NANOFABRICATION 1 CRYSTAL GROWTH

3/11/2010 NANOFABRICATION ‐1 CRYSTAL GROWTH EEE5425 Introduction to Nanotechnology 1 Crystal Growth Bulk crystal growth Growth of semiconductors cr...
8 downloads 0 Views 847KB Size
3/11/2010

NANOFABRICATION ‐1 CRYSTAL GROWTH EEE5425 Introduction to Nanotechnology

1

Crystal Growth Bulk crystal growth Growth of semiconductors crystals (e.g. Si, GaAs, Ge) as standalone pieces. •Czochralski method •Bridgman method •Various floating zone methods Epitaxial crystal growth Growth of a thin crystal layer on a wafer of a compatible crystal. •Molecular beam Epitaxy (MBE) •Metal organic chemical vapor deposition (MOCVD) © Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

2

Purity Purity is very important for semiconductor crystals to fabricate  high quality electronic devices. Today's Si wafers have the impurity level of parts per billion or  ppb. 1ppb = 5 x 1013 cm‐3. What is ppb? Imagine the world population is 6 billion. And there are 6 aliens. They would feel very lonely…

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

3

1

3/11/2010

Defects

a) Interstitial impurity atom; b) Edge dislocation; c) Self interstitial atom; d) Vacancy;

e) Precipitate of impurity atoms; f) Vacancy type dislocation loop; g) Interstitial type dislocation loop; h) Substitutional impurity atom

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

4

Crystal Growth (Si) Starting Material Silica

Very impure Silicon

SiCl4 (liquid)

Ultrapure SiCl4

Ultrapure polycrystalline Si

Ultrapure Polycrystalline Si Czochralski method Single Crystal Growth Grinding Polished Wafer

Sawing

Chemical mechanical Polishing (CMP)

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

5

Purification Low-grade (or metallurgical grade MGS) Si (or ferrosilicon) with a purity of about 95 ~ 98% is firstly produced by placing silica (SiO2, sand, quartzite) in a furnace (at about 1,800 oC) with various forms of carbon to get rid of oxygen. SiO2 (s) + SiC (s) → Si (s) + SiO (g) + CO (g) or SiO2 (s) + 2C (s) → Si (s) + 2CO (g)

The ferrosilicon is chlorinated to yield SiHCl3 (or SiCl4), both of which are liquids at room temperature (BP ≈ 32 oC).

or

Si (s) + 3HCl → SiHCl3 (l) + H2 (g) Si (s) + 4HCl → SiCl4 (l) + 2H2 (g)

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

6

2

3/11/2010

Purification Multiple distillation of the liquids removes the unwanted impurities (99.9999% pure). The purified SiHCl3 (or SiCl4) is then used in a hydrogen reduction reaction to prepare the electronic-grade Si (EGS).

or

SiHCl3 (g) + H2 (g) → Si (s) + 3HCl (g) SiCl4 (g) ( )+2 2H2 (g) ( ) → Si ((s)) + 4HCl Cl ((g))

The EGS, a polycrystalline material of high purity, is the raw material used to prepare device-quality, single-crystal Si. Pure EGS generally has impurity concentrations in the parts-per-billion range.

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

7

Czochralski Method Jan Czochralski (cho-HRAL-skee) (1885 1953) was a Polish chemist who invented the Czochralski process, which is used to grow single crystals and is used in the production of semiconductor wafers. He discovered the Czochralski method in 1916 1916, when he accidentally dipped his pen into a crucible of molten tin rather than his inkwell. He immediately pulled his pen out to discover that a thin thread of solidified metal was hanging from the nib. The nib was replaced by a capillary, and Czochralski verified that the crystallized metal was a single crystal.

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

8

Czochralski Method The ultrapure poly-Si is placed in a quartz crucible and heated in an inert atmosphere to form a melt (1412 oC). A small single crystal (or Si seed crystal), with the normal to its bottom face carefully aligned along a predetermined direction (typically a or direction), is then lamped to a metal rod and dipped into the melt. The molten Si may be doped n-type or p-type in the melt to produce a doped Si substrate. As the seed crystal is slowly pulled out, the Si in the melt near the seed cools off and crystallizes onto the seed, extending the crystal downward and outward. The diameter (or radius r ) of the cylindrically shaped single crystal of Si (ingot) increases, depending on the rate at which the seed pulls (typically (typically, the growth rate ~1/√r ). ) Recently, 300-/400-mm (12-/16-inch) wafers are in production.

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

9

3

3/11/2010

Czochralski Method

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

10

Czochralski Method

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

11

Bridgman Growth Method  •Mainly used for GaAs growth and other new crystals (eg. Bi2TeO5 , LiB4O7,  CdTe) for research. •Typical wafer diameter is 2”. •Growth of larger crystals requires very accurate control of the  stoichiometry of axial and radial temperature gradients to control dislocation density. •Allows very small thermal gradients and, therefore, low dislocation densities. 

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

12

4

3/11/2010

Float‐Zone Crystal Growth  •Used to form single crystal semiconductor substrates as an alternative to Czochralski growth process; •Polycrystalline material (typically in the form of a circular rod) is converted into single-crystal by zone heating (zone melting) starting at the plane g crystal y seed is contacting g where single polycrystalline material; •Used to grow Si wafers with very high purity (i.e. very high resistivity) single crystal Si; •Does not allow as large Si wafers as CZ does (200 mm and 300 mm) and radial distribution of dopant in FZ wafer not as uniform as in CZ wafer;

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

13

Sawing and Polishing Grinding → X-ray crystallography → Sawing →Lapping → Chamfering → Polishing

Sawing

Chamfering

Chemical mechanical polishing Using slurry of fine SiO2 particles in a basic NaOH solution.

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

14

Economical Value From sand

$35 / ton

to

ultrapure Si single crystal wafers

$200 / 300mm wafer

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

to

CPUs

$300 / CPU 15

5

3/11/2010

Doping doping : process of intentionally introducing impurities into an extremely  pure (also referred to as intrinsic) semiconductor in order to change its  electrical properties. 

For any material, there is a different affinity for impurities for the liquid phase and the solid phase. This characteristic is described by th distribution the di t ib ti coefficient ffi i t kd. kd = CS/CL CS = impurity concentration in the solid CL = impurity concentration in the liquid kd = f( material, impurity, temperature) Example: if kd=1/2, there are twice the impurities in the liquid as in the solid. © Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

16

Distribution Coefficient Example Find the concentration of phosphorous (P) atoms in the melt to obtain Si doped with 1016 atoms/cm3 (Czochralski growth) kd = 0.35 for P in Si.

kd 

1016 atoms / cm 3 cS  cL   2.86 1016 atoms / cm 3 0.35 cL

How many grams of P should be added if the initial load in the crucible is 5 kg of Si? (density of Si = 2.33g/cm3 )

v

m 5000g 5000 g   2145.9cm3 d 2.3g / cm3

In the total melt volume, we want 2.86X1016 atoms/cm3. The number of atoms is:



2.86 1016 atoms / cm 3 VSi  VP P atoms = ZP=31g





but VP  VSi, so VC  Vsi



2.86 10 atoms / cm 2145.0cm  6.135 1019 16

3

3

6.135 1019 atoms  31g / mole  3.159 103 g  3.16mg 6.023 1023 atoms / mole

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

17

Epitaxial Growth Epitaxial growth technique, a process whereby a thin, single crystal layer of material is grown (or deposited) on the substrate of a single-crystal substrate, which is used extensively in a device and integrate circuit fabrication. The single-crystal substrate acts as the seed. Epitaxial growth can be performed at temperatures considerably below the melting point of the substrate crystal. •Homoepitaxy: an epitaxial layer grown on the same substrate material (e.g., Si/Si-sub) •Heteroepitaxy: an epitaxial layer grown on the different substrate material (e.g., AlGaAs/GaAs-sub)

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

18

6

3/11/2010

Lattice Matching x=0.53

In creating heterojunctions, one must start with an available substrate material that is lattice matched (i.e., the lattice constants of the two materials must be as nearly equal as possible) Defects will occur or there is strain on the lattice near the junction unless the lattice constants of the two materials are very well matched. © Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

19

Vegard's Law  a(AxB1-x )= x.a(A)+ (1-x).a(B) aInxGa1-xAs= x.aInAs+ (1-x) aGaAs aGaAs=5.65Å

aInAs=6.06Å

aInP=5.87Å 5.87= x6.06+ (1-x) 5.65 5.87=5.65 +0.41x 0.22=0.41x x=0.53 © Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

20

Vegard's Law – Example  aAlN=3.112Å

aInN=3.533Å

aGaN=3.189 Å AlxIn11-xxN on GaN x=??? aAlxIn1-xN= x.aAlN+ (1-x) aInN 3.189 = 3.112 x + (1-x) 3.533 3.189 = 3.533 – 0.421x x = 0.82 © Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

21

7

3/11/2010

Liquid‐Phase Epitaxy (LPE) •One of the earliest way to grow epitaxial layers (primarily for compound semiconductors) •The wafers are on a tray that slides Advantages: Near-equilibrium growth, excellent crystal quality Inexpensive; Fast

Disadvantages:  Difficult to scale up for production  Dimensional control poor  Structure complexity limited

Current status: Used for LEDs and laser  diodes in well established processes. Rarely  used in new installations. © Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

22

Liquid‐Phase Epitaxy (LPE)

Koyo Thermo Systems Co., Ltd  © Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

23

Molecular Beam Epitaxy (MBE)

• A highly versatile technique to put down monolayers for extremely precise control of material growth. • Sort of a solid-phase epitaxy (SPE). • The individual elements (and dopants) are heated in their separate crucibles under high vacuum. The gates to the individual crucibles can be opened and closed to vary composition of the layers.

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

24

8

3/11/2010

Molecular Beam Epitaxy (MBE)

Single filament effusion cell

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

25

Molecular Beam Epitaxy (MBE) Advantages: Extremely flexible, simple chemistry Insitu monitoring; Atomic layer control Non-equilibrium technique Disadvantages: No in situ cleaning g or purifying p y g reactions Expensive (to assemble and operate) Non-equilibrium technique Current status: A research workhorse; heavily used in production

SEM of GaAs (dark) AlGaAs (light) layers. Each layer is 4 monolayers (11.3 A) thick.

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

26

Chemical Vapor Deposition (CVD) or  Vapor‐Phase Epitaxy (VPE) A process whereby an epitaxial layer is formed by a chemical reaction between  gaseous compounds: SiCl4 (g) + 2H2 (g) → Si (s) + 4HCl (g) •Performed at atmospheric pressure (APCVD) or at low pressure (LPCVD) •A technique commonly used to Si layers on Si •Also used grow III‐V compounds (e.g., a GaAs substrate is exposed to an  atmosphere of  AsH3 + PH3 + GaCl to obtain GaAsP film

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

27

9

3/11/2010

Metal‐Organic Chemical Vapor Deposition  (MOCVD) In obtaining the compounds containing Al, VPE does not work ideally because the Al does not diffuse well on the surface and because of its high activity. •In MOCVD, the Ga and Al metals are introduced in organic compounds such as Ga(CH3)3 and Al(CH3)3. •MOCVD is capable of growing monolayers (layers one atom thick), which makes possible abrupt changes in composition and highly precise control.

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

28

Metal‐Organic Chemical Vapor Deposition  (MOCVD) Advantages: All sources gaseous Precise composition and dimension control Disadvantages: Involves complex chemistry U Uses ttoxic i gases (A (AsH H3, PH3) Current status: Viewed as the standard production process for many epitaxial heterostructures. Especially in GaN based HEMT and LED wafer production.

© Nezih Pala  [email protected]                                       EEE5425 Introduction to Nanotechnology

29

10