary staging bases for cross-loading between strategic and tactical lift during deployment and sustainment operations. They can also be used for pre-positioning deployable packages required for response to potential events in the North. To develop and implement the RSOM-hub concept, CANOSCOM has identified a number of potential Northern airfields and has requested operational research support to facilitate better decisions concerning the selection of efficient RSOM-hub locations. Preliminary studies were conducted to examine the RSOM-hub concept effectiveness for Northern operations and to provide insights into the optimal hub locations. Following these studies, CANSOCOM requested a further examination of the RSOM-hub location optimization problem using a Major Air Disaster (MAJAID) scenario.

Methodology The objective of this study is to analyze RSOM-hub locations for supporting MAJAID operations in Northern Canada. Three performance measures (response time, lift cost avoidance and hub capacity) were formulated to assess the effectiveness and the responsiveness of different RSOMhub options. A simulation-based optimization model was also developed to determine the optimal number and locations of RSOM-hubs. The model was considered in a multi-objective framework and solution trade-offs were determined through an exhaustive search methodology. An illustrative scenario involving one strategic lift aircraft (CC-177) and two tactical helicopters (CH-146) was used to simulate MAJAID deployment lift to various Northern locations. Illustrative flight tracks were also used to determine the probability of MAJAID events at a given location in the North (defined as location weighting factor). Different RSOM-hub options were examined and optimal locations for maximizing the average relative cost avoidance or minimizing the average relative response time were determined for single and multiple RSOMhub solutions. Solution trade-offs involving different objectives were also investigated and discussed. Sensitivity analysis was performed to explore the impact of key model parameters and assumptions on the optimal solution and RSOM-hub performance. DRDC CORA TM 2011-122

iii

Results The study indicated that the RSOM-hub concept could offer potential cost avoidance and response time reduction on deployment lift for MAJAID operations in the North and could be a potential strategy for improvement of the CF domestic support capability. For a single RSOMhub solution, Yellowknife would be the time effective RSOM-hub location. From a cost avoidance perspective, Iqaluit would the optimal hub location. Both airfields have the required capability and resources (e.g., fuel, maintenance) for supporting strategic lift aircraft (CC-177) and tactical helicopter (CH-146) operations. For a multiple RSOM-hub solution, the analysis indicates that the optimal number of RSOM-hubs would be two, corresponding to Iqaluit and Yellowknife, when response time and cost avoidance are both considered. The sensitivity analysis indicated that the optimal RSOM-hub solution would be sensitive to the location weighting factor. For example, the time-effective hub location would be Yellowknife for a track-based location weighting factor and would be Whitehorse for a constant location weighting factor (uniform probability distribution). It also indicated that the distance adjustment factor (i.e., variable to take into consideration additional distance to reach refuelling stops) and the helicopter operational parameters (flying rate, speed and number of sorties) would not affect the optimal locations for a two RSOM-hub solution.

Recommendations The study is a first research attempt to explore the RSOM-hub problem for MAJAID operations in the North. It used an illustrative scenario to demonstrate the methodology for analyzing the effectiveness of the RSOM-hub concept and the optimal hub locations. Following this study, it is recommended that: •

Yellowknife and Iqaluit should be considered as potential RSOM-hub locations to support Northern MAJAID operations.



Further Northern scenarios, such as response to maritime or natural disaster, should be investigated to determine the optimal RSOM-hub locations for a range of potential responses in the North. The logistics requirements for each scenario should be identified. As well, consideration of other departments and agencies should be included in the scenario.



Particular attention should be given to the location weighting factor as the optimal RSOMhub solution is sensitive to this parameter. For MAJAID operations, flight tracks would be used for evaluating the probability of a MAJAID at a given location in the North. In this study, as illustrative data is used to demonstrate the methodology. Updated and complete data of flight tracks should be gathered and analyzed for future studies.



Given the lack of detailed information about the capabilities at the different airfield options, illustrative airfield capacity values were used in the study. An assessment of the airfield capacity should be performed using multi-criteria decision analysis and further analysis should be conducted with realistic data.



In the analysis, the tactical airlift was simulated using the CH-146 Griffon. Further analysis should be conducted using different helicopter options, such as the CH-147 Chinook.

iv

DRDC CORA TM 2011-122

Sommaire ..... Optimal RSOM-hub location for Northern operations − a MAJAID scenario analysis Ahmed Ghanmi; DRDC CORA TM 2011-122; R & D pour la défense Canada – CARO; août 2011.

Introduction Afin d’étudier les besoins de soutien des Forces canadiennes (FC) en matière de déploiements nordiques futurs, le Commandement du soutien opérationnel du Canada (COMSOCAN) a entrepris le projet sur les voies de communication nordiques « Lignes de communication du Nord » (NORLOC). Le but du projet NORLOC est de définir les besoins en matière de logistique et de développer des stratégies d’atténuation des risques afin d’améliorer la capacité de déploiement et de soutien des ressources en cas d’événements dans le Nord. Une des stratégies que considère le COMSOCAN pour les NORLOC est l’installation de plaques tournantes pour l’accueil, le stationnement transitoire et le mouvement vers l’avant (plaques tournantes du RSOM) sur différents terrains d’aviation nordiques. Les plaques tournantes du RSOM sont des zones d’étape utilisées pour la répartition de la charge de travail entre le transport stratégique et tactique durant les déploiements militaires et les opérations de maintien en puissance. Elles peuvent également être utilisées pour installer à l’avance des unités prêtes à être déployées en cas d’événements dans le Nord. Afin de développer le concept de plaque tournante du RSOM et de le mettre en œuvre, le COMSOCAN a choisi un certain nombre de terrains d’aviation dans le Nord canadien; pour ce faire, il a demandé l’appui de la division de la recherche opérationnelle afin de faciliter la prise de décision concernant le choix d’emplacements favorables pour ces installations. Des études préliminaires ont été effectuées afin d’évaluer la capacité du concept de plaque tournante du RSOM à appuyer les opérations nordiques et de donner un aperçu des emplacements les plus indiqués pour l’installation de la plaque tournante. Une fois ces études effectuées, COMSOCAN a demandé que la question du choix de l’emplacement de la plaque tournante du RSOM soit examinée de plus près en ayant recours à un scénario de catastrophe aérienne (CATAIR).

Méthodologie Cette étude a pour objet d’étudier les emplacements de la plaque tournante du RSOM à l’appui des opérations effectuées dans le Nord canadien en cas de CATAIR. Trois mesures de rendement (le temps de réponse, l’évitement de coûts de transport et la capacité de la plaque tournante) ont été établies en vue d’évaluer l’efficacité et la capacité à réagir des différentes options de plaque tournante du RSOM. Un modèle d’optimisation par simulation a également été élaboré afin de déterminer le choix optimal relatif au nombre et aux emplacements des plaques tournantes du RSOM. Le modèle a été évalué en tenant compte de multiples objectifs et le choix de la solution a été fait à l’aide d’une méthodologie de recherche exhaustive. Un scénario prévoyant l’utilisation

DRDC CORA TM 2011-122

v

d’un aéronef de transport stratégique (CC177) et de deux hélicoptères tactiques (CH146) a été utilisé, aux fins d’illustration, pour simuler le transport dans le cadre de déploiements visant à répondre à des situations de CATAIR à différents endroits dans le Nord. Des données historiques sur les vols ont été utilisées en vue de déterminer la probabilité qu’une CATAIR se produise dans une région nordique particulière (ce qui est défini comme le facteur de pondération relatif à l’emplacement). Différentes options pour les plaques tournantes du RSOM ont été examinées et les meilleurs emplacements, à l’égard de l’évitement de coûts maximal ou du temps de réponse relatif minimal, ont été déterminés pour des configurations simples et multiples de plaques tournantes. Les différentes solutions visant les divers objectifs ont également été étudiées et ont fait l’objet de discussions. Une analyse de sensibilité a été effectuée afin d’examiner l’incidence des principaux paramètres du modèle ainsi que les hypothèses émises à l’égard de la solution optimale et le rendement de la plaque tournante du RSOM.

Résultats L’étude a révélé que le concept de plaque tournante du RSOM pourrait contribuer à éviter des coûts et engendrer une réduction du temps de réponse dans le cadre de déploiements à l’appui des opérations nordiques menées en cas de CATAIR et qu’il pourrait constituer une stratégie visant à améliorer la capacité de soutien des FC au pays. Pour une configuration simple de plaques tournantes, Yellowknife serait l’emplacement qui procure les meilleurs avantages à l’égard du temps de réponse. En ce qui concerne l’évitement des coûts, Iqaluit serait l’emplacement privilégié. Ces deux terrains d’aviation ont la capacité et les ressources nécessaires (carburant, maintenance) pour appuyer l’exploitation de l’aéronef de transport stratégique (CC177) et l’hélicoptère tactique (CH146). Pour ce qui est de la configuration de plaque tournante multiple, l’analyse a révélé que, à l’égard du temps de réponse et de l’évitement des coûts, le nombre optimal de plaques tournantes du RSOM serait de deux et leur emplacement respectif serait Yellowknife et Iqaluit. L’analyse de sensibilité a révélé que la meilleure solution à l’égard de la plaque tournante du RSOM dépendrait du facteur de pondération relatif à l’emplacement. Par exemple, l’emplacement procurant les meilleurs avantages en ce qui a trait au temps de réponse serait Yellowknife pour un facteur de pondération relatif à l’emplacement axé sur les données historiques de vol, mais serait Whitehorse pour un facteur constant de pondération relatif à l’emplacement (distribution uniforme de la probabilité). Elle a également révélé que le facteur de variation de la distance (variable qui prend en considération la distance additionnelle à couvrir pour l’avitaillement) et les paramètres opérationnels de l’hélicoptère (les activités aériennes et la vitesse de l’aéronef et le nombre de décollages) n’auraient aucune incidence sur le choix du meilleur emplacement dans le cas d’une solution prévoyant deux plaques tournantes du RSOM.

Recommandations La présente étude est la première tentative du COMSOCAN visant à analyser la question de la plaque tournante du RSOM dans le cadre des opérations nordiques en cas de CATAIR. Elle utilise un scénario, aux fins d’illustration, afin de démontrer la méthodologie utilisée pour déterminer l’efficacité du concept de plaque tournante et les meilleurs emplacements pour son installation. À la suite de cette étude, les recommandations suivantes sont formulées :

vi

DRDC CORA TM 2011-122



Yellowknife et Iqaluit devraient être considérés comme emplacements possibles pour l’installation d’une plaque tournante du RSOM à l’appui des opérations nordiques en cas de CATAIR.



D’autres scénarios nordiques devraient être étudiés afin de déterminer les emplacements optimaux permettant de réagir à une gamme d’événements se produisant dans le Nord. Les exigences en matière de logistique pour chacun des scénarios devraient être cernées.



Une attention particulière devrait être accordée au facteur de pondération relatif à l’emplacement étant donné que le choix du meilleur emplacement pour installer une plaque tournante du RSOM en dépend. Dans le cas d’opérations visant à répondre à des situations de CATAIR, des données historiques sur les vols seraient utilisées en vue de déterminer la probabilité qu’une CATAIR se produise dans une région nordique particulière. Cependant, des données à jour et complètes devraient être collectées et analysées.



Compte tenu du manque de renseignements détaillés concernant les capacités des différents terrains d’aviation considérés, des valeurs de capacité fictives ont été utilisées dans cette étude. Une évaluation de la capacité des terrains d’aviation devrait être effectuée en utilisant une technique d’analyse décisionnelle multicritères et une analyse plus approfondie des données réelles devrait être menée.



Au cours de l’analyse, la simulation du transport tactique était fondée sur le CH146 Griffon. Une analyse plus approfondie devrait être menée en envisageant l’utilisation d’autres appareils comme le CH147 Chinook.

DRDC CORA TM 2011-122

vii

This page intentionally left blank.

viii

DRDC CORA TM 2011-122

Table of Contents Abstract …….. ................................................................................................................................. i Résumé …..... ................................................................................................................................... i Executive Summary........................................................................................................................ iii Sommaire ........................................................................................................................................ v Table of Contents ........................................................................................................................... ix List of Figures ................................................................................................................................ xi List of Tables................................................................................................................................. xii 1

Introduction............................................................................................................................... 1 1.1 Background ................................................................................................................... 1 1.2 Objective ....................................................................................................................... 2 1.3 Problem Description...................................................................................................... 2 1.4 Report Structure............................................................................................................. 2

2

Concept of Deployment ............................................................................................................ 3 2.1 RSOM-hub Concept ...................................................................................................... 3 2.2 Hub Location Options ................................................................................................... 4 2.3 MAJAID Response........................................................................................................ 5

3

Hub Location Model................................................................................................................. 7 3.1 Performance Measures .................................................................................................. 7 3.1.1 Response time ................................................................................................. 8 3.1.2 Lift cost avoidance ........................................................................................ 10 3.1.3 Airfield operational capacity......................................................................... 11 3.2 Hub Location Optimization Model.............................................................................. 12 3.2.1 Time-effective sub-model ............................................................................. 12 3.2.2 Cost-effective sub-model .............................................................................. 13 3.2.3 Multi-objective sub-model ............................................................................ 13 3.3 Solution Method .......................................................................................................... 14

4

Hub Locations Analysis.......................................................................................................... 15 4.1 Scenario and Data........................................................................................................ 15 4.2 Performance Assessment............................................................................................. 17 4.3 Optimal Hub Locations ............................................................................................... 18 4.4 Multi-objective Analysis ............................................................................................. 22 4.5 Sensitivity Analysis ..................................................................................................... 23 4.5.1 Location weighting factor ............................................................................. 24 4.5.2 Distance adjustment factor............................................................................ 24 4.5.3 Helicopter operational performance.............................................................. 24

5

Conclusions and Recommendations ....................................................................................... 25

DRDC CORA TM 2011-122

ix

References..... ................................................................................................................................ 27 Annex A .. Northern airfields......................................................................................................... 29 Annex B .. Northern airfield capacities ......................................................................................... 31 List of Abbreviations/Acronyms ................................................................................................... 33

x

DRDC CORA TM 2011-122

List of Figures Figure 1: Northern airfields and potential RSOM-hub locations ................................................... 4 Figure 2: Concept of deployment using RSOM-hubs .................................................................... 6 Figure 3: Response time components............................................................................................. 8 Figure 4: Helicopter refuelling stops............................................................................................... 9 Figure 5: Aircraft flight tracks (18-08-2005) ................................................................................ 16 Figure 6: Airfields capacity assessment ........................................................................................ 17 Figure 7: Airfield performance assessment ................................................................................... 18 Figure 8: Response time distribution for one hub solution (Yellowknife) .................................... 20 Figure 9: Response time distribution for a two hub solution (Iqaluit, Yellowknife)..................... 20 Figure 10: Relative cost avoidance distribution for one hub solution (Iqaluit) ............................. 21 Figure 11: Relative cost avoidance distribution for a two hub solution (Iqaluit, Yellowknife) .... 21 Figure 12: Optimal hub locations for a two hub solution.............................................................. 22 Figure 13: Optimal hub locations for a three hub solution............................................................ 23

DRDC CORA TM 2011-122

xi

List of Tables Table 1: Performance characteristics of CC-177, CH-146 and CH-147 Aircraft.......................... 15 Table 2: Optimal locations for different number of RSOM-hubs ................................................. 19 Table 3: Northern airfield locations and their characteristics........................................................ 29

xii

DRDC CORA TM 2011-122

This page intentionally left blank.

DRDC CORA TM 2011-122

xiii

1 1.1

Introduction Background

The Canadian government has raised awareness of Northern sovereignty as well as prospects for greatly increased economic activity in the North as a result of natural resources development, commercial transportation and tourism activities. These activities will place additional burdens on infrastructure, security, law enforcement, and human capital and could involve the transformation of governance in the North. Indeed, the region is the site of one quarter of Canada's remaining discovered petroleum and one half of the country's estimated potential resources. It also holds the sea passage between Asia and Europe known as the Northwest Passage. The opening of the Northwest Passage route would increase shipping activities in the area and would raise concerns over shipping regulations, environmental degradation and potential events in the Arctic (e.g., resurgence of conflict over resources). Establishing and maintaining an increased federal presence in the North would require future deployments of the Canadian Forces (CF) to address specific scenarios. Potential Northern scenarios that would require the CF’s involvement could include humanitarian aid, search and rescue, evacuation operations, natural disaster assistance, etc. To quickly and effectively respond to these scenarios, the CF would need to improve its personnel and equipment readiness for deployment in the North. This includes education and training of military personnel to work in the Arctic environment as well as the pre-positioning of specific equipment and supplies for rapid deployment and sustainment [14]. To examine the support requirements for the CF deployments in the North, Canadian Operational Support Command (CANOSCOM) has initiated the Northern Lines of Communication (NORLOC) project. The aim of NORLOC is to develop the logistics requirements and to identify mitigation strategies for improving the deployability and sustainability of CF assets in response to potential events in the North. One of the strategies being examined by CANOSCOM for NORLOC would be the establishment of Reception, Staging and Onward Movement hubs (RSOM-hubs) at different Northern airfields [1]. RSOM-hubs are permanent or temporary staging bases for cross-loading between strategic and tactical lift during deployment and sustainment operations. They can also be used for pre-positioning deployable packages required for response to potential events in the North. Deployable packages to support Northern operations could include an arctic feeding, shelter and ablution camp that would permit the operation of a small camp for helicopters, basic medical support and transit quarters for personnel moving through the RSOM-hub. To develop and implement the RSOM-hub concept, CANOSCOM has identified a number of potential RSOM-hub locations in Northern Canada and has requested operational research support to facilitate better decisions concerning the selection of efficient RSOM-hub locations. Preliminary studies [2, 3, 4] were conducted to examine the RSOM-hub concept effectiveness for Northern operations and to provide insights into the optimal hub locations. These studies used a generic deployment scenario to demonstrate the concept and illustrate the methodology. Following these studies, CANOSCOM requested a further examination of the RSOM-hub

DRDC CORA TM 2011-22

1

location optimization problem using a Major Air Disaster (MAJAID) scenario. MAJAID operations require quick response times and involve airlift deployments for short durations.

1.2

Objective

The objective of this study is to analyze RSOM-hub locations for supporting MAJAID operations in Northern Canada. The paper develops performance measures and models to determine the time- and cost-effective hub locations for MAJAID operations.

1.3

Problem Description

The RSOM-hub location optimization problem can be viewed as a particular case of the general facility location problem, which consists of locating a number of facilities in a distribution system to route traffic flows. The problem can be stated as follows: Given a set of potential RSOM-hubs (Northern airfields) with their respective capacities (e.g., fuel, runway characteristics, infrastructure) and a number of potential deployment locations (the Northern region is divided into grid cells with the centre of each cell represents a deployment location), determine the optimal number and locations of RSOM-hubs in order to minimize the average deployment lift time and/or cost. Note that the RSOM-hub problem is not a pure hub location optimization problem as there is no quadratic hubbing concept and no allocation necessary [5]. Unfortunately, facility location problem has been demonstrated to be a nondeterministic polynomial-time hard (NP-hard) problem [6]. Different problem variants using various topological assumptions have been studied, including capacitated or uncapacitated facility location models (i.e., limited or unlimited facility capacity), static or time dynamic location models (i.e., fixed or time dependent demand), deterministic or stochastic models (i.e., known or unknown demand), and p-location models (i.e., p is the maximum number of facilities to locate). A comprehensive literature review of the discrete facility location problem can be found in [5]. The RSOM-hub problem can be viewed as a discrete (pre-selected sites), uncapacitated (i.e., unlimited capacity), and static (fixed demand) facility location problem with a stochastic demand location. The demand location corresponds to the geographical locations of the MAJAID event and can be represented by a probability distribution function.

1.4

Report Structure

This report is organized in five sections. The next section examines the concept of deployment for a MAJAID response and discusses the potential RSOM-hub locations in Northern Canada. The subsequent section presents the formulation of performance measures and mathematical models to determine optimal RSOM-hub locations for MAJAID operations. The fourth section presents an analysis of the RSOM-hub performance and optimal locations, including sensitivity analysis. Concluding remarks are found in the penultimate section.

2

DRDC CORA TM 2011-122

2

Concept of Deployment

This section presents an overview of the RSOM-hub concept, identifies the potential RSOM-hub locations for Northern operations and discusses the concept of deployment for a MAJAID scenario using RSOM-hubs.

2.1

RSOM-hub Concept

The RSOM concept has been developed by the North Atlantic Treaty Organization (NATO) to control, coordinate and deconflict the deployment of multinational forces [7]. More specifically, RSOM is the phase of the military deployment that transitions units, personnel, equipment and materiel from arrival at Port of Debarkation (POD) to their final destinations. It encompasses the movement and transportation, logistics support and force protection operations. It also involves the establishment of intermediate staging bases along the deployment lines of communications to facilitate the transition between strategic and tactical movements. As defined in [7], the main RSOM operations are: •

Reception: The process of receiving, offloading, marshalling and transporting personnel, equipment and materiel from strategic or operational lift through sea, air, or land transportation PODs. Reception is the most critical stage of the RSOM operation. It begins with the arrival of deploying forces, equipment and sustainment into a POD and concludes with the relocation of force into staging areas.



Staging: The process of assembling, temporary holding, and organizing of arriving personnel, equipment and materiel into formed units, as they prepare for onward movement. Deploying forces have limited mission capability and may not be selfsustainable during staging. Provision of facilities, sustainment, life support and protection must be ensured until deploying units achieve their mission. The staging process starts with the arrival of personnel, equipment and sustainment and concludes with the onward movement.



Onward Movement: The process of moving units, personnel and accompanying materiel from reception facilities and staging areas to final destinations. Onward Movement may be multimodal and require unit reassembly in the final destination. Onward Movement is complete when the different elements reach the final destination.

While the RSOM-hub concept is mainly developed for expeditionary forces, it is being considered by the CF for domestic operations, particularly for Northern operation deployments. RSOM-hubs would improve logistics distribution effectiveness and responsiveness for Northern operations. Domestic RSOM-hubs can be viewed as permanent or temporary staging bases for cross-loading between strategic and tactical lift during deployment and sustainment operations and for pre-positioning deployable packages required for response to potential events in the Arctic. Deployable packages to support Northern operations could include an arctic feeding, shelter and ablution camp that would permit the operation of a small camp for helicopters, basic medical support and transit quarters for personnel moving through the RSOM-hub [1]. DRDC CORA TM 2011-22

3

2.2

Hub Location Options

As the deployment of MAJAID assets would be conducted by airlift, several Northern airfields are considered as potential RSOM-hub locations. The choice of airfield is determined largely by the requirement that the runway be sufficiently long and strong to accommodate the CC-177 aircraft. Figure 1 depicts the locations of the different Northern airfields and Annex A presents their main characteristics (e.g., runway length). Among these airfields, CANOSCOM has identified the following locations as future potential RSOM-hubs (red dots): Iqaluit, Yellowknife, Whitehorse, Rankin Inlet, Inuvik, Resolute, Clyde River and Alert. It should be noted that the airfields at Resolute and Alert will require development and remediation before the CC-177 can be accommodated. The remaining airfields (small dots) can accommodate the runway requirements of the CC-130 aircraft (but not the CC-177) and would be used as a Forward Support Bases (FSB) for sustaining Northern operations.

Figure 1: Northern airfields and potential RSOM-hub locations

4

DRDC CORA TM 2011-122

2.3

MAJAID Response

Based on the Canada Command CONPLAN 10250/10 MAJAID 1 , the CF would respond to a MAJAID scenario in the North in two stages [14]: •

Initial Responders. Composed of a search and rescue team, an airborne support group with two CH-146 Griffon helicopters (or possibly one CH-147 Chinook), a health support section, a joint task force support element, an airlift control element, and a MAJAID command element. They would deploy within hours of notification and are configured to conduct operations over a 72-hour period. Their primary role would likely be a rescue and may be augmented by elements of the Canadian Rangers and Joint Task Force North resources already in the North.



Follow-on Forces. After 72 hours, follow-on forces could be deployed to conduct post rescue operations. While this aspect does not appear to have been developed yet, it seems likely that such follow-on forces might consist of the Vanguard Company of an Immediate Reaction Unit battalion, which would conceivably have the role of assisting with the tasks of body recovery and site cleanup.

Given that the information about the structure and the requirements of the follow-on forces is not available, the analysis focuses on the deployment of the initial responders. A concept of deployment using RSOM-hubs is being developed by CANOSCOM (Figure 2): •

A strategic lift aircraft (CC-177) would be used to move personnel and two helicopters (CH146 Griffon) from Trenton to a given RSOM-hub. The helicopters would be self-deployed from Petawawa (main base), disassembled and loaded in the aircraft at Trenton. From a response time perspective, the CC-130 aircraft would not be effective for the deployment of the helicopters as the time required to disassemble a CH-146 in order to load in a CC-130 would be 24 hours (seven hours for the CC-177). The CC-130 aircraft would be used for the movement of MAJAID kits, personnel and sustainment packages to either RSOM-hubs or the closest FSB to the scenario location.



At the hub, the helicopters would be reassembled, tested and self-deployed to the event location. Alternatively, the helicopters could fly directly to the event location if it is close to Petawawa 2 .



The helicopters would be used to conduct evacuation operations from the event location to the closest FSB. Depending on the scenario scale, multiple trips of the helicopters could be used to complete the movement.



Upon completion of the evacuation operations, the helicopters would fly back to the hub for redeployment (or fly back to Petawawa).

Note: It is assumed that refuelling stops would be available in the North for refuelling the helicopters during tactical lift operations. 1 2

Canada Command, CONPLAN 10250/10 MAJAID, “Response to a Major Air Disaster (DRAFT), May 2010. Refuelling stops might be required to refuel the helicopter.

DRDC CORA TM 2011-22

5

Event 2xCH-146

Helicopter sorties

Hub

FSB

CC-177

Direct flight

Petawawa

Trenton 2xCH-146 Figure 2: Concept of deployment using RSOM-hubs

6

DRDC CORA TM 2011-122

3

Hub Location Model

In the section, performance measures were developed to assess the effectiveness and the responsiveness of different RSOM-hubs. A hub location optimization model was also formulated to determine optimal hub locations for a MAJAID scenario.

3.1

Performance Measures

In this paper, three performance measures were developed for the selection of RSOM-hubs for MAJAID operations in the North: Response time, Lift cost avoidance, Airfield operational capacity. The following assumptions are considered for the development of the performance metrics: •

A deployment scenario to a MAJAID location in Northern Canada (latitude ≥ 60°) is considered. Various deployments were simulated by dividing the Northern region into different potential MAJAID locations.



RSOM-hubs are established at different Northern airfields. All hubs can accommodate the CC-177 aircraft. All airfields can be used as FSBs.



It is assumed that at least one CC-177 aircraft is available for the movement at the event time for the strategic lift between Trenton and the RSOM-hubs.



It is assumed that at least two helicopters (CH-146) are available for the deployment at the event time for the tactical lift between the RSOM-hubs and the deployment location.



Given its limited range, refuelling stops would be required for the helicopter lift. It is assumed that refuelling locations are available in the North 3 .



Great circle distance is used to estimate the airlift time of the aircraft, neglecting issues such as the weather effects, etc.

Let n be the number of RSOM-hubs, i (i = 1, ... , n) the index of an individual hub, m the number of deployment locations, j (j = 1, 2, … , m) the index of an individual deployment location, p the number of FSBs, and k (k= 1, 2, … , p) the index of an individual FSB. Let va be the aircraft speed (km/h), ra the aircraft hourly flying cost ($/h), vh the helicopter speed (km/h), rh the helicopter hourly flying cost ($/h). Let di be the great circle distance between Trenton and hub i, d0 the distance between Petawawa and Trenton, dij the great circle distance between hub i and location j, and dkj the great circle distance between FSB k and location j. Let l be the helicopter preparation time (h) that includes the time required for disassembling and loading the helicopter at Trenton, and the time required for unloading, reassembling and testing the helicopter at a given hub. Let fij be the helicopter refuelling time (h) for the lift between hub i and location j and fkj be refuelling time (h) for the lift between FSB k and location j. 3

The hubs and the FSBs would be used as refuelling stops for the helicopter.

DRDC CORA TM 2011-22

7

3.1.1

Response time

The main performance measure for a MAJAID scenario would be the response time. Response time is defined as the total time required for deploying the equipment and personnel of the MAJAID initial response team from Petawawa (through Trenton) to the event location, following the movement notification. It includes (Figure 3) the helicopter self-deployment time from Petawawa to Trenton, the strategic lift time from Trenton to a given RSOM-hub (including the helicopter preparation time) and the tactical lift time from the hub to the deployment location (including the helicopter refuelling service time). It also includes the time required to conduct the rescue operations from the event location to the closest FSB (by definition only the first helicopter sortie is considered in the response time calculation).

Figure 3: Response time components

The response time (Tij) for location j using hub i (i ≥ 1) is given by:

Tij =

β ij d ij ⎞ ⎛ β kj d kj d0 d + l + i + + f ij + min ⎜⎜ + f kj ⎟⎟ k vh va vh ⎠ ⎝ vh

(1)

Where βij (βij ≥ 1) is an adjustment factor to take into consideration the additional distance between hub i and location j required to reach fuelling stops for refuelling the helicopter (refuelling stops are not necessarily close to the helicopter route). Refuelling stops are required when traveled distances exceed the helicopter range. Given the lack of data (e.g., location of refuelling stops), a distance adjustment factor of (βij = 1) will be used for all hubs and FSBs. The response time (T0j) for location j using a direct flight from Petawawa is given by:

T0 j =

β0 j d0 j vh

⎞ ⎛ β kj d kj + f 0 j + min ⎜⎜ + f kj ⎟⎟ k ⎠ ⎝ vh

(2)

Where d0j is the great circle distance between Petawawa and location j, β0j is the distance adjustment factor for the helicopter direct flight between Petawawa and location j and f0j is the 8

DRDC CORA TM 2011-122

refuelling service time for the helicopter direct flight between Petawawa and location j. The optimal response time (Tj) for location j is the minimum lift time over all hubs, including the direct flight from Petawawa (i = 0).

( )

T j = min Tij i

(3)

The average response time ( RT ), weighted by a normalized weighting factor for location j (0 ≤ wj ≤ 1), is calculated as follows:

RT

=

m

∑ wj Tj

(4)

j =1

The location weighting factor (wj) represents the probability of an event that occurs at location j and requires a CF response. For MAJAID scenarios, historical air traffic flights were used to determine the probability of an event at a given location in the North. Refuelling service time While refuelling stops would not be required for the strategic lift between Trenton and the RSOM-hubs (i.e., the distances between Trenton and the hubs are within the range of the CC-177 aircraft), refuelling stops might be required for the tactical lift between the hubs and the deployment locations, depending on the location distance and the helicopter maximum range. To determine the total refuelling service time, the number of refuelling stops should first be calculated. It is also important to note that the maximum range is applicable to situations where the helicopter deploys from a site with fuel to another site with fuel. For the purpose of this analysis, it is assumed that the deployment locations have no fuel; therefore the last leg of the traveled distance should be less than half of the maximum range (R) to allow the helicopter to return to the previous refuelling stop (Figure 2).

R i

R

R

dij

< R/2

j

Figure 4: Helicopter refuelling stops Taking into consideration the fuel restriction at destination, The total refuelling service time (fij) for a helicopter with a range (R) traveling a distance (dij) between hub i and deployment location j (one way) can be formulated as follows [2]:

DRDC CORA TM 2011-22

9

f ij

=

⎧ ⎪⎪ 0 ⎨ ⎢ d ij 1⎥ ⎪α ⎢ + ⎥ 2⎦ ⎪⎩ ⎣ R

R 2 R ≥ 2

;

d ij

Suggest Documents