NanoPWM Drives for High Performance Positioning Applications. Ze ev Kirshenboim ACS Motion Control

NanoPWM Drives for High Performance Positioning Applications Ze’ev Kirshenboim ACS Motion Control Market Need Wafer Inspection Wafer Inspection – 30...
Author: Ross Tate
1 downloads 0 Views 1010KB Size
NanoPWM Drives for High Performance Positioning Applications Ze’ev Kirshenboim ACS Motion Control

Market Need Wafer Inspection Wafer Inspection – 300mm wafers > Positioning performance >

Standstill jitter < 1 Nanometer

>

Smooth constant velocity - ±3nm following error @ < 100mm/sec.

> Next generation of 450 mm wafers

2

>

Similar and better positioning performance

>

Much higher power due to size >

Bus voltage > 100Vdc,

Preferred: 160Vdc, 320Vdc

>

Motor phase current > 30A peak

Market Needs OLED FPD Inspection > Positioning performance > Standstill jitter < 5 Nanometer > Smooth constant velocity ±10nm following error @ 100mm/sec. > High power due to size > Bus voltage > 320Vdc > Motor phase current > 30A peak

3

Market Needs High Performance Positioning Linear Air Bearing Stages Air bearing spindles Linear Servo Stages Lens Grinding Equipment Laser Steering Ultrasonic Scanning Coordinate Measuring Machines (CMM)

4

Present Drive Solutions Linear Servo Drives Using Linear Servo Drives due to: > Low noise > High bandwidth > Zero crossover distortion (linearity) > No current ripple

5

Present Drive Solutions Linear Servo Drives Linear servo drives drawbacks > > > >

Low efficiency, high heat dissipation Large size Difficult / expensive fault protection Complex supply requirements >

+/-15vdc Bias Supply

>

Two (+/-) DC Motor Bus Supplies

> Analog current loop tuning requires changing components > Available products are limited in voltage ( Expensive

6

Present Drive Solutions Switching PWM Drives PWM Servo Drives advantages > > > >

High efficiency, low heat dissipation Compact size Excellent fault protection Simple supply requirements > Single Motor Bus Supply > High voltage and current > Low(er) cost

7

Present Drive Solutions Switching PWM Drives PWM servo drives drawbacks > > > >

High switching noise Cross over distortion (non-linearity) Current ripple 10,11 bits current dynamic range free of noise

Until now, PWM servo drives were not used in demanding application with nanometers level jitter and following errors

8

The Goal Combining the advantages of Linear & PWM drives

Low noise High bandwidth Zero crossover distortion Low current ripple High efficiency

9

Simple supply High voltages & currents Digital current control Compact Cost effective

NanoPWMTM Drives Better Than Linear Drives Replaces linear drives It is a PWM drive > 15, 16 bits dynamic range free of noise > > > >

10

Better performance Sub-nanometer jitter Smoother velocity, lower tracking error Higher voltages, higher currents

NanoPWMTM Drives Better than Linear Drives Linear drive +/‐50V, 6/30A

> > > >

A much smaller package Better reliability Fully digital control Simpler power supply requirements > Better price

NanoPWMdrive 320V, 15/30A 11

NanoPWMTM Two Lines of Drives > NPM > EtherCAT slaves – Similar  to other ACS’  drive  modules > Expanding the line of  ACS’ EtherCAT drives

> NPD > Drive with ±10V current  commutation commands > Direct replacement  for linear drives 12

ACS  Motion  Controller

EtherCAT

NanoPWM Drive

M E

Direct replacement  to Linear drive 

Any  Motion  Controller

+/‐10V

NanoPWM Drive

M E

NPM / NPD Three Form Factors Chip like Bookshelf, panel mounted Rack mounted

13

NPM / NPD 100Vdc drives Main Specifications (per axis/motor) Max  Voltage [Vdc]

Cont Current [A]

Peak  current [A]

Cont  Power [W}

Peak  Power [W]

100

3.3

10

340

950

100

6.6

20

680

1900

100

10

30

1,020

2850

100

13.3

40

1,380

3,800

For wafer inspection & metrology, optical lenses processing > Standstill Jitter  Following error at constant velocity  Jitter  Following error at constant velocity  > >

Test system: a linear stage, ironless motor,  cross roller bearings, 0.4um Laser encoder Sub‐nanometer position jitter Nanometer stepping: ±0.4nm  jitter

1nm  steps

16

NanoPWM VS Linear Drive Stand Still Jitter

NanoPWM

Linear Drive

Standstill jitter [nm] p‐p 

0.8

3.6

Standstill jitter [nm] Std. Dev.

0.1

0.44

17

NanoPWM Drive

Wafer inspection Gantry Table, Standstill Jitter Gantry Axis (X0,X1)

Cross Axis (Y)

Standstill jitter [nm] p‐p

0.6

1.4

Standstill jitter [nm] Std. Dev.

0.08

0.18

NanoPWM Drive

Wafer inspection Gantry Table, Move & Settle 300mm Wafer inspection stage 15Kg load Move ‐ 25mm Acceleration – 2g Theoretical move time – 80ms Settling window  [nm]

Move & Settle [ms]

100

90

2

137

1

197

0.5

240

Fraunhofer IPT Tests

Air bearing stage 48Vdc supply

100nm steps

ACS Linear  Drive

PWM Drive Non‐ACS

NanoPWM Drive

50nm steps

ACS Linear  Drive

PWM Drive Non‐ACS

NanoPWM Drive

20nm steps

ACS Linear  Drive

PWM Drive Non‐ACS

NanoPWM Drive

10nm steps

ACS Linear  Drive

PWM Drive Non‐ACS

NanoPWM Drive

5nm steps

ACS Linear  Drive

PWM Drive Non‐ACS

NanoPWM Drive

2nm steps

ACS Linear  Drive

PWM Drive Non‐ACS

NanoPWM Drive

1nm steps

ACS Linear  Drive

PWM Drive Non‐ACS

NanoPWM Drive

2nm Steps, Mechanical Bearing Stage

> Step size – 2nm > standstill jitter ‐ ±0.25nm 

Constant Velocity Smoothness

> Constant velocity – 100um/sec > Following error 

Suggest Documents