Modern Methods of Time-series Analysis for Environmental Systems

Modern Methods of Time-series Analysis for Environmental Systems Zhulu Lin Dept of Crop and Soil Sciences University of Georgia Athens, Georgia Octobe...
Author: Dorothy Owen
1 downloads 0 Views 843KB Size
Modern Methods of Time-series Analysis for Environmental Systems Zhulu Lin Dept of Crop and Soil Sciences University of Georgia Athens, Georgia October 19, 2005

-1

PO4-P(µg⋅L )

Algal blooms in the Whitehall pond 1500

1000

500

0 05/23 -1

Chlorophyll a (µg⋅ L )

Orthophosphate

(a)

07/11

Chlorophyll a

(b)

200

100

0 05/23

07/11

08/30

10/19

Dissolved oxygen

(c) -1

10/19

300

15 DO (mg⋅ L )

08/30

10

5

05/23

07/11

08/30

Date (May 23 ~ October 16, 2000)

10/19

Pond ecosystem

Topics • Signal processing: – Missing data, outliers; – Signal extraction;

• Data-based Mechanistic (DBM) modeling: – Transfer function (TF) models; – State-dependent Parameter (SDP) modeling;

• Recursive parameter estimation – Time-varying parameter estimation – Model structure identification

1. Signal processing

Time series with missing data 16 Missing Raw data 14

−1

DO (mg⋅ L )

12

10

8

6

4

2 07/01

07/06

07/11

07/16

07/21 Date

07/26

07/31

08/05

Dynamic harmonic regression model

y(k) = T (k) + S(k) + e(k); R

R

i =1

i =1

k = 1,2,..., N

S (k ) = ∑ Si (k ) = ∑ {ai (k ) cos(ωi t ) + bi (k ) sin(ωi t )}

Harmonics of time series 8

Actual AR(14) Zero line

7

6

log10(P)

5

4

3

2

1

0 20

10

6.67

5 4 3.33 Period (samples/cycle)

2.86

2.5

2.22

Interpolation and smoothing 16 Smoothed Raw data 14

−1

DO (mg⋅ L )

12

10

8

6

4

2 07/01

07/06

07/11

07/16

07/21 Date

07/26

07/31

08/05

Signal extraction 15 Trend Time series Trend S.E.

DO (mg⋅ L−1)

(a) 10

5

0 07/01

07/06

07/11

07/16

07/21

07/26

07/31

08/05

07/26

07/31

08/05

Date 4 2

−1

DO (mg⋅ L )

(b)

0 −2 −4 07/01

07/06

07/11

07/16

07/21 Date

Signal extraction of the time-series of the Whitehall pond system

10 8 6 4

Chla pH*2 NH3-N NOx/3 TIN(nh3+nox)

DO Temp PO4-P TOC/100 Par

2 0 0:00 -2

Variable

Peak

Trough

20

PAR

14

2

15

Temp

20

8

10

pH

18-20

6-8

5

DO

18

6

0

NH3-N

6-8

18-20

TON

16

4

TIN

14

2

PO4-P

12

0

TOC

12

0

Chla

22-2

10-14

-5 4:00

8:00

12:00

16:00

20:00

-10

-4

-15

-6

-20

Solar radiation driving pond ecosystem 100

PAR Temp×10 DO×10 pH×100 Chlorophyll−a

Harmonics

50

0

−50 7/5

7/6

7/7

7/8

7/9 Date

7/10

7/11

7/12

Chlorophyll-a vs. nutrients 10 8

4

PO4-P (µg/L)

TOC/100 (µg/L)

TIN (µg/L)

Chla (µg/L)

3

6

2

4

1

2

0

0 8/15

8/16

8/17

8/18

8/19

-1 8/20

-2

-2

-4

-3

-6

-4

2. Data-based Mechanistic (DBM) modeling

General transfer function (TF) model B ( k , z −1 ) y (k ) = u (k − δ ) + ν (k ) −1 A( k , z ) A(k , z −1 ) = 1 + a1 (k ) z −1 + ⋅⋅⋅ + an ( k ) z − n B (k , z −1 ) = b0 (k ) + b1 (k ) z −1 + ⋅⋅⋅ + bm (k ) z − m

To determine: 1. values of n, m, δ; 2. estimates of ai(k), bi(k), i = 0, 1, 2, …, (n, m); 3. nonlinearity exhibited by ai(k), bi(k).

DBM modeling (1)

I/O data sets

Identification of linear constant parameter TF model using SRIV

Nonlinearity?

No

Best linear TF model

Yes

(2)

TVP estimation of simplest TF model using SRIV-FIS State-dependent Parameter (SDP) modeling

Select a variable from NMSS No

(3)

Correlated with TVP? Yes

(4)

Estimation of the relationship using WLS/check physical interpretation

Final nonlinear TF model

15

-1

y(k): Algal Biomass (mg⋅ L )

Nonlinearity of the pond system Output: algal biomass

(a)

10

5

0

u (k ) =

⎛ I (k ) ⎞ I (k ) exp ⎜ 1 − ⎟ IS IS ⎠ ⎝

(b)

Input: light efficiency

u(k): Light Efficiency

1

0.8

0.6

0.4

0.2

0

7/5

7/10

7/20

7/15 Date

7/25

7/30

8/4

TF w/ constant parameters Mode l

Denominato r

Numerato r

Delay

YIC

RT2

AIC

1

1

1

3

-4.9362

0.07941

8.2184

2

2

1

1

-0.6287

0.12888

8.1678

3

2

1

2

-0.4271

0.13313

8.1629

4

1

3

1

0.0996

0.11418

8.1892

5

1

2

2

0.3461

0.08168

8.2206

6

2

1

0

1.7126

0.13852

8.1567

y (k ) =

0.2475(0.4074) u (k − 3) −1 1 − 0.9989(0.0000) z

TF w/ time-varying parameter 0.8

TVP & algal biomass

TVP vs. algal biomass

b0(k|N) y(k)/15 S.E.

0.8

0.7

0.6

Estimated b0(k|N)

0.6

0.4

0.5

0.4

0.3

0.2 0.2

0 0.1

-0.2

7/5

7/10

7/20

7/15

7/25

7/30

8/4

0

0

2

4

Date

8

6 -1

y(k) (mg⋅ L )

bˆ0 (k | N ) y (k ) = u (k − 2) + v(k ) 1 − 0.9650

10

12

14

State-dependent Parameter (SDP) modeling procedure I/O data sets

Identification of linear constant parameter TF model using SRIV

Nonlinearity?

No

Best linear TF model

Yes TVP estimation of simplest TF model using SRIV-FIS State-dependent Parameter (SDP) modeling

Select a variable from NMSS No Correlated with TVP? Yes Estimation of the relationship using WLS/check physical interpretation

Final nonlinear TF model

SDP modeling 0.8

TVP vs. algal biomass

TVP vs. algal biomass

0.7 0.8

FIS Estimate of SDP

Estimated b0(k|N)

0.6

0.5

0.6

Sorted in ascending order

0.4

0.3

0.4

0.2

0.2 0

0.1

0

-0.2

0

2

4

8

6 -1

y(k) (mg⋅ L )

10

12

14

0

2

4

6 *

8 -1

y (k) (mg⋅ L )

10

12

14

SDP modeling (cont’d) FIS Estimate of SDP

0.8

0.8

0.6

0.4

Model I

0.2

-0.2

0.4

*

14

12

10

8

6

4

2

0

-1

y (k) (mg⋅ L )

0.2

1.5

b0(1-82|N)

(a)

0

-0.2

0

2

4

6 *

8

10

12

14

1

b0 =0.1167y

0.5

0

-1

y (k) (mg⋅ L )

4

3

2

1

7

6

5

8

10

9

11

y(1-82) (mg/L) 1.5

(b)

b0(82-432|N)

FIS Estimate of SDP

0

0.6

1

0.5

b0 =0.0806y

0

-0.5

0

2

4

6

8

y(82-432) (mg/L)

10

12

14

Model II

Nonlinear TF models 14

Algal biomass

12

-1

u '(k ) = µθ T ( k ) − 20 y (k ) f ( I )

aˆ1 = −1.720, aˆ2 = 0.755; bˆ0 = 1.581 µˆ = 0.056,θˆ = 1.0166

8

6

4

2

0

7/5

7/10

u '(k ) = µ2θ

T ( k ) − 20

y (k ) f ( I ), k ≥ 82.

7/20

7/25

Algal biomass

12

7/30

-1

8

6

4

µˆ1 = 0.117, µˆ 2 = 0.0806,θˆ = 1.012

2

0

8/4

Observations Forecasting Simulation

10 Algal Biomass(mg⋅L )

Model II 9

7/15

Date

14

1.903 y (k ) = u '(k − 2) −1 1 − 0.925 z u '(k ) = µ1θ T ( k ) − 20 y (k ) f ( I ), k < 82,

Observations Forecasting Simulation

10

Algal Biomass (mg⋅ L )

Model I

b0 y (k ) = u '(k − 1) 1 + a1 z −1 + a2 z −2

07/03

07/08

07/13

07/18 Date

07/23

07/28

08/02

3. Recursive parameter estimation

Parameter estimation schemes ‰ Batch (off-line) scheme

ˆ0 α t0

t1

t2

tN ˆ1 α

Parameter Estimate Update

‰ Recursive (on-line) scheme ˆ 0( t0 ) α

t0

ˆ 0( t1 ) α

t1

ˆ ( t2 ) α 0

t2

ˆ 0( t N ) α

tN ˆ 1( t0 ) α

Recursive estimation αˆ (tk ) = αˆ (tk −1 ) + K (tk )[ y (tk ) − yˆ (tk −1 )] Update Estimate

Previous Estimate

Weighting Factor

Prediction Error

Two applications: 1. Model structure identification 2. Time-varying parameter (TVP) estimation

1. Model structure identification A model is an approximate of real system! x1(t)

Model:

u(t)

x2(t)

α

x3(t)

y(t)

x1(t) System:

u(t) x2(t)

y(t) x3(t)

Structural difference

Model:

x1(t) u(t)

⍺α(t) x3(t)

x2(t)

x1(t) System:

x2(t)

x4(t)

x3(t)

y(t)

Recursive estimation identifies the structural difference Recursive estimation algorithm

x1(t) [u(t), y(t)] Observations

Model x2(t)

α

x3(t)

Pond system conceptualization (1) (15)

(2) (3)

DO

Algae

(5)

Duckweed

(4)

CO2

(6)

(7) (9)

PO4−P (8) (13)

16

14

HCO3−

(11) (10)

(12)

Simulated Observed

(15) (16)

OP

12

-1

OH− Alk

(14) DO(mg⋅L )

CO32−

10

8

k6

6

4

Duckweed 2

07/03

07/08

07/13

07/18

Date

07/23

07/28

k5(t)

DO

08/02

k4

k1 k2

Algae

k3(t)

RPE estimation of states 15

Algal biomass

(a)

Prediction Observations

x1(t)(mg/L)

10

5

0 07/01

07/06

07/11

07/21

07/16

07/26

07/31

08/05

20

DO

(b)

Date

x2(t)(mg/L)

15

Prediction Observations

10

5

0 07/01

07/6

07/11

07/16

07/21 Date

07/26

07/31

08/05

RPE estimation of parameters 1.5

3

1.5 07/01 3

2

-1

07/21

1

Grazing/settling

07/11

07/21

Aerobic reaction/SOD

07/11

07/21

07/31

Other sources of DO

0

-0.5 07/01

07/11

07/21

Duckweed

-1

-1

k5(mg⋅L ⋅d )

4

Date

2

0

-2 07/01

07/31

0.5

0

6

1

0 07/01

07/31

-1

-1 -1

07/11

1

-1 07/01

Respiration/death rate

0.5

2

k4(d )

-1

k1(d )

2.5

k3(mg⋅L ⋅d )

k2(d )

Maximum specific growth rate

07/11

07/21

07/31

07/31

Improved model structure Recursive estimation (1)

(2) (3)

(15)

DO

(5) Algae

Duckweed

CO2

(4)

(6)

(7) HCO3−

(9)

PO4−P (8)

(11) (10)

(12)

CO32−

(13) OP

(15) OH−

(16) (14)

Alk

Simulation results Algal biomass

10

-1

5

0

07/03

07/08

07/13

07/18

07/23

07/28

DO

15

Simulated Observed

DO(mg⋅L )

-1

Algae(mg⋅L )

15

10

5

0

08/02

07/03

07/08

07/13

Date 11

Duckweed biomass

8

07/18

07/23

07/28

08/02

Date

pH

Simulated

Simulated Observed

10

pH

6

9

4 -3

2

07/13

07/18

07/23

07/28 -1

07/08

OP(mg⋅L )

07/03

Date

7

8

x 10

Organic-P

Simulated

7

08/02

07/03

5 4 3

07/03

07/08

07/13

07/18

07/23

07/28

08/02

Date 2

PO4-P

1.5

Simulated Observed

1 0.5 0 -0.5

07/08

07/13

07/18

Date

6

-1

0

8

PO4-P(mg⋅L )

-1

Duckweed(mg⋅L )

10

Simulated Observed

07/03

07/08

07/13

07/18

Date

07/23

07/28

08/02

07/23

07/28

08/02

2. Time-varying parameter estimation Involving 2 steps, 2 models: Step 1: predicting parameter estimates from parameter model, usually GRW

αˆ (tk | tk −1 ) = Fαˆ (tk −1 | tk −1 ) Step 2: correcting parameter prediction from Step 1 by state variable model, DBM or TBM

αˆ (tk | tk ) = αˆ (tk | tk −1 ) + K (tk )[ y (tk ) − yˆ (tk | tk −1 )]

Signal processing revisited: Interpolation and smoothing of time series 4500 4000 3500

PO3− (µ g/l) 4

3000 2500 2000 1500 1000 500 0 0

5

10

15

20 Day

25

30

35

Dynamic harmonic regression model State model:

y (k ) = T (k ) + S (k ) + e(k ); R

R

i =1

i =1

k = 1, 2,..., N

S (k ) = ∑ Si (k ) = ∑ {ai (k ) cos(ωi t ) + bi (k ) sin(ωi t )}

TVPs:

T (k ), ai (k ) 's, bi (k ) 's

TVP model: ⎛ T (k ) ⎞ ⎛ T (k − 1) ⎞ ⎜ ⎟ ⎜ ⎟ = − a ( k ) a ( k 1) F i i ⎜ ⎟ ⎜ ⎟ + Gξ, ξ ~ (0, Σ) ⎜ b (k ) ⎟ ⎜ b (k − 1) ⎟ ⎝ i ⎠ ⎝ i ⎠

Harmonics (determine R) Actual AR(27) Zero line

6

5

log10(P)

4

3

2

1

0 20

10

6.67

5 4 3.33 Period (samples/cycle)

2.86

2.5

2.22

Interpolation and smoothing 4500 4000 3500

2500

4

PO3− (µ g/l)

3000

2000 1500 1000 500 0 0

5

10

15

20 Day

25

30

35

Signal extraction 1000

Trend 500

0

0

5

10

15

20

25

30

35

25

30

35

25

30

35

500

Double daily oscillation 0

−500

0

5

10

15

20

400

Daily oscillation

200 0 −200 −400

0

5

10

15

20

Day

Suggest Documents