Noninvasive screening tests for colorectal carcinoma

Sensitivity and Specificity of Community Fecal Immunotesting Screening for Colorectal Carcinoma in a High-Risk Canadian Population Amber L. Crouse, BA...
Author: Kevin Elliott
6 downloads 0 Views 235KB Size
Sensitivity and Specificity of Community Fecal Immunotesting Screening for Colorectal Carcinoma in a High-Risk Canadian Population Amber L. Crouse, BA; Lawrence De Koning, PhD; S. M. Hossein Sadrzadeh, PhD; Christopher Naugler, MD

 Context.—Community-based programs are a common way of promoting colorectal cancer screening by primary care physicians. Fecal immunochemical testing (FIT) is a screening method commonly used in such programs. Fecal immunochemical testing has advantages to the patient as well as to clinical laboratories. Objective.—To assess the operational test characteristics of a FIT pilot program in Calgary, Alberta, Canada, between April 2011 and May 2012. Design.—Four hundred fifty-seven high-risk patients undergoing both FIT and colonoscopy were included. Areas under the curve and positive predictive values were derived for FIT values and biopsy-proven neoplasia. Subgroup analysis was also performed on men and women

and for ages older and younger than the mean age of 62 years. Results.—For colorectal carcinoma and colonic adenomas the areas under the curve were 0.79 (95% confidence interval 0.71–0.87) and 0.60 (95% confidence interval 0.54–0.65), respectively. The positive predictive value of a positive FIT result for any neoplasia was 53%. The overall performance of the test for all neoplasia was better for men and better for older individuals. Conclusions.—The performance of FIT in this clinical setting was very good for detecting carcinoma, but marginal for detection of colonic adenomas. (Arch Pathol Lab Med. 2015;139:1441–1445; doi: 10.5858/arpa.2014-0454-OA)

N

gram evaluations describing the test characteristics of FIT (eg, sensitivity, specificity, and positive predictive value [PPV]) and therefore no data on which to evaluate existing and planned screening programs in Canada. The purpose of this study was to describe the test characteristics of a FIT pilot program performed in Calgary, Alberta, Canada. Specifically, we compared FIT results with subsequent biopsy results to produce receiver operating characteristic curves for FIT and biopsy-proven neoplasias (colorectal carcinoma and colonic adenoma).

oninvasive screening tests for colorectal carcinoma include fecal occult blood tests and fecal immunochemical tests (FIT).1 Screening programs based on these tests not only are important for detecting early disease2–4 but may also be efficiently promoted by primary care physicians.5 Recent research, however, has indicated that FIT is more sensitive than fecal occult blood tests as well as being more convenient for patients.6–10 Fecal immunochemical testing also offers advantages to clinical laboratories, including the potential for automation, the ability to customize the cutoff level to define a positive test, and improved cost-effectiveness.11–16 Finally, by eliminating patients who do not need a colonoscopy, a FIT screening program may be more cost-effective than colonoscopybased screening.17 Despite the numerous reported advantages of FIT as a screening modality, there are few community-based proAccepted for publication January 27, 2015. From Calgary Laboratory Services, Calgary, Alberta, Canada (Ms Crouse and Drs Koning, Sadrzadeh, and Naugler); and the Departments of Pathology and Laboratory Medicine (Ms Crouse and Drs Koning, Sadrzadeh, and Naugler) and Family Medicine (Dr Naugler), University of Calgary, Calgary, Alberta, Canada. The authors have no relevant financial interest in the products or companies described in this article. Presented as a poster at the Canadian Association of Pathologists Conference; July 12–15, 2014; Toronto, Ontario, Canada. Reprints: Christopher Naugler, MD, Department of Pathology and Laboratory Medicine, University of Calgary, 9-3535 Research Rd NW, Calgary, AB T2L 2K8, Canada (e-mail: christopher.naugler@cls. ab.ca). Arch Pathol Lab Med—Vol 139, November 2015

MATERIALS AND METHODS Ethics Statement This research was approved by the University of Calgary Conjoint Research Ethics Board (ID 13-0376) prior to the start of data collection.

Data Sources Data for this retrospective study were obtained from a pilot of community FIT screening using the FOBT-CHEK Sampling Bottle (Polymedco Inc, Cortland Manor, New York) FIT testing platform performed in Calgary, Alberta, Canada, between April 2011 and May 2012. Fecal immunochemical testing collection kits were distributed directly to patients by participating primary care physicians. Samples were returned to Calgary Laboratory Services for testing on an automated analyzer, OC-Sensor Diana (Polymedco, Inc), with a cutoff of 75 ng/mL, and the results were read by trained laboratory personnel. Calgary Laboratory Services is the sole provider of laboratory services to Calgary and surrounding areas (catchment population of 1.4 million persons). In the vast majority of cases 2 paired FIT tests were collected on consecutive days. Where 2 kits were collected, the higher of the 2 FIT values FIT Sensitivity—Crouse et al 1441

was used for analysis. For each FIT result we searched our laboratory information system for colon biopsy reports signed out in the 1-year period following the FIT. All biopsy results were interpreted by a pathologist as part of routine histologic assessment. Pathologists were blinded to the numeric results of the FIT results. Only biopsy results obtained within 1 year of the FIT were included. Biopsy results were classified as nonneoplastic, colonic adenoma, and colorectal carcinoma. Nonneoplastic biopsies included normal mucosa and inflammatory and hyperplastic polyps. Colonic adenomas included sessile serrated adenoma, villous adenoma, tubulovillous adenoma, and tubular adenomas. For individuals with more than one biopsy, only the most advanced lesion was considered. For example, if a patient had both a carcinoma and a tubular adenoma, the case was considered as a carcinoma.

Statistical Analysis Receiver operating characteristic curves were constructed for FIT quantitative values and carcinoma and for FIT quantitative values and adenoma. In addition to the overall analysis, subgroup analysis was performed for women and men and for ages older or equal to and younger than the mean subject age of 62. Area under the curve (AUC) values were then calculated for each receiver operating characteristic curve to determine the overall predicative strength of the associations. An AUC value of 0.8 is considered a strong predictor and a range between 0.5 and 0.6 is generally considered to represent a weak association.18 Positive predictive values were also calculated. Statistical analyses were performed using SPSS for Macintosh version 21 (IBM SPSS Inc, Armonk, New York).

RESULTS The operational pilot of FIT at our institution ran between April 2011 and May 2012. A total of 457 patients underwent FIT and had subsequent colon biopsy within a 1-year period and were therefore included in the analysis. Characteristics of patients and histology results are summarized in Table 1 and a flow diagram of the patients’ eligibility and results is shown in Figure 1. Figure 2, A and B, illustrates the receiver operating characteristic curves for FIT results and colorectal carcinoma for FIT results and colonic adenoma. The predictive ability for colorectal carcinoma was very good, with an AUC of 0.79 (95% confidence interval 0.71–0.87). In contrast to colorectal carcinoma, the predictive ability for colonic adenoma was poor, with an AUC of 0.60 (95% confidence interval 0.54– 0.65). Table 2 indicates the sensitivities and specificities for FIT using the commonly accepted cutoff level of 75 ng/mL at our institution. Cross-tabulations were calculated from positive and negative FIT tests and biopsies and are shown in Table 3. Although the majority of patients who underwent colonoscopy did so for routine screening or because of FIT-positive screening results, there were patients who were FIT negative who also had colonoscopy. Table 4 shows the indications for colonoscopy for patients with a negative FIT result. The histologic diagnoses for all 457 patients who underwent a colonoscopy are found in Table 5. Many patients had more than one polyp found during colonoscopy and had multiple diagnoses. Figure 3 shows the diagnoses of FIT-positive patients and the range of associated quantitative FIT results. The PPV was 53% for all neoplasia. This value is within the range of prior studies, as shown in Table 6. For example, the PPV in our study is lower than that of Zubero et al,19 who tested 2 different brands of FIT and found PPVs of 62.4% and 58.9%, but higher than that in another Canadian study20 that demonstrated a 40% PPV (Table 6). 1442 Arch Pathol Lab Med—Vol 139, November 2015

Table 1. Characteristics of Study Subjects Characteristic Female No. Mean age (range), y

Value 201 49 (34–83)

Male No. 256 Mean age (range), y 51 (33–84) FIT result range 0–981 Individuals with carcinoma as most serious lesion 35 209 Individuals with adenoma as most serious lesiona Abbreviation: FIT, fecal immunochemical test. a Includes sessile serrated adenoma, villous adenoma, tubulovillous adenoma, and tubular adenoma.

COMMENT In this paper, we report the test characteristics from a FIT community screening program in Calgary, Alberta, Canada. Data from similar community programs are limited. The receiver operating characteristic curve for FIT test results and colorectal carcinoma showed good predictive ability with an AUC of 0.79 (95% confidence interval 0.71–0.87). However, the predictive ability for colonic adenomas was not as strong, with an AUC of 0.60 (95% confidence interval 0.54– 0.65). The predictive ability was also better for men and for older individuals. Several studies in Europe and Israel have shown higher sensitivities for FIT as compared with fecal occult blood tests.6,8 Reported sensitivities in these studies have ranged from 40.5% to 94%.7,8,21 Our results are likely more reflective of the expectations for a community-based program. We report AUCs for colorectal carcinoma in subgroup analysis of 0.75 to 0.85, which are considerably lower than those reported by Tao et al,22 who reported AUCs for the 3 quantitative tests of 0.90 to 0.92. However, it is important to add that the high AUCs reported from Tao et al22 were not from a community-based population. Another study by Haug et al23 reported AUCs of 0.60 to 0.71 but is not directly comparable with our results because of their inclusion of certain types of adenoma along with colorectal carcinoma.

Normal results from

Figure 1. Study flow diagram. Abbreviation: FIT, fecal immunotesting. FIT Sensitivity—Crouse et al

Figure 2. Receiver operating characteristic curves for a community trial of fecal immunochemical testing in Calgary, Alberta, Canada. Area under the curve was (A) 0.79 (95% confidence interval 0.71–0.87) for colorectal carcinoma and (B) 0.60 (95% confidence interval 0.54–0.65) for colonic adenoma.

One potential weakness of our study was the time difference between when patients received FIT testing and when the biopsy was taken. Indeed, in some cases, there was up to a year between when the FIT was reported and when the colonoscopy was performed, which could allow for the possible interval progression of any lesions that were present at the time of FIT testing. However, this does represent a real-world situation, where, for reasons such as Table 2.

health system wait times or patient-related factors, colonoscopy may not be available immediately after a FIT is reported. A second weakness of the study is that as we used secondary data we were unable to control for the presence or absence of symptoms that may have prompted FIT testing or a colonoscopy in the first place. Lastly, as we studied patients who had undergone both FIT and colonoscopy, our sample was enriched for symptomatic and/or high-risk

Test Characteristics of a Community-Based Pilot of Fecal Immunotesting in Calgary, Alberta, Canadaa

Lesion

Sensitivity, %

Specificity, %

AUC (95% CI)

P

Tubular adenoma Advanced adenomab Carcinoma

36.4 49.5 82.9

62.2 62.7 60.0

0.49 (0.41–0.54) 0.57 (0.50–.064) 0.79 (0.71–0.87)

.47 .05 ,.001

Men Tubular adenoma Advanced adenoma Carcinoma

38.1 51.6 83.3

56.8 58.6 66.0

0.45 (0.36–0.54) 0.53 (0.44–0.62) 0.78 (0.66–0.91)

.24 .52 .01

Women Tubular adenoma Advanced adenoma Carcinoma

34.5 44.8 82.6

69.9 68.1 65.9

0.52 (0.42–0.62) 0.63 (0.52–0.74) 0.81 (0.70–0.91)

.68 .03 ,.001

Age 62 y Tubular adenoma Advanced adenoma Carcinoma

40.0 46.5 75.0

55.0 56.9 56.2

0.44 (0.35–0.53) 0.51 (0.41–0.62) 0.75 (0.64–0.86)

.20 .77 ,.001

Age ,62 y Tubular adenoma Advanced adenoma Carcinoma

32.7 50.0 100

70.7 69.4 64.8

0.51 (0.42–0.61) 0.60 (0.51–0.70) 0.85 (0.78–0.93)

.79 .03 ,.001

Abbreviations: AUC, area under the curve; CI, confidence interval. a Sensitivity and specificity refer to the commonly used cutoff of 75 ng/mL. b Includes sessile serrated adenoma, villous adenoma, tubulovillous adenoma, and any high-grade dysplasia. Arch Pathol Lab Med—Vol 139, November 2015

FIT Sensitivity—Crouse et al 1443

Table 3.

Cross-Tabulation of Resultsa Biopsy

FIT

Positive

Negative

Positive Negative

183 122

63 89

Abbreviation: FIT, fecal immunochemical test. a A positive biopsy includes carcinoma and any adenoma subtype. FIT positivity is defined as a quantitative value .75 ng/mL.

Table 4. Clinical History of All Patients Included for Analysis With Both Fecal Immunochemical Test (FIT) Screening and Colonoscopy Clinical History

No. of Patientsa

Routine screening FIT positive No history Gastrointestinal symptomsb Family history History of prior polyps History of prior cancer Iron deficiency anemia

159 104 76 51 30 24 14 7

a

The total is greater than 457 as some individuals fit into more than one category. b Gastrointestinal symptoms include change in bowel habits, abdominal pain, and rectal bleeding.

Table 5. Histologic Diagnosis From 983 Biopsies Taken From 457 Patients Undergoing Colonoscopya

a

Diagnosis

No. Positive

Carcinoma Sessile serrated adenoma Tubulovillous adenoma Villous adenoma Tubular adenoma Hyperplasic polyp Inflammatory polyp or colitis No pathologic diagnosis

39 45 80 10 436 180 63 130

The total is greater than 457 as some individuals had multiple diagnoses.

Table 6. Comparative Positive Predictive Value (PPV) for All Neoplasia (Carcinoma and Adenomas) in Related Studies

Source, y

Population Tested

PPV for All Neoplasia, %

This study Community population and patients receiving FIT and colonoscopy Zubero et Patients scheduled for colonoscopy al,19 2014 after a positive FIT test result Zubero et al,19 2014

Patients scheduled for colonoscopy after a positive FIT test result

Randell et Symptomatic patients and al,20 2013 high-risk patients scheduled for colonoscopy Recruited CRC Oono et symptomatic al,24 2010 patients with a range of colorectal disorders Asymptomatic, Levi et symptomatic, al,21 2007 and high-risk patients referred from a clinic or treating physician or for elective colonoscopy

53

62.4

58.9

40

33.7

43.9

Brand of FIT FOBT-CHEK (Polymedco, Inc, Cortland Manor, New York) OC-Sensor (Eiken Chemical Co, Taito-Ku, Tokyo, Japan) FOB Gold (Sentinel Diagnostics, Milan, Lambardia, Italy) Hemo Tech NSPlus (Alfresa Pharma, Chuo-Ku, Osaka, Japan) Auto iFOBT (Alfresa Pharma, Chuo-Ku, Osaka, Japan) OC-MICRO (Eiken Chemical Co, Taito-Ku, Tokyo, Japan)

Abbreviations: CRC, colorectal carcinoma; FIT, fecal immunochemical test.

subjects. It should be noted, however, that this is a general limitation of observation studies using an invasive or potentially harmful gold standard. In conclusion, our results show average performance for FIT as compared with previous studies and also indicate that although FIT is sensitive for colorectal carcinoma, the association is weaker for colonic adenomas. The relatively poor predictive ability for these colorectal carcinoma precursors suggests that reliance on screening by FIT testing alone may miss early lesions. References

Figure 3. Box and whisker plot showing the quantitative results from fecal immunochemical testing (FIT) screening by pathology diagnoses. 1444 Arch Pathol Lab Med—Vol 139, November 2015

1. Richter S. Fecal DNA screening in colorectal cancer. Can J Gastroenterol. 2008;22(7):631–633. 2. Labianca R, Merelli B. Screening and diagnosis for colorectal cancer: present and future. Tumori. 2010;96(6):889–901. 3. Levin TR, Jamieson L, Burley DA, Reyes J, Oehrli M, Caldwell C. Organized colorectal cancer screening in integrated health care systems. Epidemiol Rev. 2011;33(1):101–110. 4. Allard J, Cosby R, Del Giudice ME, Irvine EJ, Morgan D, Tinmouth J. Gastroscopy following a positive fecal occult blood test and negative colonoscopy: systematic review and guideline. Can J Gastroenterol. 2010; 24(2):113–120. 5. Moiel D, Thompson J. Early detection of colon cancer—the Kaiser Permanente Northwest 30-year history: how do we measure success?: is it the test, the number of tests, the stage, or the percentage of screen-detected patients? Perm J. 2011;15(4):30–38.

FIT Sensitivity—Crouse et al

6. Guittet L, Bouvier V, Mariotte N, et al. Comparison of a guaiac and an immunochemical faecal occult blood test for the detection of colonic lesions according to lesion type and location. Br J Cancer. 2009;100(8):1230–1235. 7. Launoy GD, Bertrand HJ, Berchi C, et al. Evaluation of an immunochemical fecal occult blood test with automated reading in screening for colorectal cancer in a general average-risk population. Int J Cancer. 2005;115(3):493–496. 8. Oort FA, Terhaar Sive Droste JS, Van Der Hulst RW, et al. Colonoscopycontrolled intra-individual comparisons to screen relevant neoplasia: faecal immunochemical test vs. guaiac-based faecal occult blood test. Aliment Pharmacol Ther. 2010;31(3):432–439. 9. Daly JM, Bay CP, Levy BT. Evaluation of fecal immunochemical tests for colorectal cancer screening. J Prim Care Community Health. 2013;4(4):245–250. 10. Day LW, Bhuket T, Allison J. FIT testing: an overview. Curr Gastroenterol Rep. 2013;15(11):357. 11. Ciatto S, Martinelli F, Castiglione G, et al. Association of FOBT-assessed faecal Hb content with colonic lesions detected in the Florence screening programme. Br J Cancer. 2007;96(2):218–221. 12. Rabeneck L, Rumble RB, Thompson F, et al. Fecal immunochemical tests compared with guaiac fecal occult blood tests for population-based colorectal cancer screening. Can J Gastroenterol. 2012;26(3):131–147. 13. Fan J, Upadhye S, Worster A. Understanding receiver operating characteristic (ROC) curves. CJEM. 2006;8(1):19–20. 14. Kovarova JT, Zavoral M, Zima T, et al. Improvements in colorectal cancer screening programmes—quantitative immunochemical faecal occult blood testing—how to set the cut-off for a particular population. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012;156(2):143–150. 15. van Rossum LG, van Rijn AF, Laheij RJ, et al. Cutoff value determines the performance of a semi-quantitative immunochemical faecal occult blood test in a colorectal cancer screening programme. Br J Cancer. 2009;101(8):1274–1281.

Arch Pathol Lab Med—Vol 139, November 2015

16. Brenner H, Tao S. Superior diagnostic performance of faecal immunochemical tests for haemoglobin in a head-to-head comparison with guaiac based faecal occult blood test among 2235 participants of screening colonoscopy. Eur J Cancer. 2013;49(14):3049–3054. 17. Sharp L, Tilson L, Whyte S, et al. Cost-effectiveness of population-based screening for colorectal cancer: a comparison of guaiac-based faecal occult blood testing, faecal immunochemical testing and flexible sigmoidoscopy. Br J Cancer. 2012;106(5):805–816. 18. Kopcke F, Lubgan D, Fietkau R, et al. Evaluating predictive modeling algorithms to assess patient eligibility for clinical trials from routine data. BMC Med Inform Decis Mak. 2013;13:134. 19. Zubero MB, Arana-Arri E, Pijoan JI, et al. Population-based colorectal cancer screening: comparison of two fecal occult blood test. Front Pharmacol. 2014;4:175. 20. Randell E, Kennell M, Taher A, et al. Evaluation of Hemo Techt NS-Plus system for use in a province-wide colorectal cancer screening program. Clin Biochem. 2013;46(4–5):365–368. 21. Levi Z, Rozen P, Hazazi R, et al. A quantitative immunochemical fecal occult blood test for colorectal neoplasia. Ann Intern Med. 2007;146(4):244– 255. 22. Tao S, Seiler CM, Ronellenfitsch U, Brenner H. Comparative evaluation of nine faecal immunochemical tests for the detection of colorectal cancer. Acta Oncol. 2013;52(8):1667–1675. 23. Haug U, Kuntz KM, Knudsen AB, Hundt S, Brenner H. Sensitivity of immunochemical faecal occult blood testing for detecting left- vs right-sided colorectal neoplasia. Br J Cancer. 2011;104(11):1779–1785. 24. Oono Y, Iriguchi Y, Doi Y, et al. A retrospective study of immunochemical fecal occult blood testing for colorectal cancer detection. Clin Chim Acta. 2010; 411(11–12):802–805.

FIT Sensitivity—Crouse et al 1445

Suggest Documents