Multi-objective Optimization under Uncertainty using Polynomial Chaos Expansion

Context MOO under uncertainty PCE as a Stochastic Metamodel Sparse PCE for MOO under uncertainty Conclusions Prospects Multi-objective Optimizat...
Author: Patience Lewis
8 downloads 1 Views 3MB Size
Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Multi-objective Optimization under Uncertainty using Polynomial Chaos Expansion J.Lebon∗,⊤ , R. Filomeno Coelho⊤ , P. Breitkopf∗ , P. Villon∗



Polytechnic school of Brussels, Université Libre de Bruxelles B [email protected] – i http://batir.ulb.ac.be ∗

Laboratoire Roberval, Université de Technologie de Compliègne i http://www.umr6253roberval.fr

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Optimization in civil engineering

Nimègue’s bridge (Netherlands)

www.ney.be

Reducing costs Reducing environmental impact Reducing delays Improve safety PCE for multi-objective optimization

2

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Introduction Structural optimization of sizing (x=cross sections, ...) and shape optimization (x=nodes coordinates) of truss structures, ⇒ f (x) (Mass, Maximal Axial Stress, Compliance, ....)

Maritim Museum or Amsterdam

Lille Football Stadium

Multi-objective optimization (Mass Vs Structural Strength, Cost Vs Safety ...) Antagonist behaviors to be taken into account simultaneously! ⇒ f(x) = [f1 (x), f2 (x), . . . , fm (x)] Random uncertainties treatment (structural properties, cross sections, loading,...) ⇒ f(x, ξ) = [f1 (x, ξ), f2 (x, ξ), . . . , fm (x, ξ)] PCE for multi-objective optimization

3

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Introduction Structural optimization of sizing (x=cross sections, ...) and shape optimization (x=nodes coordinates) of truss structures, ⇒ f (x) (Mass, Maximal Axial Stress, Compliance, ....)

Maritim Museum or Amsterdam

Lille Football Stadium

Multi-objective optimization (Mass Vs Structural Strength, Cost Vs Safety ...) Antagonist behaviors to be taken into account simultaneously! ⇒ f(x) = [f1 (x), f2 (x), . . . , fm (x)] Random uncertainties treatment (structural properties, cross sections, loading,...) ⇒ f(x, ξ) = [f1 (x, ξ), f2 (x, ξ), . . . , fm (x, ξ)] PCE for multi-objective optimization

3

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Introduction Structural optimization of sizing (x=cross sections, ...) and shape optimization (x=nodes coordinates) of truss structures, ⇒ f (x) (Mass, Maximal Axial Stress, Compliance, ....)

Maritim Museum or Amsterdam

Lille Football Stadium

Multi-objective optimization (Mass Vs Structural Strength, Cost Vs Safety ...) Antagonist behaviors to be taken into account simultaneously! ⇒ f(x) = [f1 (x), f2 (x), . . . , fm (x)] Random uncertainties treatment (structural properties, cross sections, loading,...) ⇒ f(x, ξ) = [f1 (x, ξ), f2 (x, ξ), . . . , fm (x, ξ)] PCE for multi-objective optimization

3

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization Optimizer

Deterministic Variables x - Cross sections - Nodes coordinates

Compliance b b b b

b b b b b b

Function evaluation

b b

Mass Deterministic FEM Analysis - Mass - Compliance - Maximal Axial Stress - Maximum displacement

PCE for multi-objective optimization

4

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Shape optimization

Academic example1

 Variables {x} Nodes coordinates

Objectives {f(x)} Mass

Submitted to {g(x)}

xinf ≤ x ≤ xsup

Axial stress

PCE for multi-objective optimization

5

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization

  

Multi-objective optimization of light truss structures





             



PCE for multi-objective optimization

6

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization

  

Multi-objective optimization of light truss structures





             



PCE for multi-objective optimization

7

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization

  

Multi-objective optimization of light truss structures





             



PCE for multi-objective optimization

8

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization

  

Multi-objective optimization of light truss structures





             



PCE for multi-objective optimization

9

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization

  

Multi-objective optimization of light truss structures





             



PCE for multi-objective optimization

10

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization

  

Multi-objective optimization of light truss structures





             



PCE for multi-objective optimization

11

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization

  

Multi-objective optimization of light truss structures





             



PCE for multi-objective optimization

12

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization

  

Multi-objective optimization of light truss structures





             



PCE for multi-objective optimization

13

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization

  

Multi-objective optimization of light truss structures





             



PCE for multi-objective optimization

14

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Shape optimization

Academic example 2

20 kN Variables {x} Nodes coordinates

Objectives {f(x)} Mass

Submitted to {g(x)}

xinf ≤ x ≤ xsup

Compliance

PCE for multi-objective optimization

15

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization Multi-objective optimization of light truss structures

  

     











PCE for multi-objective optimization

16

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization Multi-objective optimization of light truss structures

  

     











PCE for multi-objective optimization

17

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization Multi-objective optimization of light truss structures

  

     











PCE for multi-objective optimization

18

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization Multi-objective optimization of light truss structures

  

     











PCE for multi-objective optimization

19

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization Multi-objective optimization of light truss structures

  

     











PCE for multi-objective optimization

20

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Deterministic Multi-Objective Optimization Multi-objective optimization of light truss structures

  

     











PCE for multi-objective optimization

21

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Incorporating uncertainties  





On material properties



On loadings (Seisms, ...)

Million Dollar Bridge (Alaska, Etats-Unis), fr.structurae.de

On assembly quality

Welding of a subway bridge www.otua.org

PCE for multi-objective optimization

22

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Problematic Taking into account of uncertainties in multi-objective optimization

Maritime Museum of Amsterdam (Netherlands)

Industrial issues Structural safety Structural optimization Non intrusive methods (SAMCEF, ABAQUS, ANSYS,...) Scientific issues Coupling multiobjective optimization and uncertainties with reasonnable computational costs PCE for multi-objective optimization

23

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Non intrusive tools Multi-objective optimization Evolutionary algorithms [Deb, 2002] [Fonseca and Flemming, 1995] [Barakat et al., 2004]

Multi-objective optimization under uncertainties

[Abdullah Konak, 2006]

+ Uncertainties

=

Robust multi-objective optimization [Erfani and Utyuzhnikov, 2011] [Deb and Gupta, 2005]

Simulations methods

Reliable multi-objective optimization

Spectral methods

[Filomeno Coelho et al., 2011]

[Ghanem, 1998]

[Crespo et al., 2010] [Bruno Sudret, 2000]

[Barakat et al., 2004]

[Blatman and Sudret, 2008a]

PCE for multi-objective optimization

24

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Incorporating uncertainty

Academic example  Variables {x}

submited to {g(x)}

Nodes coordinates Objectifs {f(x, ξ)} Variables {ξ} Perturbation of nodes coord.

xinf ≤ x ≤ xsup

Mass Maximum Axial Stress Compliance

Loading, Material properties

Submited to {g(x, ξ)} Failure probability Pf : P(σ > σu ) Robustness measure R

PCE for multi-objective optimization

25

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Uncertainty propagation [Filomeno Coelho and Bouillard, 2010, Lebon et al., 2010, Filomeno Coelho et al., 2011]

x

2

Optimizer Deterministic Variables

x - Cross sections - Nodes coordinates

Stochastic Variables

ξ

b b b

- Perturbations - Material properties - ...

b

b

b

b b b

b

b

b b b b

b b

b

b b

b b

b

b b

b b

b b

b b

b

b

b

b

b

b

b b

b

b b

b

b b b

b

b

b b

b b

b b b b

b b

b b

b

b

b

b b b b b b b b b b b b

b b b

b

x 1

Pareto Set Compliance b

Deterministic FEM Analysis

(x,ξ) 7→ f(x,ξ) - Mean - Std. Dev. - Sensitivity indices - Probability of failure

Expensive

BLACK-BOX FUNCTION

b b b

? b

b b b b b

? PCE for multi-objective optimization

b

Pareto Front

b

Mass

26

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Uncertainty propagation with metamodel [Filomeno Coelho and Bouillard, 2010, Lebon et al., 2010, Filomeno Coelho et al., 2011]

x

2

Optimizer Deterministic Variables

Stochastic Variables

ξ

x - Cross sections - Nodes coordinates

b b b

- Perturbations - Material properties - ...

b

b

b

b b b

b

b

b b b b

b b

b

b b

b b

b

b b

b b

b b

b b

b

b

b

b

b

b

b b

b

b b

b

b b b

b

b

b b

b b

b b b b

b b

b b

b

b

b

b b b b b b b b b b b b

b b b

b

x 1

Pareto Set Compliance

(x,ξ) 7→ ˜f (x,ξ) - Mean - Std. Dev. - Sensitivity indices - Probability of failure

Unexpensive

METAMODEL

b b b b

? b

b b b b b

? PCE for multi-objective optimization

b

Pareto Front

b

Mass

27

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Metamodel for uncertainty propagation

?

METAMODEL (x, ξ) 7→ ˜f(x, ξ) FORM SORM Neural Networks Support Vector Machine Spectral decomposition

Simulations based techniques - Crude Monte Carlo Simulation ...- Importance sampling

Analytical derivation

Post-treatment Statistical measures • Robust Based Design Optimization - Mean - Std. Dev. - Sensitivity indices

- From Polynomial Coefficients

• Reliability Based Optimization - Probability of failure - Probability of non dominance

PCE for multi-objective optimization

28

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Polynomial Chaos Expansion as a stochastic metamodel

Sampling in θ space b

fj (x, θ)

θ2 b

b

b

b

b

b

b

b b

b b

θ1

Polynomial Chaos Expansion fj (x, θ) ≈ γ0 (x) +

P−1 X

¯ γi (x)Ψαi (θ)

i=1

PCE for multi-objective optimization

29

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Polynomial Chaos Expansion as a stochastic metamodel Sampling in θ space b

fj (x, θ)

θ2 b

b

b

b

b

b

b

b b

b b

θ1

Polynomial Chaos Expansion fj (x, θ) ≈ γ0 (x) +

P−1 X

¯ γi (x)Ψαi (θ)

i=1

Post-treatment Robust Optimization: E[fi ](x)

=

σ2 (fi )(x)

=

γ0 (x) P−1 X

E[Ψ2i ]γi (x)2

i=1

Reliability Optimization: Z Pfailure

=

p(θ)dθ

g(θ) 106 ≈ 5 days

5000

5500

Nb Simulations = 2200≈ 20 min

PCE for multi-objective optimization

31

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

32

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

33

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

34

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

35

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

36

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

37

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

38

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

39

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

40

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

41

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Stochastic Multi-Objective Optimization Multi-objective optimization of light truss structures under uncertainty  

   



    

     











PCE for multi-objective optimization

42

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Polynomial approximation limitation Polynomial chaos f (x, ξ) ≈ γ0 (x) +

P−1 X

γi (x)Ψi (ξ)

i=1

Hermitian Basis Degree N

  Ψ0 (ξ)     Ψ1 (ξ)       Ψ2 (ξ)      Ψ3 (ξ)

 Ψ4 (ξ)         Ψ (ξ)   5       ..   .

=

          

 1    ξ1     ξ2    1 − ξ12  ξ1 × ξ2       2   1 − ξ  2       ..   .

Variables M

Terms P

2

10

11

10

286

287

20

1771

1772

3

Calls









 



  



   

    PCE for multi-objective optimization

 43

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Filtering the basis elements Polynomial chaos f (x, ξ) ≈ γ0 (x) +

P−1 X

γi (x)Ψi (ξ)

i=1

Hermitian Basis Degree N

  Ψ0 (ξ)       Ψ1 (ξ)       Ψ2 (ξ)      Ψ3 (ξ)     Ψ4 (ξ)      Ψ5 (ξ)          ..  .

=

          

 1    ξ1     ξ2    1 − ξ12  ξ1 × ξ2       2   1 − ξ  2       ..   .

Variables M

Terms P

Calls

2

↓↓↓

↓↓↓

↓↓↓

↓↓↓

3

↓↓↓

10 20

↓↓↓



 







  



    PCE for multi-objective optimization

 44

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Incorporating uncertainty

Academic example  Variables {x}

submited to {g(x)}

Nodes coordinates Objectifs {f(x, ξ)} Variables {ξ}

xinf ≤ x ≤ xsup

Mass Maximum Axial Stress

Young modulus of each bars

Submited to {g(x, ξ)} Failure probability Pf : P(σ > σu )

(22 Random variables)

Robustness measure R PCE for multi-objective optimization

45

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Results 7

4.5

x 10

Deterministic PARETO SET Stochastic PARETO SET with MC α=0,95 Stochastic PARETO SET with LARS α=0,95

Maximal Axial Stress (Pa)

4

3.5

3

2.5

2 3200

3400

3600

3800 4000 Mass (kg)

4200

4400

Number of calls to the exact model: With Monte Carlo Simulation: > 107 calls With metamodels: < 104 calls PCE for multi-objective optimization

46

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Conclusions Conclusions Metamodelling strategy are needed to treat real industrial cases Non intrusive methods may be developed on this purpose. Bi-level multi-objective formulation successfully applied for a reasonnable number of stochastic variables. Sparse strategies show promising results to decrease the computational cost

PCE for multi-objective optimization

47

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

Future Prospects Challenges: Coupling sparse strategies to multi-objective optimization under uncertainties in a smarter way to keep on decreasing the computational cost Development of efficient learning strategies for stochastic metamodels Design of experiment for sparse stochastic metamodels Application to multi-objective optimization ... with adaptive scheme Treatment of large scale structures (higher dimension) What if the stochastic variables are non gaussian? What if the stochastic variables are correlated?

Maritim Museum or Amsterdam

Lille Football Stadium PCE for multi-objective optimization

48

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

References I [Abdullah Konak, 2006] Abdullah Konak, David W.Coit, A. E. (2006). Multi-objective optimization using genetic algorithm: A tutorial. Reliability Engineering and System Safety, 91:992–1007. [Anthony Chen, 2010] Anthony Chen, Juyoung Kim, S. L. Y. K. (2010). Stochastic multi-objective models for network design problem. Expert Systems with Applications, 37:1608–1619. [Barakat et al., 2004] Barakat, S., Bani-Hani, K., and Taha, M. Q. (2004). Multi-objective reliability-based optimization of prestressed concrete beams. Structural Safety, 26(3):311 – 342. [Berveiller et al., 2006] Berveiller, M., Sudret, B., and Lemaire, M. (2006). Stochastic finite element : a non intrusive approach by regression. Revue Européenne de Mécanique Numérique, 15:81–92. [Blatman and Sudret, 2008a] Blatman, G. and Sudret, B. (2008a). Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. Comptes-Rendus Mécanique, 336:518–523. [Blatman and Sudret, 2008b] Blatman, G. and Sudret, B. (2008b). Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. Comptes Rendus Mécanique, 336:518–523. [Breitkopf et al., 2002] Breitkopf, P., Rassineux, A., and Villon, P. (2002). An introduction to moving least squares meshfree methods. Revue européenne des éléments finis, 11(7-8):826–867. [Bruno Sudret, 2000] Bruno Sudret, A. D. K. (2000). Stochastic finite elements methods and reliability- a state of the art. Technical report, Department of civil and environmental engineering. [Busacca et al., 2001] Busacca, P. G., Marseguerra, M., and Zio, E. (2001). Multiobjective optimization by genetic algorithms: application to safety systems. Reliability Engineering System Safety, 72(1):59 – 74.

PCE for multi-objective optimization

49

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

References II [Crespo et al., 2010] Crespo, O., Bergez, J., and Garcia, F. (2010). Multiobjective optimization subject to uncertainty: Application to irrigation strategy management. Computers and Electronics in Agriculture, 74(1):145 – 154. [Deb, 2002] Deb, K. (2002). A fast and elitist multiobjective genetic algorithm: Nsga ii. IEEE Transactions on Evolutionary Computation, 6(2). [Deb and Gupta, 2005] Deb, K. and Gupta, H. (2005). Searching for robust pareto-optimal solutions in multi-objective optimization. In Coello Coello, C. A., Hernández Aguirre, A., and Zitzler, E., editors, Evolutionary Multi-Criterion Optimization, volume 3410 of Lecture Notes in Computer Science, pages 150–164. Springer Berlin / Heidelberg. 10.1007/978-3-540-31880-41 1. [Deb et al., 2007] Deb, K., Padmanabhan, D., Gupta, S., and Kumar Mall, A. (2007). Reliability-based multi-objective optimization using evolutionary algorithms. EMO, 4403:66–80. [DorigoDicaro, 2004] DorigoDicaro (2004). Ant colony optimization: a new meta-heuristic. [Eldred, 2011] Eldred, M. (2011). Design under uncertainty employing stochastic expansion methods. International Journal for Uncertainty Quantification, 1(2):119–146. [Erfani and Utyuzhnikov, 2011] Erfani, T. and Utyuzhnikov, S. V. (2011). Controll of robust design in multiobjective optimization under uncertainties. Structural and Multidisciplinary Optimization. [Fasshauer, 2005] Fasshauer, G. E. (2005). Dual bases and discrete reproducing kernels: A unified framework for rbf and mls approximation. Journal of Engineering Analysis with Boundary Elements, 29:313–325. [Fasshauer and Zhang, 2003] Fasshauer, G. E. and Zhang, J. G. (2003). Recent results for moving least squares approximation. In Lucian, M. L. and Neamtu, M., editors, Geometric Modeling and Computing.

PCE for multi-objective optimization

50

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

References III [Filomeno Coelho and Bouillard, 2010] Filomeno Coelho, R. and Bouillard, P. (2010). Multiobjective reliability-based optimization with stochastic metamodels. Evolutionary Computation. [Filomeno Coelho et al., 2011] Filomeno Coelho, R., Lebon, J., and Bouillard, P. (2011). Hierarchical stochastic metamodels based on moving least squares and polynomial chaos expansion - application to the multiobjective reliability-based optimization of 3d truss structures. Structural and Multidisciplinary Optimization, 43(5):707–729. [Fonseca and Flemming, 1995] Fonseca, C. and Flemming, P. (May 19, 1995). An overview of evolutionnary algorithmms in multiobjective opimization. Evolutionnary Computation. [Fragiadakis et al., 2006] Fragiadakis, M., Lagaros, N. D., and Papadrakakis, M. (2006). Performance-based multi-objective optimum design design of steel structures considering life-cycle cost. Structural and Multidisciplinary Optimization, 32:1–11. [Ghanem, 1991] Ghanem, R. (1991). Stochastic finite Elements: A Spectral Approach. Springer. [Ghanem, 1998] Ghanem, R. (1998). Adaptative polynomial chaos expansions applied to statistics of extremes in non linear random vibration. Probabilistic engineering mechanics, 12(2):125–136. [Ghanem and Spanos, 1991] Ghanem, R. and Spanos, P. D. (1991). Spectral stochastic finite-element formulation for reliability analysis. Journal of Engineering Mechanics, 117(10):2351–2372. [Gil and Andreau, 00] Gil, L. and Andreau, A. (00). Shape and cross-section optimisation of a truss structure. Computers and Structures, 79:681–689. [James Kennedy, 1995] James Kennedy, R. E. (1995). Particule swarm optimization. Proceedings of IEEE international conference on . . . .

PCE for multi-objective optimization

51

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

References IV [Kang et al., 2010] Kang, S.-C., Koh, H.-M., and Choo, J. F. (2010). An efficient response surface method using moving least squares approximation for structural reliability analysis. Probabilistic Engineering Mechanics, 25(4):365 – 371. [Kleijnen, 2009] Kleijnen, J. P. (2009). Kriging metamodeling in simulation: A review. European Journal of Operational Research, 192(3):707 – 716. [Lancaster and Salkaukas, 1981] Lancaster, P. and Salkaukas, K. (1981). Surfaces generated by moving least squares methods. Mathematics of Computation, 37(155):141–158. [Lebon et al., 2010] Lebon, J., Filomeno Coelho, R., and Bouillard, P. (2010). Adaptive stochastic metamodel for truss optimisation. Avignon. GdR MASCOT NUM 2010. [Lebon et al., 2011a] Lebon, J., Filomeno Coelho, R., Breitkopf, P., and Bouillard, P. (2011a). Model selection techniques applied to structural reliability using bilevel hierarchical metamodels. Minneapolis, Minnesota. 11th National Congress on Computational Mechanics. [Lebon et al., 2011b] Lebon, J., Filomeno Coelho, R., Breitkopf, P., and Bouillard, P. (2011b). Sélection de modèle appliquée à l’optimisation fiabiliste par métamodèles stochastiques hiérarchiques. Giens (France). CSMA 2011. [Lebon et al., 2011c] Lebon, J., Filomeno Coelho, R., Breitkopf, P., and Bouillard, P. (2011c). Validation of metamodelling strategies for probability assessment in a non-intrusive stochastic finite element context. V International Conference on Adaptive Modeling and Simulation, ADMOS 2011. [Nayroles et al., 1992] Nayroles, B., Touzot, G., and Villon, P. (1992). Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10:307–318. [Rajan Filomeno Coehlo, 2009] Rajan Filomeno Coehlo, P. B. (2009). Multiobjective reliability-based optimization with stochastic metamodels. Evolutionnary computation.

PCE for multi-objective optimization

52

Context

MOO under uncertainty

PCE as a Stochastic Metamodel

Sparse PCE for MOO under uncertainty

Conclusions

Prospects

References V [Rangavajhala and Sankaran, 2010] Rangavajhala, S. and Sankaran, M. (2010). A joint probability approach to multo-objective optimization under uncertainty. In 36th design Automation Conference, Parts A and B, volume 1, pages 985–996. ASME. [Sahinidis, 2004] Sahinidis, N. V. (2004). Optimization under uncertainty: state of the art and opportunities. Computers and chemical engineering, 28:971–983. [Salazar et al., 2006] Salazar, D., Rocco, C. M., and Galvan, B. J. (2006). Optimization of constrained multiple-objective reliability problems using evolutionary algorithms. Reliability Engineering System Safety, 91. [T, 1996] T, B. (1996). Evolutionnary Algorithms in Theory and Practice. Oxford University Press New York. [T. Hastie et al., 2009] T. Hastie, R., Tibshirani, J., and Friedman, G. (2009). The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer. [Zhaowang et al., 2011] Zhaowang, L., Yong Seog, K., and Chen, A. (2011). Multi-objective alpha reliable path finding in stochastic network with correlated link costs: A simulation-based multi-objective algorithm approach (smoga). Expert Systems with Applications, 38:1515–1528.

PCE for multi-objective optimization

53

Suggest Documents