Miniature Drive Systems

Miniature Drive Systems WE CREATE MOTION Imprint © 2009 Dr. Fritz Faulhaber GmbH & Co. KG Daimlerstrasse 23/25 71101 Schönaich Germany Printed on c...
Author: Phebe Porter
46 downloads 4 Views 10MB Size
Miniature Drive Systems

WE CREATE MOTION

Imprint © 2009 Dr. Fritz Faulhaber GmbH & Co. KG Daimlerstrasse 23/25 71101 Schönaich Germany Printed on chlorine-free paper

WE CREATE MOTION

Contents Introduction

Introduction Detailed Index

3 – 19 20 – 21

DC-Micromotors

DC-Micromotors Flat DC-Micromotors & DC-Gearmotors

22 – 73

Brushless DC-Motors

Brushless DC-Micromotors Brushless DC-Servomotors Brushless DC-Motors with integrated Speed Controller Brushless Flat DC-Micromotors & DC-Gearmotors

74 – 145

Motion Control Systems

Brushless DC-Servomotors

146 – 157

Stepper Motors

Stepper Motors Lead Screws

158 – 189

Linear DC-Servomotors

Linear DC-Servomotors

190 – 205

Precision Gearheads

Precision Gearheads

206 – 247

Encoders

Encoders – 2 Channel Encoders – 3 Channel

248 – 293

Servo Components

Brakes DC-Tachogenerators DC-Motor-Tacho Combinations

294 – 301

Drive Electronics

Speed Controller Motion Controller

302 – 357

Technologies driving the Future

DC C-M Miccro omotors

WE CREATE MOTION

Brushless DC-Micromotors

Encoders

Planetary Gearheads

Line ear DC-Servomotors Fllatt DC-M Micromotors

The success story of the „FAULHABER“ brand began over 60 years ago with the development of the self-supporting, skew-wound ironless rotor coil by Dr. Fritz Faulhaber. As a symbol of quality the brand is the cornerstone of FAULHABER’s pioneering platform of innovative, high precision drive technologies which have unlocked new opportunities for a host of cutting edge applications.

Some of Dr. Faulhaber sen. first models of the selfsupporting skew–wound ironless rotor coil

Today, the tradition of ironless coil technology leadership is carried on using state of the art development and production technologies

Seamless Partnership

Drive Electronics

WE CREATE MOTION

Motor with integrated Encoder

Precision Gearhead

The optimal whole is the sum of unique parts

Commitment and experience define our mutual success

FAULHABER offers the largest consolidated portfolio of miniature and micro drive technologies available in the world today. This unique basis provides almost limitless possibilities for innovation.

The prerequisite for success is the dialog with our customers. Only through a focused exchange of information and ideas can the customer‘s needs be fully understood and the most efficient solution provided. Our staff is committed to providing their experience and know-how to understand our customer‘s needs and to help guide them to the best solution for their individual miniature drive system requirements.

Based on decades of application experience in a myriad of high-tech areas of application, FAULHABER developes new drive systems tailormade to the ever more challenging needs of our customers. These drive systems find application in industries where high precision, reliability, and miniaturization are essential elements for success.

CONSULTING AND CONCEPT

We create Motion Moving in new directions for continuous innovation In each of its dedicated research and development departments FAULHABER is hard at work on the future of miniature and micro drive system technologies. From the idea, to the prototype, and through to the innovative new products that we bring to the market year after year, FAULHABER utilizes state-of-the-art tools and methods to support and enhance its research and development capabilities. Computer aided 3D design, advanced simulation tools, and preventative methods like matix FMEA‘s, are par for the course not to mention our uncompromising focus on quality and providing the customer with the most efficient production and logistical solution available.

WE CREATE MOTION

Our philosophy is market driven technology leadership For over 60 years the name FAULHABER has been synonymous with inventions and innovations that have written countless chapters in the history of miniature and micro drive technology. The pioneering spirit of Dr. Fritz Faulhaber sen. that drove him to continuously set new standards in the market lives on today in the hearts and minds of our highly motivated and creative engineering team.

FAULHABER Germany belongs to the 100 most innovative medium sized companies in Germany

DESIGN

The Standard is High-tech

WE CREATE MOTION

The highest power in the most compact dimensions FAULHABER miniature and micro drive systems are electromechanical masterpieces. In today‘s high-tech market, miniaturization and an ever increasing need to integrate intelligent features into our systems are common challenges. Through decades of research and development experience FAULHABER has aquired the high degree of know-how in the various specialized processes, manufacturing, and logistical techniques that are necessary to efficiently produce complex miniature and micro drive systems. Our globalized network of state-of-the-art production facilities with 1,300 qualified employees provide an integrated, highly competitive, efficient production platform focused on on-time delivery and uncompromising quality.

Efficient and effective processes from manual production to highly automated production and testing

PROCESSES AND PRODUCTION

A Vision of Innovation

WE CREATE MOTION

Unique applications demand unique solutions Decades of drive systems applications knowhow and experienced engineers combined with the widest portfolio of high precision drive technologies in the industry, make FAULHABER the ideal partner for a multitude of custom drive system solutions.

We provide a strong basis for your success FAULHABER‘s service portfolio ranges from custom design of drive components to the design of complete drive systems based on strategic partnerships with our innovative customers which includes coordinated development and production support. The areas of application of FAULHABER custom solutions are as diverse as they are challenging; anything from critical medical care to high end automation

This close partnership in the creation of custom drive solutions provides our visionary customers the opportunity to focus on their core capabilities in order to assure the future market success of their product.

FAULHABER completes the drive system with custom designed electronics, software and sensor components

CUSTOM SOLUTIONS

Applications driving the Future

Medical & Laboratory Equipment Analysis & dialysis equipment Arthroscopic tools Artificial limbs Blood extraction pumps Chemotherapy pumps Dental equipment EGG & EEG recorders Hearing aids Mammographs Opthalmic tools Orthopaedic equipment Peristaltic pumps Respiratory aids Safety equipment Syringe drivers X-Ray equipment

WE CREATE MOTION

Instrumentation Balances, scales Densitometers Display boards Fibre optics splicers Geotechnical measurements Laser levelling devices Laser measuring equipment Measuring equipment Micrometers Valves Potentiometers Plotters Scanners Solar displays Photo spectrometers Surface roughness meters Thermoprinters

Factory Automation & Robotics Handling equipment Screwdrivers Remote inspection devices PCB automated handling Robots, educational robots SMD, SMT

Industrial Machinery & Equipment Automatic weighting systems CD production machines Industrial sawing machines Laser cutting systems Laser marker machines Paper production Positioning devices Battery operated devices Power nailers Printing machinery Surface roughness scanners Textile machines Tool changers Welding equipment Winding machines

Office, Security & Communications Access systems Card readers Copiers & Printers Data processing equipment Data storage equipment Voice recorders Labelling & franking machines Personal emergency senders Locking systems Paper cutters Pagers Payphones Ticket printers & dispensers Vending devices

Aerospace & Aviation

Optical, Audio & Video

Aircraft instrumentation Flap controls Flight recorders Flight simulators Gyros High altitude cameras Infrared pyrometers Radar Range finders Thermal imagers

Camera lens adjustments CCTV Concert lighting Film winders Microfilm readers Microscopes Movie & photo cameras Photographic aerial applications TV studio equipment Video recorders

Environmental & Safety Air sampling monitors Emissions supervision devices Forced air gasmasks

APPLICATIONS

Total Quality Commitment We believe that the commitment to total quality is the responsibility of each and every employee For FAULHABER, quality assurance is not just a technical certification but also an employee philosophy. An atmosphere of solution oriented cooperation and dialog contribute to the total quality consciousness that is embodied by each and every employee in our Group. A clearly defined quality system supports our employees from the first contact with a customer through to delivery and after sales service and contributes to the uncompromising quality and high performance of our products and services.

WE CREATE MOTION

Periodical ISO audits guarantee that we fulfil the accepted international standards and we profit from an external view of our management processes and procedures. The will for continuous improvement and the implementation of state-of-the-art test procedures enhances the value of our products and services for our customers.

ISO

13485

ISO 9001

FAULHABER drive systems are considered components according to the EG rules for CE compliance. They are intended for use by our customers, who are considered experts in their individual fields of application, as an integrated part of an application and thereby do not require the CE mark

QUALITY

Naturally efficient The basis for a responsible use of resources The reduction of CO2 emissions and the responsible use of energy play a key roll in protecting our environment in all its natural beauty for future generations. FAULHABER is doing its part through the conscientious development of highly energy and resource efficient drive systems which help to lower overall energy use in a myriad of hightech applications. FAULHABER maintains a high standard of environmental consciousness in each aspect of its organization. This transparent commitment to a responsible relationship to the environment is confirmed by our certification according to the ISO 14001 standard.

ISO

14001

WE CREATE MOTION

In practice for FAULHABER this means energy efficient production, disciplined recycling, and a commitment to energy efficient infrastructure and facilities worldwide.

The most recent addition to the FAULHABER facility in Schönaich, Germany, was constructed with a conscious focus on energy and resource efficiency

SUSTAINABILITY

Detailed Index

Introduction

Brushless DC-Micromotors – smoovy® Technology

General Index Technologies driving the Future Consulting and Concept Design Processes and Production Custom Solutions Applications Quality Sustainability Detailed Index

3 4–5 6–7 8–9 10 – 11 12 – 13 14 – 15 16 – 17 18 – 19 20 – 21

DC-Micromotors Technical Information

24 – 30

DC-Micromotors 0615 … S 0816 … S 1016 … G 1024 … S 1219 … G 1224 … S 1224 … SR 1319 … SR 1331 … SR 1336 … C 1516 … S 1516 … SR 1524 … SR 1624 … S 1717 … SR 1724 … SR 1727 … C 2224 … SR 2230 … S 2232 … SR 2233 … S 2237 … CXR 2342 … CR 2642 … CR 2657 … CR 3242 … CR 3257 … CR 3557 … C 3557 … CS 3863 … C

Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Graphite Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Graphite Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation

0,11 mNm 0,15 mNm 0,48 mNm 1,28 mNm 0,6 mNm 1,0 mNm 1,8 mNm 1,3 mNm 3,2 mNm 4,0 mNm 0,5 mNm 0,8 mNm 2,5 mNm 1,5 mNm 2,0 mNm 4,2 mNm 5,0 mNm 5,0 mNm 2,5 mNm 10 mNm 3,0 mNm 11 mNm 16 mNm 28 mNm 44 mNm 35 mNm 70 mNm 40 mNm 50 mNm 110 mNm

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

0,3 mNm 0,3 mNm 30 mNm 30 mNm 3,0 mNm 2,0 mNm 100 mNm 100 mNm

62 63 – 64 65 66 – 67 68 69 – 70 71 72 – 73

Flat DC-Micromotors and DC-Gearmotors 1506 … SR 1506 … SR IE2-8 1512 … SR 1512 … SR IE2-8 2607 … SR 2607 … SR IE2-16 2619 … SR 2619 … SR IE2-16

Precious Metal Commutation with integrated Encoder with integrated Gearhead with int. Gearhead and Encoder Precious Metal Commutation with integrated Encoder with integrated Gearhead with int. Gearhead and Encoder

Brushless DC-Motors 76 – 78

Brushless DC-Micromotors

0,023 mNm 0,88 mNm 2,8 N 0,20 mNm 25 mNm 41 N

81 82 83 84 85 86

Brushless DC-Servomotors Brushless DC-Servomotors 0620 … B 1226 … B 1628 … B 2036 … B 2057 … B 2444 … B 3056 … B 3564 … B 4490 … B, BS

with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors

0,36 mNm 2,2 mNm 2,6 mNm 5,2 mNm 16,5 mNm 11,8 mNm 22,1 mNm 47,1 mNm 202 mNm

88 – 89 90 – 91 92 – 93 94 – 95 96 – 97 98 – 99 100 – 101 102 – 103 104 – 105

2,1 mNm 5,7 mNm 6,5 mNm 15,5 mNm

108 – 109 110 – 111 112 – 113 114 – 115

12 mNm 13 mNm 13 mNm 23 mNm 25 mNm 25 mNm

118 – 119 120 – 121 122 – 123 124 – 125 126 – 127 128 – 129

Brushless DC-Servomotors – SMARTSHELL® Technology 1524 … BSL 1536 … BSL 2232 … BSL 2248 … BSL

sensorless, with optional Hall Sensors sensorless, with optional Hall Sensors sensorless, with optional Hall Sensors sensorless, with optional Hall Sensors

Brushless DC-Servomotors – 4 Pole Technology 2232 … BX4 2232 … BX4 IE3 2232 … BX4 IE3 L 2250 … BX4 2250 … BX4 IE3 2250 … BX4 IE3 L

with integrated Hall Sensors with integrated Encoder with int. Encoder and Line Driver with integrated Hall Sensors with integrated Encoder with int. Encoder and Line Driver

Brushless DC-Motors with integrated Speed Controller Brushless DC-Motors 1525 … BRC 1935 … BRE 3153 … BRC

with integrated Electronics with integrated Electronics with integrated Electronics

1,8 mNm 3,2 mNm 28 mNm

131 132 133

13 mNm 25 mNm

134 – 135 136 – 137

Brushless DC-Servomotors – 4 Pole Technology 2232 … BX4 SC 2250 … BX4 SC

with integrated Speed Controller with integrated Speed Controller

Brushless Flat DC-Micromotors & DC-Gearmotors Brushless Flat DC-Micromotors & DC-Gearmotors – penny-motor® Technology 1202 … BH 1307 … BH 1309 … BH 2209 … B SC 12 Bit

with integrated Hall Sensors with integrated Gearhead with integrated Gearhead with integrated Position Controller

0,16 mNm 5 mNm 5 mNm 0,09 mNm

139 140 141 142 – 145

Motion Control Systems Technical Information

149 – 151

Brushless DC-Servomotors with integrated Motion Controller 3564 K 024 B CS 3564 K 024 B CC

RS232 interface CAN interface

50 mNm 50 mNm

152 – 154 155 – 157

Technical Information

161 – 165

Stepper Motors – PRECIstep® Technology

Brushless DC-Micromotors sensorless Micro Planetary Gearhead

sensorless Micro Planetary Gearhead Linear Actuator sensorless Micro Planetary Gearhead Linear Actuator

Stepper Motors

Technical Information

0206 … B 02/1

0308 … B 03A 03A S3 0515 … B 06A 06A S2

0,012 mNm 0,15 mNm

79 80

ADM 0620-2R AM 0820 AM 1020

Two Phase with Disc Magnet Two Phase Two Phase

0,2 mNm 0,65 mNm 1,6 mNm

166 – 167 168 – 169 170 – 171

184 185 186 187 188 189

PA2-50 PA2-100 IE2-16 IE2-400 IE2-512 30B 20B, 21B AE 30B19 AE 23B8 PE22-120

optical optical magnetic magnetic magnetic magnetic magnetic magnetic magnetic optical

255 – 257 258 – 260 261 262 263 – 271 272 – 273 274 – 275 276 277 278

magnetic magnetic magnetic magnetic, Line Driver optical optical, Line Driver optical, Line Driver

279 – 280 281 – 283 284 – 285 286 – 287 288 289 – 291 292 – 293

Encoders – 3 Channel

Linear DC-Servomotors Technical Information

193 – 197

Linear DC-Servomotors – QUICKSHAFT® Technology with analog Hall Sensors for sin/cos control with analog Hall Sensors for sin/cos control

3,6 N 3,6 N 9,2 N 9,2 N

198 – 199 200 – 201 202 – 203 204 – 205

Precision Gearheads

Brakes

Technical Information

208 – 213

Precision Gearheads 06/1 08/1 08/2 08/3 10/1 12/3 12/4 12/5 13A 14/1 15A 15/3, 16/3 15/4 15/5, 16/5 15/8, 16/8 16A 16/7 20/1 22E 22F 22/2 22/5 22/6 22/7 23/1 26A 26/1 30/1 32A 32/3 38A 38/1, 38/2 38/3 44/1

Planetary Gearheads Planetary Gearheads Spur Gearheads Spur Gearheads, zero backlash Planetary Gearheads Spur Gearheads Planetary Gearheads Spur Gearheads, zero backlash Planetary Gearheads Planetary Gearheads Planetary Gearheads Spur Gearheads Hybrid Gearheads Spur Gearheads Spur Gearheads, zero backlash Spur Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Spur Gearheads Spur Gearheads, zero backlash Hybrid Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Spur Gearheads Planetary Gearheads

Servo Components MBZ FSB 001

magnetic magnetic

296 297

DC-Micromotors

DC-Tachogenerators and DC-Motor-Tacho Combinations 25 mNm 60 mNm 15 mNm 15 mNm 0,1 Nm 0,03 Nm 0,3 Nm 0,03 Nm 0,18 Nm 0,3 Nm 0,25 Nm 0,03 Nm 0,2 Nm 0,1 Nm 0,1 Nm 0,03 Nm 0,3 Nm 0,5 Nm 0,6 Nm 1,0 Nm 0,1 Nm 0,1 Nm 0,4 Nm 0,7 Nm 0,7 Nm 1,0 Nm 3,5 Nm 4,5 Nm 4,5 Nm 7,0 Nm 20 Nm 10 Nm 1,2 Nm 16 Nm

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

2225 1841 … S 2251 … S

DC-Tachogenerator DC-Motor-Tacho Combinations DC-Motor-Tacho Combinations

1,5 mNm 3 mNm

298 – 299 300 301

Precision Gearheads

LM 1247 ... 01 LM 1247 ... 02 LM 2070 ... 01 LM 2070 ... 02

HXM3-64 HEM3-256-W IE3-256 IE3-256L HEDS, HEDM 55x0 HEDL 5540 40B

Brushless DC-Motors

Lead Screw Lead Screw Lead Screw Lead Screw Lead Screw

250 – 254

Drive Electronics Speed Controller SC 1801, 2804 BLD 05002 S BLD 1501 H BLD 2401 BLD 3502 BLD 4803-SL2P BLD 4803-SH4P BLD 5018 BLD 5604/08 BLD 5603/06 BLD 7010 AD…M1S AD…M3S

for DC and Brushless Motors for Brushless Motors for Brushless Motors for Brushless Motors for Brushless Motors for Brushless Motors for Brushless Motors for Brushless Motors for Brushless Motors for Brushless Motors for Brushless Motors for Stepper Motors for Stepper Motors

1/4 A 0,25 A 1,0 A 1,0 A 1,5 A 2,5 A 2,5 A 18 A 3/5 A 4,0 A 10 A

304 – 309 310 311 312 – 313 314 – 315 316 – 317 318 – 319 320 – 321 322 – 323 324 – 325 326 – 327 328 329

for DC-Micromotors / RS232 for DC-Micromotors / CAN for Brushless Motors / RS232 for Brushless Motors / CAN for Linear Motors / RS232 for Linear Motors / CAN for DC-Micromotors for Brushless Motors

3/6 A 3/6 A 3/6 A 3/6 A 3/6 A 3/6 A 4,0 A 4,0 A

330 – 333 334 – 337 338 – 341 342 – 345 346 – 349 350 – 353 354 – 355 356 – 357

Motion Controller MCDC 3003/06 S MCDC 3003/06 C MCBL 3003/06 S MCBL 3003/06 C MCLM 3003/06 S MCLM 3003/06 C MCDC 5004 MCBL 5004

Encoders

M1,2 x 0,25 x L1 M1,6 x 0,35 x L1 M2 x 0,2 x L1 M2,5 x 0,25 x L1 M3 x 0,5 x L1 Options

Technical Information Encoders – 2 Channel

Motion Control Systems

Lead Screws and Options – PRECIstep® Technology

Encoders

Stepper Motors

172 – 173 174 – 175 176 – 177 178 – 179 180 – 181 182 183

Linear DC-Servomotors

2,4 mNm 2,4 mNm 6 mNm 26 mNm 26 mNm

Servo Components

Two Phase with Disc Magnet Two Phase with Disc Magnet Two Phase Two Phase Two Phase Single Phase Single Phase

Drive Electronics

ADM 1220 ADM 1220 S AM 1524 AM 2224 AM 2224-R3 ASP 006 ASP 124

DC-Micromotors

DC-Micromotors

WE CREATE MOTION For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

022

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Page 0615 … S 0816 … S 1016 … G 1024 … S 1219 … G 1224 … S 1224 … SR 1319 … SR 1331 … SR 1336 … C 1516 … S 1516 … SR 1524 … SR 1624 … S 1717 … SR 1724 … SR 1727 … C 2224 … SR 2230 … S 2232 … SR 2233 … S 2237 … CXR 2342 … CR 2642 … CR 2657 … CR 3242 … CR 3257 … CR 3557 … C 3557 … CS 3863 … C

Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Graphite Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Graphite Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Precious Metal Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation Graphite Commutation

0,11 mNm 0,15 mNm 0,48 mNm 1,28 mNm 0,6 mNm 1,0 mNm 1,8 mNm 1,3 mNm 3,2 mNm 4,0 mNm 0,5 mNm 0,8 mNm 2,5 mNm 1,5 mNm 2,0 mNm 4,2 mNm 5,0 mNm 5,0 mNm 2,5 mNm 10 mNm 3,0 mNm 11 mNm 16 mNm 28 mNm 44 mNm 35 mNm 70 mNm 40 mNm 50 mNm 110 mNm

Precious Metal Commutation with integrated Encoder with integrated Gearhead with integrated Gearhead and Encoder Precious Metal Commutation with integrated Encoder with integrated Gearhead with integrated Gearhead and Encoder

0,3 mNm 0,3 mNm 30 mNm 30 mNm 3,0 mNm 2,0 mNm 100 mNm 100 mNm

Flat DC-Micromotors and DC-Gearmotors 1506 … SR 1506 … SR IE2-8 1512 … SR 1512 … SR IE2-8 2607 … SR 2607 … SR IE2-16 2619 … SR 2619 … SR IE2-16

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page

023

62 63 – 64 65 66 – 67 68 69 – 70 71 72 – 73

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

DC-Micromotors

DC-Micromotors

DC-Micromotors

Technical Information

General information

DC-Micromotors

The lifetime, depending on the application type, may exceed the 10 000 hours. Higher speeds cause accelerated mechanical wear, resulting in reduced lifetime. Also excessively high current and temperature shortens the lifetime. On the average, lifetime of up to 1 000 hours for metal brushes, and more than 3 000 hours for graphite brushes can be expected when the motors are operated within recommended values indicated on the data sheet. These values do not influence each other. It is advisable that the current under load in continuous operation should not be higher than one third of the stall current. In motors with graphite brushes the relationship between stall current and current under load depends on the delivered power and frame size. The motors should not be operated at the stall torque MH, otherwise after a short period of time, the commutation or the windings could be damaged.

Precious Metal Commutation

Series 0615 ... S 1 2 3 4



30 = ± 0,2 mm

All values at 22 °C. All values at nominal voltage, motor only, without load.

Nominal voltage UN [Volt] The nominal voltage at which all other characteristics indicated are measured. Terminal resistance R [Ω] ±12% The resistance measured across the motor terminals. The value is directly affected by the coil temperature (temperature coefficient: α22 = 0,004 K-1). Output power P2 max. [W] The maximum obtainable mechanical power achieved at the nominal voltage. R ––– U P2 max. = –– · N – Io 4 R

Motors with tighter tolerances and tolerances of values not specified are given on request. Bearing options:

– Optional:

2

Efficiency ηmax. [%] The max. ratio between the absorbed electrical power and the obtained mechanical power of the motor. It does not always correspond to the optimum working point of the motor.

≤ 120 = ± 0,3 mm

– Standard:

no

Notes on technical data

Unspecified tolerances: Tolerances in accordance with ISO 2768 medium. 6 = ± 0,1 mm

d max.

5 No-load speed

The motor develops its maximum power P2 max. at exactly half the stall torque MH which also corresponds to half the speed. For reasons of life performance, this working point should only be selected for intermittent periods. For exceptional long life performance, brushless DC-Motors are available.



0615 N UN R P2 max.

Nominal voltage Terminal resistance Output power Efficiency

Unless otherwise stated, vacuum impregnated sintered bearings are used

max.

Shielded ball bearings

Io· R 2 = 1– –––– · 100 UN

No-load speed no [rpm] ±12% The maximum speed the motor attains under no-load conditions at nominal voltage.

Motor shaft: All dimensions with shaft pushed against motor. Motor choice: The listed motor types represent standardised executions. However, a variety of further coil possibilities are available.

no = (UN – Io · R) · kn

No-load current Io [A] ±50% The current consumption of the motor at nominal voltage and under no-load conditions. The value is influenced by temperature and can increase several times for a given motor with larger shaft, reinforced brushes or different lubricant.

0615_S.indd 1

024

MH = kM ·

max.

MH· 10 = ––––––– J

Thermal resistance Rth1/Rth2 [K/W] Rth1 corresponds to the value between the rotor and housing. Rth2 corresponds to the value between the housing and the ambient air. Rth2 can be reduced by enabling exchange of heat between the motor and the ambient air (for example using a heat sink or forced air cooling).

UN – I ––– o R

Friction torque MR [mNm] Torque losses caused by the friction of brushes, bearings and commutators. This value is influenced by temperature.

Thermal time constant τw1 / τw2 [s] The thermal time constant specifies the time needed for the rotor and housing to reach a temperature equal to 63% of final value.

MR= kM · Io

Speed constant kn [rpm/V] The speed variation per Volt applied to the motor terminals at constant load.

θm

Final temperature

000 no kn = –––––––– =1 ––––– UN – Io · R kE

63,2 % of Final temperature

Back-EMF constant kE [mV/rpm] The constant corresponding to the relationship between the induced voltage in the rotor at the speed of rotation.

Thermal time constant

(t)

τ th

2π · kM kE = –––––– 60

t

Operating temperature range [°C] Indicates the min. and max. motor operating temperature, as well as the maximum permitted rotor temperature.

Torque constant kM [mNm/A] The constant corresponding to the relationship between the torque developed by the motor and the current drawn.

Shaft bearings The bearings used for the DC-Micromotors.

Current constant kI [A/mNm] The constant between the current in the motor and the torque developed.

Shaft load max. [N] The output shaft load at a specified shaft diameter for the primary output shaft. For motors with ball bearings the load and lifetime are in accordance with the values given by the bearing manufacturers. This value does not apply to second, or rear shaft ends.

1 kl = ––– kM

Slope of n-M curve Δn/ΔM [rpm/mNm] The ratio of the speed variation to the torque variation. The smaller the value, the more powerful the motor.

Shaft play [mm] The shaft play on the bearings, measured at the bearing exit.

Δn = ––––––– 30 000 ––– R ––– · 2 ΔM π kM

Rotor inductance L [μH] The inductance measured on the motor terminals at 1 kHz.

Housing material The housing material and the surface protection.

Mechanical time constant τm [ms] The time required for the motor to reach a speed of 63% of its final no-load speed, from standstill.

Weight [g] The average weight of the basic motor type.

m

Direction of rotation The direction of rotation is viewed from the front face. Positive voltage to the + terminal gives clockwise rotation of the motor shaft. All motors are designed for clockwise (CW) and counterclockwise (CCW) operation; the direction of rotation is reversible.

·R·J = 100 ––––––––– kM 2

Rotor inertia J [gcm2] Rotor‘s mass dynamic inertia moment. Angular acceleration α max. [·103 rad/s2] The acceleration obtained from standstill under no-loadconditions and at nominal voltage. 025

DC-Micromotors

Stall torque MH [mNm] The torque developed by the motor at zero speed and nominal voltage. This value is greatly influenced by temperature.

DC-Micromotors

DC-Micromotors

Technical Information

Preselection The first step is to calculate the power the motor is expected to deliver:

Recommended values The maximum recommended values for continuous operation to obtain optimum life performance are listed below. The values are independent of each other. The values will be reduced with thermal insulation and elevated temperature but can be increased with forced cooling.

π P2 = M · n ––––––––– 30 · 1 000 π P2 = 3 · 5 500 ––––––––– 30 · 1 000

Speed ne max. [rpm] The maximum recommended operating speed.

Current Ie max. [A] The maximum allowable current, based on the thermal limits of the max. permissible standard rotor temperature at 22 °C ambient.

P2 max. ≥ P2

This section reviews a step-by-step procedure on how to select a DC-Micromotor. The procedure allows calculation of the parameters in order to produce a graph of the characteristics and per-mitting the definition of the motor‘s behaviour. To simplify the calculation, in this example continuous operation and optimum life performance are assumed and the influence of temperature and tolerances has been omitted.

Nominal voltage Output power, max. Frame size:

Shaft load

3 5 500 100 20 0,5 25 50 1,0 0,2

diameter length

Shaft load, max.: No-load current No-load speed Stall torque

UN P2 max. Ø L radial axial Io no MH

= = = = = = = = =

24 2,47 22 33 1,2 0,2 0,005 8 800 10,70

V DC W mm mm N N A rpm mNm

Caution: Should the available supply voltage be lower than the nominal voltage of the selected DC-Micromotor, it will be necessary to calculate [P2 max.] with the following equation:

[mNm] [rpm] [%] [V DC] [A] [mm] [N]

R ––– U P2 max. = –– · N – Io 4 R

The assumed application data for the selected example are: M = n = δ = U = I = diameter = length = radial = axial =

UN ≥ U

The motor selected from the catalogue for this particular application, is series 2233 T 024 S with the following characteristics:

Application data: The basic data required for any given application are:

Output torque Speed Duty cycle Supply voltage Current source, max. Space max.

W

The physical dimensions (diameter and length) of the motor selected from the data sheets should not exceed the available space in the application.

How to select a DC-Micromotor

M n δ U I diameter/length radial/axial

= 1,73

A motor is then selected from the catalogue which will give at least 1,5 to 2 times the output power [P2 max.] than the one obtained by calculation, and where the nominal voltage is equal to or higher than the one required in the application data.

Torque Me max. [mNm] The maximum recommended torque rating.

Required torque Required speed Duty cycle Available supply voltage, max. Available current source, max. Available space, max. Shaft load

[W]

mNm rpm % V DC A mm mm N N

2

[W]

20 – 0,005 57 ––– P2 max. (20 V) = ––– · 57 4

2

= 1,70

W

Optimizing the preselection To optimize the motor‘s operation and life performance, the required speed [n] has to be higher than half the noload speed [no] at nominal voltage, and the load torque [M] has to be less than half the stall torque [MH]. no n ≥ ––– 2

026

MH M ≤ ––– 2

no n (5 500 rpm) ≥ ––– 2

is greater than

8 800 = 4 400 rpm ––––– 2

MH M (3 mNm) ≤ ––– 2

is less than

10,70 ––––– = 5,35 2

It is now possible to make a graphic presentation and draw the motor diagram (see graph 1). Graph 1 Efficiency Outputpower Current P2 η (%)

mNm

3,0

This DC-Micromotor will be a good first choice to test in this application. Should the required speed [n] be less than half the no-load speed [no], and the load torque [M] be less than half the stall torque [MH], try the next voltage motor up.

0,5

n (rpm)

10 000 n o = 8 800 rpm

9 000

P2 max = 2,47 W

2,5 0,4

100

8 000

7 000

cu

η max = 80 %

2,0

IH = 0,421 A

tI

en

rr

90 80 0,3

6 000

ef

fic ie

70

0,2

y put

50

4 000

sp

d

3 000

n

er

ee

1,0

pow

40

nc

5 000

1,5

out

60

Should the required torque [M] be compliant but the required speed [n] be less than half the no-load speed [no], try a lower supply voltage or another smaller frame size motor.

30 0,1 20

0

2 000

0,5

M Torque

1 000

10

Should the required speed be well below half the no-load speed and or the load torque [M] be more than half the stall torque [MH], a gearhead or a larger frame size motor has to be selected.

0

0

MH = 10,70 mNm

M Opt.= 1,18 mNm

Io 0

MR= 0,13 mNm

0

1

2

3

4

5

6

7

8

9

10

11

(mNm)

Calculation of the main parameters In this application the available supply voltage is lower than the nominal voltage of the selected motor. The calculation under load therefore is made at 20 V DC.

Performance characteristics at nominal voltage (24 V DC) A graphic presentation of the motor‘s characteristics can be obtained by calculating the stall current [I] and the torque [M] at its point of max. efficiency [Mopt.]. All other parameters are taken directly from the data sheet of the selected motor.

No-load speed no at 20 V DC U – (Io · R) no = ––––––––– · 1 000 kE

[rpm]

inserting the values

Stall current UN I = ––– R

Supply voltage Terminal resistance No-load current Back-EMF constant

[A]

24 I = ––– 57

= 0,421 A

= = = =

20 57 0,005 2,690

V DC Ω A mV/rpm

= 7 315 rpm

Stall current IH

MH · MR

Mopt. = 10,70 · 0,13

U R IO kE

20 – (0,005 · 57) no = –––––––––––––– · 1 000 2,690

Torque at max. efficiency Mopt. =

Speed

I (A)

(W)

= 1,18

[mNm]

U IH = ––– R

mNm

20 IH = ––– 57

[A]

= 0,351

A

Stall torque MH MH = kM (IH – Io)

[mNm]

inserting the value Torque constant MH = 25,70 (0,351 – 0,005)

027

kM

= 25,70 mNm/A = 8,91

mNm

DC-Micromotors

From the data sheet for the DC-Micromotor, 2233 T 024 S the parameters meet the above requirements.

DC-Micromotors

DC-Micromotors

Technical Information

Output power, max. P2 max. R ––– UN – I P2 max. = –– · o 4 R

Efficiency at the operating point P2 · 100 = –––– U·I

2

[W]

2 P2 max.(20 V) = 57 –– · 20 –– – 0,005 4 57

= 1,70

1,52 = ––––––––– · 100 20 · 0,122

W

Io 2 = 1 – ––– · 100 IH

[%]

0,005 · 100 = 1 – –––––– 0,351

= 77,6

%

U = R · I + kE · n · 10-3

At the point of max. efficiency, the torque delivered is:

U = 57 · 0,122 + 2,695 · 5 500 · 10-3

Mopt. =

MH · MR

[mNm]

Mopt. =

MR

=

0,13

mNm

MH

=

8,91

mNm

8,91 · 0,13

= 1,08

Supply voltage Speed Output torque Current Output power Efficiency

mNm

[A]

21,78 5 500 3 0,12 1,72 66

V DC rpm mNm A W %

Graph 2

= 0,122 A

Efficiency Outputpower Current Speed P2 η

Speed at the operating point

(%)

n

I

(A)

(W)

3,0

–R·I n =U ––––––– · 1 000 kE

= = = = = =

To simplify the calculation, the influence of temperature and tolerances has deliberately been omitted. In certain cases the influence of temperature should, however, be taken into consideration.

Current at the operating point

+ 0,13 I = –3––––––– 25,70

U n MN I P2 η

Motor characteristic curves For a specific torque, the various parameters can be read on graph 2.

Calculation of the operating point at 20 V DC When the torque (M = 3 mNm) at the working point is taken into consideration I, n, P2 and η can be calculated:

+MR I = –M ––––––– kM

= 21,78 V DC

In this calculated example, the parameters at the operating point are summarized as follows:

inserting the values Friction torque and Stall torque at 20 V DC

%

Supply voltage at the operating point The exact supply voltage at the operating point can now be obtained with the following equation:

2

max.

= 62,3

In this example the calculated speed at the working point is different to the required speed, therefore the supply voltage has to be changed and the calculation repeated.

Efficiency, max. ηmax. max.

[%]

0,5

[rpm]

(rpm)

10 000

9 000 2,5 100

20 – 57 · 0,122 n = –––––––––––––– · 1 000 2,690

0,4

8 000

90

= 4 841

7 000

rpm

2,0 80 0,3

1,72W

6 000

5 500 rpm

70 1,5

Output power at the operating point

5 000

60

66% 50

0,2

4 000 24

π P2 = M · n · ––––––––– 30 · 1 000

40

[W]

π P2 = 3 · 4 841 · ––––––––– 30 · 1 000

3 000

30

W

0

21

,7

8V

M Torque

1 000

0

0

0 0

028

V

2 000

0,5

10

= 1,52

20

0,12A 0,1

20

V

1,0

1

2

3

4

5

6

7

8

9

10

11

(mNm)

DC-Micromotors Precious Metal Commutation 1 2 3

DC-Micromotors

4

5

12 6

DC-Micromotor 1

End cap

2

Ball bearing

3

Brush cover

4

Brushes

5

Housing

6

Commutator

7

Coil

8

Shaft

9

Washer

10

Magnet

11

Retaining sleeve

12

Terminals

7

8 9

10

2 9 11

Features

Benefits

The main difference between FAULHABER DC-Micromotors

■ Ideal for battery operated devices

and conventional DC motors is in the rotor. The winding

■ No cogging

does not have an iron core but consists of a self-supporting

■ Extremely low current consumption – low starting voltage

skew-wound copper coil. This featherweight rotor has

■ Highly dynamic performance due to a low inertia, low inductance coil

an extremely low moment of inertia, and it rotates without cogging. The result is the outstanding dynamics of

■ Light and compact

FAULHABER motors. For low power motors, commutation

■ Precise speed control

systems using precious metals are the optimum solution

■ Simple to control due to the linear performance characteristics

because of their low contact resistance. FAULHABER precious metal commutated motors range in size from just 6 mm to 22 mm in diameter.

Product Code

FAULHABER completes the drive system by providing a variety of additional hightech standard components including high resolution encoders, precision gearheads, and drive electronics. FAULHABER specializes in the modification of their drive systems to fit the customer’s particular application requirements. Common modifications include vaccuum compatibility, extreme temperature compatibility, modified shaft geometry, additional voltage types, custom motor leads and connectors, and much more.

029

12 19 N 012

Motor diameter Motor length [mm] Shaft type Nominal voltage [V]

G

Type of commutation (precious metal)

1219 N 012 G

DC-Micromotors Graphite Commutation 1 2

3 4 5

DC-Micromotors

2 6

13

7 8

DC-Micromotor 1

Retaining ring

2

Spring washer

3

Ball bearing

4

Brush cover

5

Graphite brushes

6

Insulating ring

7

Commutator

8

Coil

9

Shaft

10

Magnet

11

Magnet cover

12

Housing

13

Terminals

9

10

11

12

3 1

Features

Benefits

These motors feature brushes manufactured of a sintered

■ No cogging

metal graphite material and a copper commutator.

■ High power density

This ensures that the commutation system can withstand

■ Highly dynamic performance due to a low inertia, low inductance coil

more power and still deliver exceptionally long opera-

■ Light and compact

tional lifetimes.

■ Precise speed control

A multitude of adaptations for customer specific require-

■ Simple to control due to the linear performance characteristics

ments and special executions are available. FAULHABER motors with graphite brushes range in size from just 13 mm to 38 mm in diameter. FAULHABER completes the drive system by providing a variety of additional high-tech standard components

Product Code

including high resolution encoders, precision gearheads, drive electronics, brakes and other servo componets. FAULHABER specializes in the modification of their drive systems to fit the customer‘s particular application requirements. Common modifications include vaccuum compatibility, extreme temperature compatibility, modified shaft geometry, additional voltage types, custom motor leads

23 42 S 024 C R

and connectors, and much more.

030

Motor diameter [mm] Motor length [mm] Shaft type Nominal voltage [V] Type of commutation (Graphite) Version (rare earth magnet)

2 3 42 S 0 2 4 C R

DC-Micromotors

0,11 mNm

Precious Metal Commutation

For combination with Gearheads: 06/1 Encoders: PA2-50, HXM3-64

0615 N UN R P2 max.

d max.

1,5 S 1,5 3,9 0,12 52

003 S 3,0 16,2 0,12 50

4,5 S 4,5 37,7 0,11 48

Volt Ω W %

No-load speed No-load current (with shaft ø 0,8 mm) Stall torque Friction torque

no Io MH MR

19 100 0,030 0,24 0,02

20 200 0,016 0,22 0,02

20 000 0,012 0,21 0,02

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

13 840 0,072 0,69 1,449

7 346 0,136 1,30 0,769

4 872 0,205 1,96 0,510

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

78 224 12 8 0,01 244

91 538 39 10 0,01 221

93 713 95 10 0,01 213

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

35 / 76 2,6 / 110

K/W s

– 30 ... + 85 + 85

°C °C

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (1,5 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial ≤ – axial ≤

sintered bronze sleeves

24 Housing material 25 Weight 26 Direction of rotation

0,8 0,5 0,1 20

mm N N N

0,03 0,15

mm mm

steel, black coated 2 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

13 000 0,11 0,341

0

0

ø1,5 -0,03 ø6 ±0,03 ø5 -0,018 A M4,5x0,5 ø0,07

-0,03

ø1,75 -0,05 A

13 000 0,11 0,110

rpm mNm A

3,65

ø0,07 A 0,04

0,04

1

13 000 0,11 0,167

DIN 58400 m=0,12 z=12 x=+0,2

ø3 ±0,05

0,4 0,3

1,9 2,15

3,1

15

2,1

3,35

5,15 ±0,3

0615 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

1,8

0615 C for Gearheads 06/1

031

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 0615 ... S

DC-Micromotors

0,15 mNm

Precious Metal Commutation

For combination with Gearheads: 08/1, 08/2, 08/3 Encoders: PA2-50, HEM3-256-W

DC-Micromotors

Series 0816 ... S 0816 N UN R P2 max.

d max.

003 S 3 11,5 0,17 52

006 S 6 47,0 0,16 51

008 S 8 75,7 0,18 50

Volt Ω W %

No-load speed No-load current (with shaft ø 1,0 mm) Stall torque Friction torque

no Io MH MR

15 700 0,016 0,41 0,04

15 800 0,008 0,40 0,04

16 500 0,006 0,40 0,04

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

5 617 0,178 1,70 0,588

2 851 0,351 3,35 0,299

2 329 0,429 4,10 0,244

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

37 999 47 12 0,03 138

39 993 195 13 0,03 132

43 003 310 14 0,03 133

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

30 / 61 2,9 / 207

K/W s

– 30 ... + 85 + 85

°C °C

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (1,5 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial ≤ – axial ≤

sintered bronze sleeves

24 Housing material 25 Weight 26 Direction of rotation

1,0 0,5 0,1 20

mm N N N

0,03 0,2

mm mm

steel, nickel plated 3,5 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

ø8 ±0,03

0

13 000 0,15 0,211

2

ø2,34 -0,05 A

ø1,93 -0,06

4,6

ø0,07 A 0,04 DIN 58400 m=0,14 z=11 x=+0,3

ø0,07 A 0,04 DIN 58400 m=0,16 z=12 x=+0,2

0,04

rpm mNm A

13 000 0,15 0,085

-0,04

-0,03

0

ø6 -0,018 ø1,5 -0,03 A M5,5x0,5 ø0,07

13 000 0,15 0,103

ø3,9 ±0,05

0,4 1,9 1,6 4

2,15

2,1

16

5,15 ±0,3

0816 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

3,35

1,8

0816 P for Gearhead 08/1

032

3,45

1,7

0816 D for Gearheads 08/2, 08/3

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

0,48 mNm

Precious Metal Commutation

For combination with Gearheads: 10/1, 12/3 Encoders: 30B, PA2-100, HEM3-256-W

1016 N UN R P2 max.

d max.

003 G 3 8,7 0,24 63

006 G 6 20,1 0,42 67

012 G 12 95,0 0,36 68

Volt Ω W %

No-load speed No-load current (with shaft ø 0,8 mm) Stall torque Friction torque

no Io MH MR

14 200 0,015 0,64 0,03

18 400 0,010 0,87 0,03

16 500 0,004 0,82 0,03

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

4 948 0,202 1,93 0,518

3 173 0,315 3,01 0,332

1 419 0,705 6,73 0,149

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

22 304 28 9 0,04 159

21 185 60 13 0,06 145

20 029 310 10 0,05 165

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

26 / 56 3,1 / 260

K/W s

– 30 ... + 85 (optional – 30 … + 125) + 85 (optional + 125)

°C °C

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (1,5 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial ≤ – axial ≤

sintered bronze sleeves (standard) 0,8 0,5 0,1 20

ball bearings (optional) 1,0 5 0,5 5

mm N N N

0,03 0,2

0,02 0,2

mm mm

24 Housing material 25 Weight 26 Direction of rotation

steel, nickel plated 6,5 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

ø10 ±0,03

0

0

ø6 -0,018 ø1,5 -0,03 A M5,5x0,5 ø0,07

2

g

13 000 0,48 0,260

ø2,38 -0,04 ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

ø0,07 A 0,04 DIN 58400 m=0,2 z=12 x=+0,2

0,04

13 000 0,48 0,080

0

0

ø2,92 -0,015 A

13 000 0,48 0,170

rpm mNm A

6,7 4,6

0

0,4

ø5,5 -0,03

1,9 1,4 4,2

2,15 15,7

2,1

3,35

1,8

2,15

2,1

5,15 ±0,3

1016 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

1016 M for Gearheads 10/1

033

1016 E for Gearheads 12/3

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 1016 ... G

DC-Micromotors

1,28 mNm

Precious Metal Commutation

For combination with Gearheads: 10/1, 12/3, 12/4, 12/5 Encoders: 30B, PA2-100, HEM3-256-W

DC-Micromotors

Series 1024 ... S 1024 N UN R P2 max.

d max.

003 S 3 2,3 0,97 79

006 S 6 10,8 0,81 78

012 S 12 31,6 1,11 79

Volt Ω W %

No-load speed No-load current (with shaft ø 1,0 mm) Stall torque Friction torque

no Io MH MR

13 800 0,016 2,69 0,03

13 200 0,008 2,34 0,03

14 700 0,004 2,89 0,03

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

4 658 0,215 2,05 0,488

2 231 0,448 4,28 0,234

1 240 0,806 7,70 0,130

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

5 135 26 6 0,12 224

5 630 100 7 0,12 195

5 090 344 6 0,12 241

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (1,5 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial ≤ – axial ≤

14 / 41 5,0 / 289

K/W s

– 30 ... + 85 + 85

°C °C

sintered bronze sleeves

24 Housing material 25 Weight 26 Direction of rotation

1,0 0,5 0,1 20

mm N N N

0,03 0,2

mm mm

steel, black coated 8,8 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

0

0

ø10 ±0,03 ø6 -0,018 A

2

ø2,92 -0,015

ø0,07 A 0,04

12 000 1,21 0,291

0

0

ø1,5 -0,03

M5,5x0,5

12 000 1,27 0,636

-0,04

ø2,38 -0,04

ø0,07 A 0,04 DIN 58400 m=0,2 z=12 x=+0,2

ø3,65 -0,06

ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

1,9

1,4

2,15

4,2

23,7 1024 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

6,7

ø0,07 A 0,04 DIN 58400 m=0,25 z=12 x=+0,2

4,6

0

0,4 0,3

rpm mNm A

12 000 1,28 0,170

ø5,5 -0,03 ø3 ±0,05 2,1

3,35

1,8

2,15

2,1

3,9

3

5,15 ±0,3 1024 M 1024 E 1024 A for Gearheads 10/1 for Gearheads 12/3, 12/5 for Gearheads 12/4

034

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

0,60 mNm

Precious Metal Commutation

For combination with Gearheads: 10/1, 12/3 Encoders: 30B

1219 N UN R P2 max.

d max.

4,5 G 4,5 10,7 0,46 74

006 G 6 17,6 0,49 73

012 G 12 69,0 0,50 72

015 G 15 131 0,41 70

Volt Ω W %

No-load speed No-load current (with shaft ø 0,8 mm) Stall torque Friction torque

no Io MH MR

15 300 0,008 1,14 0,02

16 000 0,007 1,17 0,02

16 000 0,004 1,19 0,03

16 200 0,003 0,96 0,03

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

3 460 0,289 2,76 0,362

2 721 0,368 3,51 0,285

1 364 0,733 7,00 0,143

1 109 0,902 8,61 0,116

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

13 413 150 20 0,14 81

13 642 300 20 0,14 84

13 447 1 200 18 0,13 92

16 875 1 600 19 0,11 87

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

17 / 48 3,5 / 386

K/W s

– 30 ... + 85 (optional – 30 … + 125) + 85 (optional + 125)

°C °C

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (1,5 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial ≤ – axial ≤

sintered bronze sleeves (standard) 0,8 0,5 0,1 20

ball bearings (optional) 1,0 5 0,5 5

mm N N N

0,03 0,2

0,02 0,2

mm mm

24 Housing material 25 Weight 26 Direction of rotation

steel, nickel plated 11 clockwise, viewed from the front face

Rth 1 / Rth 2 o w1 / o w2

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

0

12 000 0,60 0,260

0

ø12 ±0,03 ø6 -0,018 ø1,5 -0,03 A M5,5x0,5 ø0,07

1,9

0

A

12 000 0,60 0,100

12 000 0,60 0,070

0

ø2,92 -0,015

rpm mNm A

8,7

ø0,07 A 0,04 DIN 58400 m=0,2 z=12 x=+0,2

ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

0,4 1,9 2,15

4

12 000 0,60 0,200

ø2,38 -0,04

0,04

2

g

18,7 1219 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

2,1

2,15

2,1

3,35

1,8

5,15 ±0,3 1219 E for Gearheads 12/3

035

1219 M for Gearheads 10/1

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 1219 ... G

DC-Micromotors

1 mNm

Precious Metal Commutation

For combination with Gearheads: 10/1, 12/3, 12/4, 12/5 Encoders: 30B

DC-Micromotors

Series 1224 ... S 1224 N UN R P2 max.

d max.

006 S 6 6,6 1,3 78

012 S 12 26,8 1,3 78

015 S 15 42,3 1,3 78

Volt Ω W %

No-load speed No-load current (with shaft ø 1,0 mm) Stall torque Friction torque

no Io MH MR

12 700 0,013 3,69 0,05

13 100 0,006 3,60 0,05

12 400 0,005 3,62 0,05

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

2 318 0,431 4,12 0,243

1 173 0,852 8,14 0,123

923 1,084 10,35 0,097

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

3 713 65 7 0,18 205

3 862 250 7 0,18 200

3 771 450 7 0,18 201

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (1,5 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial ≤ – axial ≤

22 / 45 6,5 / 392

K/W s

– 30 ... + 85 + 85

°C °C

sintered bronze sleeves

24 Housing material 25 Weight 26 Direction of rotation

1,0 0,5 0,1 20

mm N N N

0,03 0,2

mm mm

steel, nickel plated 13 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

0

0

0

M5,5x0,5

2

ø0,07 A 0,04 DIN 58400 m=0,25 z=12 x=+0,2

ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

6,7 8

1,9 2,15 24,2 1224 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

rpm mNm A

-0,04

0,4

1,9

4

12 000 1 0,130

ø3,65 -0,06

ø2,38 -0,04

ø0,07 A 0,04 DIN 58400 m=0,2 z=12 x=+0,2

ø0,07 A 0,04

12 000 1 0,165

0

ø2,92 -0,015

ø12 ±0,03 ø6 -0,018 ø1,5 -0,03 A

12 000 1 0,330

2,1

3,35

1,8

2,15

2,1

3,9

5,15 ±0,3

3 6,9 ±0,3

1224 M for Gearheads 10/1

036

1224 E for Gearheads 12/3, 12/5

1224 A for Gearheads 12/4

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

1,8 mNm

Precious Metal Commutation

For combination with Gearheads: 10/1, 12/3, 12/4, 12/5 Encoders: 30B, PA2-100, HEM3-256-W

1224 N UN R P2 max.

d max.

006 SR 6 4,6 1,92 82

012 SR 12 18,2 1,95 83

015 SR 15 29,4 1,88 83

Volt Ω W %

No-load speed No-load current (with shaft ø 1,0 mm) Stall torque Friction torque

no Io MH MR

13 800 0,011 5,31 0,05

13 700 0,005 5,43 0,05

13 400 0,004 5,36 0,05

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

2 323 0,430 4,11 0,243

1 151 0,869 8,30 0,120

901 1,110 10,60 0,094

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

2 600 55 5 0,18 295

2 523 220 5 0,18 302

2 499 350 5 0,18 298

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (1,5 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial ≤ – axial ≤

17 / 37 6,5 / 371

K/W s

– 30 ... + 85 + 85

°C °C

sintered bronze sleeves

24 Housing material 25 Weight 26 Direction of rotation

1,0 0,5 0,1 20

mm N N N

0,03 0,2

mm mm

steel, black coated 13,5 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

0

0

0

M5,5x0,5

2

ø0,07 A 0,04 DIN 58400 m=0,25 z=12 x=+0,2

ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

6,7 8

1,9 2,15

rpm mNm A

-0,04

0,4

1,9

4

12 000 1,86 0,180

ø3,65 -0,06

ø2,38 -0,04

ø0,07 A 0,04 DIN 58400 m=0,2 z=12 x=+0,2

ø0,07 A 0,04

12 000 1,86 0,230

0

ø2,92 -0,015

ø12 ±0,03 ø6 -0,018 ø1,5 -0,03 A

12 000 1,80 0,450

2,1

24,2 1224 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

3,35

1,8

2,15

2,1

3,9

3

5,15 ±0,3 1224 M for Gearheads 10/1

037

1224 E for Gearheads 12/3, 12/5

1224 A for Gearheads 12/4

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 1224 ... SR

DC-Micromotors

1,3 mNm

Precious Metal Commutation

For combination with Gearheads: 13A, 14/1, 15/3, 15/5 Encoders: IE2 – 50 ... 400

DC-Micromotors

Series 1319 ... SR 1319 T UN R P2 max.

d max.

006 SR 6 8,26 1,00 66

012 SR 12 34,6 0,95 65

024 SR 24 119 1,10 66

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

13 100 0,031 2,91 0,13

12 800 0,015 2,84 0,13

14 600 0,009 2,89 0,13

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

2 280 0,438 4,19 0,239

1 110 0,897 8,57 0,117

637 1,570 15,0 0,067

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

4 500 130 19 0,40 72

4 510 530 19 0,40 71

5 050 1 600 19 0,36 80

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

8 / 35 3,8 / 175

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

sintered bronze sleeves

1,5

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

1,2 0,2 20

mm N N N

0,03 0,2

mm mm

steel, black coated 12 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

0

ø13 -0,052

0

ø6 -0,05

12 000 1,3 0,410

ø3,5

12 000 1,3 0,100

ø2,38 -0,04 ø0,07 A 0,04

ø0,05 A 0,02

DIN 58400 m=0,2 z=9 x=+0,35

1

rpm mNm A

0

-0,004

ø1,5 -0,009

A

12 000 1,3 0,200

10,6

1 2,1 19,2

1,1

6 ±0,3 8,1 ±0,3

4,3 ±0,3

1319 T ... SR

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

2,1

3,9 ±0,5 2

1319 E ... SR for Gearheads 15/...

038

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

3,2 mNm

Precious Metal Commutation

For combination with Gearheads: 13A, 14/1, 15/3, 15/5 Encoders: IE2 – 50 ... 400

1331 T UN R P2 max.

d max.

006 SR 6 2,83 3,11 81

012 SR 12 13,7 2,57 80

024 SR 24 52,9 2,66 80

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

10 600 0,0220 11,20 0,12

9 900 0,0105 9,90 0,12

10 400 0,0055 9,76 0,12

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 790 0,56 5,35 0,187

835 1,20 11,4 0,087

439 2,28 21,8 0,046

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

946 70 7 0,71 160

1 000 310 7 0,67 150

1 070 1 100 7 0,63 160

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

6 / 25 5 / 190

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

sintered bronze sleeves

1,5

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

1,2 0,2 20

mm N N N

0,03 0,2

mm mm

steel, black coated 19 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

0

0

ø13 -0,052

ø6 -0,05

12 000 3,2 0,81

ø3,5

12 000 3,2 0,19

ø2,38 -0,04 ø0,07 A 0,04

ø0,05 A 0,02

DIN 58400 m=0,2 z=9 x=+0,35

1

rpm mNm A

0

-0,004

ø1,5 -0,009

A

12 000 3,2 0,37

10,6

1 2,1 31,2

1,1

6 ±0,3 8,1 ±0,3

4,3 ±0,3

1331 T ... SR

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

2,1

3,9 ±0,5 2

1331 E ... SR for Gearheads 15/...

039

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 1331 ... SR

DC-Micromotors

4 mNm

Graphite Commutation

For combination with Gearheads: 13A, 14/1 Encoders: IE2 – 16 ... 512, 30B, 20/21B

DC-Micromotors

Series 1336 ... C 1336 U UN R P2 max.

d max.

006 C 6 4,0 1,75 68

012 C 12 15,6 1,98 69

024 C 24 63,6 2,02 68

Volt Ω W %

No-load speed No-load current (with shaft ø 2,0 mm) Stall torque Friction torque

no Io MH MR

8 600 0,051 7,79 0,30

9 000 0,025 8,40 0,29

9 200 0,013 8,39 0,31

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 620 0,616 5,88 0,170

810 1,230 11,80 0,085

406 2,460 23,50 0,042

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

1 100 80 5,5 0,48 160

1 070 300 5,5 0,49 170

1 100 1 200 5,5 0,48 180

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

7 / 21 5,5 / 168

K/W s

– 30 ... +100 +125

°C °C

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

2,0 8 0,8 10

mm N N N

0,015 0

mm mm

steel, black coated 23 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

Orientation with respect to motor terminals not defined

2x ø0,3 A

M1,6

1,5 deep

ø 3,5

9 000 4 0,800

0

0

ø7

ø2

ø 6 -0,02

ø13 -0,05

9 000 4 0,400

9 000 4 0,200

rpm mNm A

-0,004 -0,009 ø0,05 A

A

ø 3,5

0,02

10

9 1

1

2 3 ±0,5

36

6 ±0,3 8 ±0,3

5 ±0,4 2

1336 U

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

040

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

0,5 mNm

Precious Metal Commutation

For combination with Gearheads: 15/3, 15/4, 15/5, 16A

Series 1516 ... S

d max.

1,5 S 1,5 1,25 0,42 68

002 S 2 3,24 0,28 62

4,5 S 4,5 15,0 0,30 63

006 S 6 30,4 0,26 60

012 S 12 117 0,27 61

Volt Ω W %

No-load speed No-load current (with shaft ø 0,8 mm) Stall torque Friction torque

no Io MH MR

15 300 0,044 1,04 0,04

15 400 0,034 0,68 0,04

15 500 0,015 0,75 0,04

16 100 0,012 0,62 0,04

16 200 0,006 0,64 0,04

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

10 600 0,094 0,90 1,110

8 150 0,123 1,17 0,853

3 630 0,276 2,63 0,380

2 860 0,350 3,34 0,299

1 430 0,697 6,66 0,150

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

14 700 17 39 0,25 41

22 500 28 45 0,19 36

20 700 150 56 0,26 29

26 000 230 56 0,21 30

25 200 950 60 0,23 28

rpm/mNm μH ms gcm2 . 103rad/s2

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

8/ 45 2,0 / 200

K/W s

– 30 ... + 65 (optional – 55 … + 125) + 65 (optional + 125)

°C °C

sintered bronze sleeves (standard) 0,8 0,5 0,1 20

ball bearings (optional) 1,5 5 0,5 10

ball bearings, preloaded (optional) 1,5 5 0,5 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, zinc galvanized and passivated 10 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to 1) Me max. 29 Current up to (thermal limits) Ie max. 1)

12 000 0,5 0,730

12 000 0,5 0,450

DC-Micromotors

1516 E UN R P2 max.

1 2 3 4

g

12 000 0,5 0,210

12 000 0,5 0,150

12 000 0,5 0,075

rpm mNm A

Only with option + 125°C

Orientation with respect to motor terminals not defined

6x ø0,3 A

ø1,3

3 deep for M 1,6

0

-0,004

0

0

ø13 ø15 -0,043 ø14,8 ø6 -0,05 ø1,5 -0,009 A

ø3,5

ø2,38 -0,04

ø0,05 A 0,02

10

6x 60

1

10,6

3,8

2

2,2 1 2,1 15,8

1,1 6 ±0,3

2,1 4,3 ±0,3

8,1 ±0,3

1516 T

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

3,8

ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

1516 E for Gearheads 15/3, 15/4, 15/5, 16A

041

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

0,8 mNm

Precious Metal Commutation

For combination with Gearheads: 15A, 15/3, 15/4, 15/5, 15/8, 16A, 16/7 Encoders: IE2 – 16 ... 512

DC-Micromotors

Series 1516 ... SR 1516 T UN R P2 max.

d max.

006 SR 6 15,2 0,51 57

009 SR 9 32,5 0,54 58

012 SR 12 60,0 0,52 58

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

12 800 0,029 1,52 0,12

12 800 0,019 1,61 0,12

12 900 0,014 1,53 0,12

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

2 300 0,434 4,15 0,241

1 530 0,655 6,25 0,160

1 160 0,865 8,26 0,121

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

8 420 100 35 0,40 38

7 950 230 35 0,42 38

8 430 400 35 0,40 39

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

10 / 33 2,9 / 190

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

sintered bronze sleeves (standard) 1,5 1,2 0,2 20

ball bearings (optional) 1,5 5 0,5 10

ball bearings, preloaded (optional) 1,5 5 0,5 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, black coated 13 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

Orientation with respect to motor terminals not defined

6x ø0,3 A

0

M1,6 1,4 deep

ø15 -0,052 ø13 ø6

g

12 000 0,8 0,330

0 -0,05

ø3,5

ø2,38 -0,04

ø0,05 A 0,02

ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

10

6x 60

12 000 0,8 0,160

0,75

1

2,1 15,8

10,6

1 6 ±0,3

1,1

2,1 4,3 ±0,3

8,1 ±0,3

1516 T ... SR

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

rpm mNm A

0

-0,004 -0,009

ø1,5

A

12 000 0,8 0,220

4,2 ±0,5 2

1516 E ... SR for Gearheads 15/... (except 15A)

042

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

2,5 mNm

Precious Metal Commutation

For combination with Gearheads: 15A, 15/3, 15/4, 15/5, 15/8, 16A, 16/7 Encoders: IE2 – 16 ... 512

1524 T UN R P2 max.

d max.

003 SR 3 1,1 1,92 77

006 SR 6 5,1 1,70 77

009 SR 9 10,4 1,88 77

012 SR 12 19,8 1,75 76

018 SR 18 44,0 1,78 77

024 SR 24 79,6 1,75 78

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

10 800 0,047 6,80 0,12

9 700 0,021 6,68 0,12

10 100 0,014 7,12 0,12

9 900 0,011 6,76 0,13

9 900 0,007 6,86 0,12

9 900 0,005 6,75 0,11

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

3 660 0,273 2,61 0,384

1 650 0,607 5,80 0,172

1 140 0,877 8,37 0,119

840 1,190 11,40 0,088

560 1,790 17,10 0,059

419 2,380 22,80 0,044

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

1 590 17 10 0,60 110

1 450 70 10 0,66 100

1 420 150 10 0,67 110

1 460 250 10 0,65 100

1 440 560 10 0,66 100

1 470 1 000 10 0,65 100

rpm/mNm μH ms gcm2 . 103rad/s2

Rth 1 / Rth 2 o w1 / o w2

4,5 / 31 2,4 / 300

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

sintered bronze sleeves (standard) 1,5 1,2 0,2 20

ball bearings (optional) 1,5 5 0,5 10

ball bearings, preloaded (optional) 1,5 5 0,5 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, black coated 21 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 10 000 28 Torque up to Me max. 2,5 29 Current up to (thermal limits) Ie max. 1,300

Orientation with respect to motor terminals not defined

6x ø0,3 A

M1,6 1,4

deep

0

ø15 -0,052

ø13

10 000 2,5 0,630

0

ø6 -0,05

ø1,5

A

ø3,5

10 000 2,5 0,440

10 000 2,5 0,320

1

0,75 2,1 23,8

10 000 2,5 0,160

rpm mNm A

ø2,38 -0,04 ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

ø0,05 A 0,02

10,6

1

1,1

6 ±0,3

2,1 4,3 ±0,3

8,1 ±0,3

1524 T ... SR

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

10 000 2,5 0,210

0

-0,004 -0,009

10

6x 60

g

4,2 ±0,5 2

1524 E ... SR for Gearheads 15/... (except 15A)

043

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 1524 ... SR

DC-Micromotors

1,5 mNm

Precious Metal Commutation

For combination with Gearheads: 15A, 16A, 16/3, 16/5, 16/7, 16/8 DC-Motor-Tacho Combinations: 1841 ... S

DC-Micromotors

Series 1624 ... S 1624 T UN R P2 max.

d max.

003 S 3 1,6 1,36 78

006 S 6 9,1 0,93 71

009 S 9 14,5 1,34 75

012 S 12 24,0 1,44 75

018 S 18 42,0 1,87 77

024 S 24 75,0 1,85 76

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

12 000 0,030 4,33 0,07

10 500 0,019 3,39 0,10

11 500 0,012 4,46 0,09

13 000 0,010 4,23 0,09

13 800 0,007 5,16 0,09

14 400 0,006 4,91 0,09

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

4 070 0,246 2,35 0,426

1 800 0,555 5,30 0,189

1 300 0,767 7,33 0,136

1 110 0,905 8,64 0,116

779 1,280 12,30 0,082

611 1,640 15,60 0,064

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

2 770 85 19 0,65 66

3 100 200 22 0,68 50

2 580 400 19 0,70 63

3 070 750 19 0,59 72

2 670 1 200 19 0,68 76

2 930 3 000 24 0,78 63

rpm/mNm μH ms gcm2 . 103rad/s2

Rth 1 / Rth 2 o w1 / o w2

8 / 39 4 / 335

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

sintered bronze sleeves (standard) 1,5 1,2 0,2 20

ball bearings (optional) 1,5 5 0,5 10

ball bearings, preloaded (optional) 1,5 5 0,5 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, zinc galvanized and passivated 21 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 10 000 28 Torque up to Me max. 1,5 29 Current up to (thermal limits) Ie max. 0,980

10 000 1,5 0,370

10 000 1,5 0,320

10 000 1,5 0,250

Orientation with respect to motor terminals not defined

6x ø0,3 A

ø1,3 3

deep

0

ø2,38 -0,04

ø13 ø16 -0,043 ø15,8 ø6 -0,05 ø1,5 -0,009

for M 1,6

ø3,5 10

6x 60°

1

3,8

10,6

rpm mNm A

3,8 2

2,2 1,1

1 2,1 23,8

6 ±0,3

2,1 4,3 ±0,3

8,1 ±0,3

1624 T

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

10 000 1,5 0,140

ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

ø0,05 A 0,02

A

10 000 1,5 0,190

0

-0,004

0

g

1624 E for Gearheads 16/... (except 16/7)

044

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

2 mNm

Precious Metal Commutation

For combination with Gearheads: 15A, 16A, 16/7 Encoders: IE2 – 16 ... 512

1717 T UN R P2 max.

d max.

003 SR 3 1,07 1,97 69

006 SR 6 4,30 1,96 69

012 SR 12 17,1 1,97 70

018 SR 18 50,1 1,50 68

024 SR 24 68,8 1,96 70

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

14 000 0,091 5,37 0,18

14 000 0,046 5,34 0,18

14 000 0,023 5,38 0,18

12 300 0,013 4,66 0,18

14 000 0,011 5,36 0,17

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

4 820 0,207 1,98 0,505

2 410 0,414 3,96 0,253

1 210 0,829 7,92 0,126

709 1,410 13,50 0,074

602 1,660 15,90 0,063

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

2 610 17 16 0,59 92

2 620 65 16 0,58 92

2 600 260 16 0,59 92

2 640 760 16 0,58 80

2 610 1 040 16 0,59 92

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

om J

_ max. Rth 1 / Rth 2 o w1 / o w2

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

4,5 / 27 2,0 / 210

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

sintered bronze sleeves (standard) 1,5 1,2 0,2 20

ball bearings (optional) 1,5 5 0,5 10

ball bearings, preloaded (optional) 1,5 5 0,5 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, black coated 18 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

Orientation with respect to motor terminals not defined

6x ø0,3 A

M1,6

1,6 deep

ø15,9

0

10 000 2 1,20

0

10 000 2 0,60

10 000 2 0,30

g

10 000 2 0,18

rpm mNm A

-0,004

ø17 -0,052 ø6 -0,05

ø1,5 -0,009

A

ø3,5

ø0,05 A 0,02

10,6

10

6x 60

10 000 2 0,15

1

1 2

2,1

6 ±0,3

17

8,1 ±0,3 4,2 ±0,5 2

1717 T

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

045

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 1717 ... SR

DC-Micromotors

4,2 mNm

Precious Metal Commutation

For combination with Gearheads: 15A, 16A, 16/7 Encoders: IE2 – 16 ... 512

DC-Micromotors

Series 1724 ... SR 1724 T UN R P2 max.

d max.

003 SR 3 0,78 2,83 82

006 SR 6 3,41 2,58 81

012 SR 12 16,20 2,17 80

018 SR 18 32,10 2,47 81

024 SR 24 54,60 2,58 81

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

8 200 0,038 13,2 0,13

8 600 0,020 11,5 0,13

7 900 0,009 10,5 0,13

8 400 0,006 11,2 0,12

8 600 0,005 11,5 0,13

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

2 760 0,362 3,46 0,289

1 450 0,690 6,59 0,152

666 1,500 14,30 0,070

472 2,120 20,20 0,049

362 2,760 26,30 0,038

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

621 21 8 1,2 110

748 75 8 1,0 110

752 360 8 1,0 100

750 710 8 1,0 110

748 1 200 8 1,0 110

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

4 / 24,5 2,6 / 270

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

sintered bronze sleeves (standard) 1,5 1,2 0,2 20

ball bearings (optional) 1,5 5 0,5 10

ball bearings, preloaded (optional) 1,5 5 0,5 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, black coated 27 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

8 000 4,2 1,60

8 000 4,2 0,76

8 000 4,2 0,35

g

8 000 4,2 0,25

8 000 4,2 0,19

rpm mNm A

Orientation with respect to motor terminals not defined

6x ø0,3 A

M1,6

1,6 deep

ø15,9

0

0

ø17 -0,052

-0,004

ø6 -0,05

ø1,5 -0,009

A

ø3,5

ø0,05 A 0,02

10,6

10

6x 60

1

1 2

2,1

6 ±0,3

24

8,1 ±0,3 4,2 ±0,5 2

1724 T

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

046

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

5 mNm

Graphite Commutation

For combination with Gearheads: 16/7, 20/1 Encoders: IE2 – 16 ... 512

1727 U UN R P2 max.

d max.

006 C 6 3,0 2,37 70

012 C 12 13,8 2,25 70

024 C 24 57,6 2,25 70

Volt Ω W %

No-load speed No-load current (with shaft ø 2,0 mm) Stall torque Friction torque

no Io MH MR

7 800 0,055 11,6 0,36

7 800 0,026 11,0 0,35

7 800 0,013 11,0 0,36

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 460 0,684 6,53 0,153

700 1,430 13,60 0,073

343 2,920 27,90 0,036

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

672 80 9 1,3 91

709 320 9 1,2 91

709 1 440 9 1,2 91

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

5 / 24 4,2 / 254

K/W s

– 30 ... + 100 + 125

°C °C

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

2,0 8 0,8 10

mm N N N

0,015 0

mm mm

steel, black coated 28 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

Orientation with respect to motor terminals not defined

6x ø0,3 A

M1,6

2,5 deep

ø3,5

0

ø7

ø16 -0,05

7 000 5 0,900

0

0

rpm mNm A

ø2 -0,009

A

ø3,5

ø0,05 A 0,02

0,2

9

10

6x 60

7 000 5 0,200

-0,004

ø6 -0,015

ø17 -0,1

7 000 5 0,420

1

1 5,5 ±0,2

2,9 ±0,5

27,2

2

6 ±0,3 8 ±0,4 4,8 ±0,4

1727 U

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

047

2

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 1727 ... C

DC-Micromotors

5 mNm

Precious Metal Commutation

For combination with Gearheads: 20/1, 22E, 22F, 22/2, 22/5, 22/6, 22/7, 23/1, 38/3 Encoders: IE2 – 16 ... 512

DC-Micromotors

Series 2224 ... SR 2224 U UN R P2 max.

d max.

003 SR 3 0,56 3,92 80

006 SR 6 1,94 4,55 82

012 SR 12 8,71 4,05 82

018 SR 18 17,50 4,54 82

024 SR 24 36,30 3,88 81

036 SR 36 91,40 3,46 80

Volt Ω W %

No-load speed No-load current (with shaft ø 2,0 mm) Stall torque Friction torque

no Io MH MR

8 100 0,066 18,5 0,23

8 200 0,029 21,2 0,2

7 800 0,014 19,8 0,2

8 100 0,010 21,4 0,21

7 800 0,007 19,0 0,2

7 800 0,005 16,9 0,22

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

2 730 0,366 3,49 0,286

1 380 0,725 6,92 0,144

657 1,520 14,50 0,069

454 2,200 21,00 0,048

328 3,040 29,10 0,034

219 4,560 43,50 0,023

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

438 11 11 2,4 77

387 45 11 2,7 78

394 200 11 2,7 74

379 450 11 2,8 77

411 800 11 2,6 74

462 1 800 11 2,3 74

rpm/mNm μH ms gcm2 . 103rad/s2

Rth 1 / Rth 2 o w1 / o w2

5 / 20 6,8 / 440

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

sintered bronze sleeves (standard) 2,0 1,5 0,2 20

ball bearings (optional) 2,0 8 0,8 10

ball bearings, preloaded (optional) 2,0 8 0,8 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, black coated 46 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 8 000 28 Torque up to Me max. 5 29 Current up to (thermal limits) Ie max. 2,200

Orientation with respect to motor terminals not defined

6x ø0,3 A

M2

0

ø22 -0,062

3,7 deep

8 000 5 1,200

0

ø7 -0,05

ø20

ø2

A

ø3,5

8 000 5 0,570

-0,004 -0,009

g

8 000 5 0,400

8 000 5 0,280

8 000 5 0,180

-0,04

ø4,35 -0,06 ø0,07 A 0,04 DIN 867 m=0,3 z=12 x=+0,25

ø0,05 A 0,02

14,9

10,6

12

6x 60

rpm mNm A

1

0,75 2,1 24,2

1 6 ±0,3

2,1

8,1 ±0,3

2224 U ... SR

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

4,3

4,2 ±0,5

8,1 ±0,3

2

2224 R ... SR for Gearheads 22/... (except 22E and 22/7)

048

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

2,5 mNm

Precious Metal Commutation

For combination with Gearheads: 20/1, 22E, 22/2, 22/5, 22/6, 22/7, 23/1, 38/3 Encoders: 5500, 5540

Series 2230 ... S

d max.

003 S 3 0,6 3,69 83

006 S 6 3,0 2,94 82

012 S 12 10,8 3,27 83

015 S 15 21,0 2,63 82

024 S 24 50,0 2,82 81

040 S 40 193 2,01 78

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

9 600 0,040 14,70 0,12

9 300 0,019 12,10 0,12

9 500 0,010 13,20 0,12

8 400 0,007 11,90 0,12

9 000 0,005 12,00 0,13

8 200 0,003 9,37 0,14

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

3 230 0,310 2,96 0,338

1 560 0,639 6,10 0,164

799 1,250 12,00 0,084

566 1,770 16,90 0,059

379 2,640 25,20 0,040

208 4,810 45,90 0,022

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

653 35 25 3,70 40

769 150 20 2,50 49

720 420 20 2,70 50

706 900 20 2,70 44

750 2 200 19 2,40 50

875 8 000 22 2,40 39

rpm/mNm μH ms gcm2 . 103rad/s2

Rth 1 / Rth 2 o w1 / o w2

4 / 28 4,5 / 602

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

sintered bronze sleeves (standard) 1,5 1,2 0,2 20

ball bearings (optional) 2,0 8 0,8 10

ball bearings, preloaded (optional) 2,0 8 0,8 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, zinc galvanized and passivated 50 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 8 000 28 Torque up to Me max. 2,5 29 Current up to (thermal limits) Ie max. 1,940

Orientation with respect to motor terminals not defined

4x

M2 4

ø0,3 A

deep

-0,004

0

ø20 ø22 -0,052 ø21,7 ø7 -0,05

8 000 2,5 0,450

g

8 000 2,5 0,320

ø2 -0,009

ø0,05 A 0,02

8 000 2,5 0,210

ø4,35 -0,06

ø0,05 A 0,02

ø0,07 A 0,04

A

DIN 867 m=0,3 z=12 x=+0,25

ø3,5

3,8

3

6x 60

12

1

1

4

2,1 30

2,1

2

10,6

3,8

4,3 8,1 ±0,3

6 ±0,3 8,1 ±0,3

2230 T

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

rpm mNm A

8 000 2,5 0,100

-0,04

-0,004

ø1,5 -0,009 0

ø13

8 000 2,5 0,870

DC-Micromotors

2230 T UN R P2 max.

1 2 3 4

2230 U

049

2230 F/R for Gearheads 22/... (except 22E and 22/7)

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

10 mNm

Precious Metal Commutation

For combination with Gearheads: 20/1, 22E, 22F, 22/2, 22/5, 22/6, 22/7, 23/1, 26A, 38/3 Encoders: IE2 – 16 ... 512

DC-Micromotors

Series 2232 ... SR 2232 U UN R P2 max.

d max.

006 SR 6 0,81 11,0 87

009 SR 9 2,14 9,35 86

012 SR 12 4,09 8,70 86

015 SR 15 6,61 8,41 85

018 SR 18 9,04 8,86 86

024 SR 24 16,4 8,68 86

Volt Ω W %

No-load speed No-load current (with shaft ø 2,0 mm) Stall torque Friction torque

no Io MH MR

7 100 0,0350 59,2 0,28

7 400 0,0241 48,3 0,28

7 100 0,0175 46,8 0,28

7 100 0,0139 45,2 0,28

7 100 0,0116 47,6 0,28

7 100 0,0087 46,7 0,28

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 190 0,84 8,03 0,125

827 1,21 11,5 0,087

595 1,68 16,0 0,062

476 2,10 20,1 0,050

397 2,52 24,1 0,042

298 3,36 32,1 0,031

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

120 45 6 4,8 120

153 90 6 3,8 120

152 180 6 3,8 120

157 280 6 3,8 120

149 400 6 3,8 120

152 710 6 3,8 120

rpm/mNm μH ms gcm2 . 103rad/s2

Rth 1 / Rth 2 o w1 / o w2

4 / 13 7 / 340

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

sintered bronze sleeves (standard) 2,0 1,5 0,2 20

ball bearings (optional) 2,0 8 0,8 10

ball bearings, preloaded (optional) 2,0 8 0,8 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, black coated 62 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 8 000 28 Torque up to Me max. 10 29 Current up to (thermal limits) Ie max. 1,87

Orientation with respect to motor terminals not defined

6x

ø0,3 A

M2

0

ø22 -0,062

3,7 deep

8 000 10 1,30

0

ø7 -0,05

ø20

ø2

A

ø3,5

8 000 10 0,94

-0,004 -0,009

g

8 000 10 0,74

8 000 10 0,63

8 000 10 0,46

-0,04

ø4,35 -0,06 ø0,07 A 0,04 DIN 867 m=0,3 z=12 x=+0,25

ø0,05 A 0,02

14,9

10,6

12

6x 60

rpm mNm A

1

0,75 2,1 32,2

1 6 ±0,3 8,1 ±0,3

2232 U ... SR

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

2,1

4,3

4,2 ±0,5

8,1 ±0,3

2

2232 R ... SR for Gearheads 22/... (except 22E and 22/7)

050

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

3 mNm

Precious Metal Commutation

For combination with Gearheads: 20/1, 22E, 22/2, 22/5, 22/6, 22/7, 23/1, 38/3 Encoders: 5500, 5540 DC-Motor-Tacho Combinations: 2251 ... S

Series 2233 ... S

d max.

4,5 S 4,5 1,3 3,85 86

006 S 6 2,9 3,06 85

012 S 12 9,7 3,66 84

018 S 18 25,0 3,18 82

024 S 24 57,0 2,47 80

030 S 30 105 2,08 79

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

8 000 0,020 18,40 0,11

8 000 0,013 14,60 0,09

8 500 0,009 16,40 0,12

8 700 0,007 13,90 0,14

8 800 0,005 10,70 0,13

9 300 0,004 8,56 0,12

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 790 0,559 5,34 0,187

1 340 0,745 7,12 0,141

714 1,400 13,40 0,075

488 2,050 19,60 0,051

371 2,690 25,70 0,039

314 3,180 30,40 0,033

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

435 70 12 2,60 70

548 130 11 1,90 76

518 400 12 2,20 74

626 600 14 2,10 65

822 1 600 11 1,30 84

1 090 2 200 12 1,10 81

rpm/mNm μH ms gcm2 . 103rad/s2

Rth 1 / Rth 2 o w1 / o w2

4 / 27 4 / 660

K/W s

– 30 ... + 85 (optional – 55 … + 125) + 125

°C °C

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

sintered bronze sleeves (standard) 1,5 1,2 0,2 20

ball bearings (optional) 2,0 8 0,8 10

ball bearings, preloaded (optional) 2,0 8 0,8 10

mm N N N

0,03 0,2

0,015 0,2

0,015 0

mm mm

steel, zinc galvanized and passivated 61 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 8 000 28 Torque up to Me max. 3 29 Current up to (thermal limits) Ie max. 1,340

Orientation with respect to motor terminals not defined

4x

M2 4 deep ø13

ø0,3 A

8 000 3 0,900

-0,004

0

ø20 ø22 -0,052 ø21,7 0

8 000 3 0,300

ø2 -0,009

ø0,05 A 0,02

g

8 000 3 0,200

ø4,35 -0,06

ø0,05 A 0,02

A

ø0,07 A 0,04 DIN 867 m=0,3 z=12 x=+0,25

ø3,5

2,4

6x 60

12

3,8

1

1

2,1

4 32,6

2,1

2

10,6

3,8

4,3 8,1 ±0,3

6 ±0,3 8,1 ±0,3

2233 T

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

rpm mNm A

8 000 3 0,140

-0,04

-0,004

ø1,5 -0,009

ø7 -0,05

8 000 3 0,490

DC-Micromotors

2233 T UN R P2 max.

1 2 3 4

2233 U

051

2233 F/R for Gearheads 22/... (except 22E and 22/7)

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

11 mNm

Graphite Commutation

For combination with Gearheads: 22F, 22/7, 23/1, 26A Encoders: IE3 – 256, IE3 – 256 L

DC-Micromotors

Series 2237 ... CXR 2237 S UN R P2 max.

d max.

006 CXR 6 0,85 8,6 68,1

012 CXR 12 3,92 8,1 70,8

018 CXR 18 8,50 8,7 72,2

024 CXR 24 15,7 8,5 72,6

036 CXR 36 33,0 9,2 73,6

048 CXR 48 62,8 8,6 73,5

Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque

no Io MH MR

6 900 0,124 47,2 0,92

6 800 0,058 45,7 0,92

7 000 0,039 47,1 0,92

6 900 0,029 46,6 0,92

7 200 0,020 48,7 0,92

7 000 0,015 47,1 0,92

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 283 0,78 7,44 0,134

601 1,66 15,9 0,063

409 2,44 23,3 0,043

301 3,33 31,8 0,032

207 4,83 46,2 0,022

150 6,65 63,5 0,016

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

146 35 5 3,1 152

148 150 5 3,1 147

149 320 5 3,1 152

149 590 5 3,1 150

148 1 240 5 3,1 157

149 2 340 5 3,1 152

rpm/mNm μH ms gcm2 . 103rad/s2

Rth 1 / Rth 2 o w1 / o w2

8 / 17 13 / 500

K/W s

– 30 ... + 100 + 125

°C °C

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

≤ ≤

24 Housing material 25 Weight 26 Direction of rotation

sintered bronze sleeves (standard) 3,0 2,5 0,3 20

ball bearings, preloaded (optional) 3,0 15 2,0 20

mm N N N

0,03 0,2

0,015 0

mm mm

steel, zinc galvanized and passivated 68 clockwise, viewed from the front face

Recommended values - mathematically independent of each other 27 Speed up to ne max. 7 000 28 Torque up to Me max. 10 29 Current up to (thermal limits) Ie max. 1,65

Orientation with respect to motor terminals not defined

6x ø0,3 A

M2

-0,006

ø3 -0,010

2,5 deep

0

7 000 10,5 0,80

0

0

7 000 10,5 0,41

0

ø10 -0,015

ø22 -0,1

ø21 -0,05

ø9 -0,05

7 000 10,5 0,55

A

ø6

g

ø6

7 000 11 0,28

rpm mNm A

7 000 11 0,20

-0,006

ø3 -0,010 ø0,1 A 0,02

0,5

16

ø17

1,5

6x 60

2,9 ±0,3 5,8 ±0,3

1 +0,2 2,2 -0,1

6 37 2237 S

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

052

9,9 ±0,3 12,2 ±0,3

3,5 2,8

7

11,6 ±0,5

for Faston connector 2,8 x 0,5

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

16 mNm

Graphite Commutation

For combination with Gearheads: 22F, 23/1, 26A, 26/1, 22/7, 30/1, 38/3 Encoders: IE2 – 16 ... 512, IE3 – 256, IE3 – 256 L, 5500, 5540

2342 S UN R P2 max.

d max.

006 CR 6 0,40 20,50 81

012 CR 12 1,90 17,00 80

018 CR 18 4,10 18,10 81

024 CR 24 7,10 19,00 81

036 CR 36 15,9 19,40 81

048 CR 48 31,20 17,70 81

Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque

no Io MH MR

9 000 0,170 87,2 0,98

8 100 0,075 80,0 1,00

8 000 0,048 86,5 0,99

8 500 0,038 85,4 0,99

8 100 0,024 91,4 0,99

8 000 0,017 84,4 0,95

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 650 0,604 5,77 0,173

713 1,400 13,40 0,075

462 2,160 20,70 0,048

366 2,730 26,10 0,038

231 4,340 41,40 0,024

170 5,870 56,10 0,018

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

103 13,5 6 5,6 160

101 65 6 5,7 140

92,5 150 6 6,2 140

99,5 265 6 5,8 150

88,6 590 6 6,5 140

94,8 1 050 6 6,0 140

rpm/mNm μH ms gcm2 . 103rad/s2

Rth 1 / Rth 2 o w1 / o w2

3 / 15 6,5 / 490

K/W s

– 30 ... + 100 + 125

°C °C

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

3,0 20 2 20

mm N N N

0,015 0

mm mm

steel, black coated 88 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 7 000 28 Torque up to Me max. 16 29 Current up to (thermal limits) Ie max. 2,700

Orientation with respect to motor terminals not defined

6x ø0,3 A

M2

0

-0,006

ø3 -0,010

2,5 deep

ø9 -0,05

7 000 16 1,400

0

ø21 -0,05

7 000 16 0,950

0

7 000 16 0,720

0

ø10 -0,015

ø23 -0,1

A

ø6

ø6

7 000 16 0,480

rpm mNm A

7 000 16 0,350

-0,006

0,5

ø3 -0,010 ø0,05 A 0,02

16 17

1,5

6x 60

5,7±0,4 8,8 ±0,5

1 2,2

6 42 2342 S

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

053

10 ±0,3

3,5

12,2 ±0,4

2,8

7

11,6 ±0,5

for Faston connector 2,8 x 0,5

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 2342 ... CR

DC-Micromotors

28 mNm

Graphite Commutation

For combination with Gearheads: 26A, 26/1, 30/1, 32A Encoders: IE2 – 16 ... 512, IE3 – 256, IE3 – 256 L, 5500, 5540

DC-Micromotors

Series 2642 ... CR 2642 W UN R P2 max.

d max.

012 CR 12 1,45 22,1 78

024 CR 24 5,78 23,2 79

048 CR 48 23,80 23,0 79

Volt Ω W %

No-load speed No-load current (with shaft ø 4,0 mm) Stall torque Friction torque

no Io MH MR

6 400 0,118 132 2

6 400 0,058 139 2

6 400 0,029 137 2

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

565 1,77 16,9 0,059

276 3,62 34,6 0,029

137 7,31 69,8 0,014

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

48,5 130 5,4 11 120

46,0 550 5,4 11 120

46,7 2 200 5,4 11 120

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

2,1 / 11 10 / 510

K/W s

– 30 ... + 125 + 155

°C °C

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

4,0 20 2 20

mm N N N

0,015 0

mm mm

steel, black coated 114 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

Orientation with respect to motor terminals not defined

3x ø0,3 A

M2

0

-0,006

ø4 -0,010

3 deep

ø11 -0,05

6 000 28 1,97

0

ø24 -0,05

0

0

ø10 -0,015

ø26 -0,1

rpm mNm A

6 000 28 0,48

-0,006

0,5

ø4 -0,010

A

ø6,5

6 000 28 0,98

ø6,5

ø0,05 A 0,02

18 17

1,5

6x 60

M3 3 deep

3x ø0,3 A

3,4 ±0,25 8,8 ±0,4

1 2,4 ±0,15

6 42 2642 W

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

054

10 ±0,3

3,5

12,4 ±0,3

2,8

7

11,6 ±0,5

for Faston connector 2,8 x 0,5

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

44 mNm

Graphite Commutation

For combination with Gearheads: 26A, 26/1, 30/1, 32A Encoders: IE2 – 16 ... 512, IE3 – 256, IE3 – 256 L, 5500, 5540

Series 2657 ... CR

d max.

012 CR 12 0,71 45,9 84

024 CR 24 2,84 47,9 85

048 CR 48 12,50 44,5 84

Volt Ω W %

No-load speed No-load current (with shaft ø 4,0 mm) Stall torque Friction torque

no Io MH MR

6 300 0,115 278 2

6 400 0,058 286 2

6 400 0,028 265 2

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

552 1,81 17,3 0,058

274 3,65 34,8 0,029

136 7,37 70,4 0,014

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

22,7 95 3,9 16 170

22,4 380 3,9 17 170

24,2 1 550 3,9 15 170

rpm/mNm μH ms gcm2 . 103rad/s2

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

1,9 / 9 10 / 580

K/W s

– 30 ... + 125 + 155

°C °C

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

4,0 20 2 20

mm N N N

0,015 0

mm mm

steel, black coated 156 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

Orientation with respect to motor terminals not defined

3x ø0,3 A

M2

4 deep

-0,006

ø4 -0,010

DC-Micromotors

2657 W UN R P2 max.

1 2 3 4

0

ø11 -0,05

0

ø24 -0,05

6 000 44 3,10

0

ø26 -0,1

0

ø10 -0,015

rpm mNm A

6 000 44 0,73

-0,006

0,5

ø4 -0,010

A

ø6,5

6 000 44 1,54

ø6,5

ø0,05 A 0,02

18 17

1,5

6x 60

M3 4

deep

3x ø0,3 A

3,4 ±0,25 8,8 ±0,4

1 2,4 ±0,15

6 57 2657 W

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

055

10 ±0,3

3,5

12,4 ±0,3

2,8

7

11,6 ±0,5

for Faston connector 2,8 x 0,5

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

35 mNm

Graphite Commutation

For combination with Gearheads: 32A, 32/3, 38A, 38/1, 38/2 Encoders: IE2 – 16 ... 512, IE3 – 256, IE3 – 256 L, 5500, 5540

DC-Micromotors

Series 3242 ... CR 3242 G UN R P2 max.

d max.

012 CR 12 1,27 24,7 72

024 CR 24 5,00 26,3 73

048 CR 48 19,70 27,3 73

Volt Ω W %

No-load speed No-load current (with shaft ø 5,0 mm) Stall torque Friction torque

no Io MH MR

5 200 0,234 181 4,8

5 300 0,117 189 4,8

5 400 0,058 193 4,8

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

464 2,15 20,6 0,049

231 4,33 41,3 0,024

116 8,58 82,0 0,012

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

28,7 135 7,5 25 73

28,0 540 7,5 26 74

28,0 2 200 7,5 26 75

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

2,5 / 9 17 / 660

K/W s

– 30 ... + 125 + 155

°C °C

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

5,0 50 5 50

mm N N N

0,015 0

mm mm

steel, black coated 175 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

Orientation with respect to motor terminals not defined

6x

M3

ø0,3 A

3 deep

0

-0,006

ø5 -0,010

ø13 -0,05

0

ø30 -0,05

5 000 35 2,40

0

ø32 -0,1

0

5 000 35 1,20

rpm mNm A

5 000 35 0,60

-0,006

0,5

ø16 -0,015 ø5 -0,010 A

ø8

ø8

ø0,05 A 0,02

21

1,5 6x60

+0,2 3,4 - 0,3

22

9 ±0,4

1,5 3 ± 0,15

5 42 3242 G

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

056

10±0,3 13 ±0,3

3,5 2,8

7

11,6 ±0,5

for Faston connector 2,8 x 0,5

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

70 mNm

Graphite Commutation

For combination with Gearheads: 32A, 32/3, 38A, 38/1, 38/2 Encoders: IE2 – 16 ... 512, IE3 – 256, IE3 – 256 L, 5500, 5540

Series 3257 ... CR

d max.

012 CR 12 0,41 79,2 83

024 CR 24 1,63 83,2 83

048 CR 48 6,56 84,5 83

Volt Ω W %

No-load speed No-load current (with shaft ø 5,0 mm) Stall torque Friction torque

no Io MH MR

5 700 0,258 531 4,9

5 900 0,129 539 4,9

5 900 0,064 547 4,9

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

500 2,00 19,1 0,052

253 3,95 37,7 0,027

125 7,98 76,2 0,013

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

10,7 70 4,7 42 130

10,9 270 4,7 41 130

10,8 1 100 4,7 42 130

rpm/mNm μH ms gcm2 . 103rad/s2

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

2/8 17 / 810

K/W s

– 30 ... + 125 + 155

°C °C

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

5,0 50 5 50

mm N N N

0,015 0

mm mm

steel, black coated 242 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

Orientation with respect to motor terminals not defined

6x

M3

ø0,3 A

3 deep

0

-0,006

ø5 -0,010

DC-Micromotors

3257 G UN R P2 max.

1 2 3 4

ø13 -0,05

0

ø30 -0,05

5 000 70 4,60

0

ø32 -0,1

0

5 000 70 2,30

rpm mNm A

5 000 70 1,15

-0,006

0,5

ø16 -0,015 ø5 -0,010 A

ø8

ø8

ø0,05 A 0,02

21

1,5 6x60

3,4 22

+0,2 - 0,3

9 ±0,4

1,5 3 ±0,15

5 57 3257 G

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

057

10±0,3 13 ±0,3

3,5 2,8

7

11,6 ±0,5

for Faston connector 2,8 x 0,5

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

40 mNm

Graphite Commutation

For combination with Gearheads: 30/1, 32/3, 38A, 38/1, 38/2 Encoders: 5500, 5540

DC-Micromotors

Series 3557 ... C 3557 K UN R P2 max.

d max.

006 C 6 0,6 14,5 77

009 C 9 1,3 15,0 77

012 C 12 2,4 14,5 76

020 C 20 6,6 14,7 77

024 C 24 10,5 13,2 75

032 C 32 18,0 13,7 76

Volt Ω W %

No-load speed No-load current (with shaft ø 4,0 mm) Stall torque Friction torque

no Io MH MR

4 700 0,170 118 2,00

5 000 0,120 115 2,00

4 800 0,090 115 2,10

4 600 0,050 122 2,00

4 800 0,045 105 2,10

4 700 0,033 111 2,10

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

797 1,250 12,00 0,083

565 1,770 16,90 0,059

407 2,450 23,40 0,043

234 4,280 40,80 0,024

204 4,900 46,80 0,021

150 6,680 63,80 0,016

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

39,8 65 15 36 33

43,5 130 14 31 37

41,7 230 13 30 39

37,7 650 13 33 37

45,7 940 13 27 39

42,3 1 200 13 29 38

rpm/mNm μH ms gcm2 . 103rad/s2

Rth 1 / Rth 2 o w1 / o w2

1,5 / 9 8,5 / 1000

K/W s

– 30 ... + 125 + 125

°C °C

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible 21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

4,0 30 5 50

mm N N N

0,015 0

mm mm

steel, zinc galvanized and passivated 275 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 5 000 28 Torque up to 1) Me max. 40 29 Current up to (thermal limits) Ie max. 3,400 1)

5 000 40 2,300

5 000 40 1,700

5 000 40 1,000

5 000 40 0,810

rpm mNm A

5 000 40 0,620

thermal resistance Rth 2 by 40% reduced

Orientation with respect to motor terminals not defined

8x

M2 3,5

ø0,2 A

deep

-0,004

ø4 -0,010

0

ø14 -0,018

0

ø35 -0,1

ø31,6

0

-0,004

A

ø0,04 A 0,02

ø16 -0,018 ø4 -0,010

16,4

5,8

27,4 17,6 3,5

8x 45

2 ±0,2 1,4

ø22

9,8 ±0,5

57

13,8 ±0,3

3557 K

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

058

2,8

M2

2 deep

20 for Faston connector 2,8 x 0,8

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

50 mNm

Graphite Commutation

For combination with Gearheads: 30/1, 32/3, 38A, 38/1, 38/2 Encoders: 5500, 5540

Series 3557 ... CS

d max.

009 CS 9 0,70 28,1 78

012 CS 12 1,34 26,1 79

020 CS 20 4,0 24,3 79

024 CS 24 5,5 25,4 78

048 CS 48 23,0 24,1 76

Volt Ω W %

No-load speed No-load current (with shaft ø 4,0 mm) Stall torque Friction torque

no Io MH MR

5 700 0,190 188 2,80

5 400 0,125 185 2,60

5 500 0,070 169 2,40

5 500 0,065 176 2,70

5 200 0,040 177 3,50

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

643 1,560 14,90 0,067

456 2,190 20,90 0,048

279 3,590 34,20 0,029

233 4,300 41,00 0,024

110 9,050 86,50 0,012

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

30,3 100 16 50 37

29,2 220 16 52 35

32,5 630 16 47 36

31,3 850 16 49 36

29,4 3 400 16 52 34

rpm/mNm μH ms gcm2 . 103rad/s2

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

1,5 / 9 15 / 900

K/W s

– 30 ... + 125 + 125

°C °C

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

4,0 30 5 50

mm N N N

0,015 0

mm mm

steel, zinc galvanized and passivated 275 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to 1) Me max. 29 Current up to (thermal limits) Ie max. 1)

DC-Micromotors

3557 K UN R P2 max.

1 2 3 4

5 000 50 3,150

5 000 50 2,260

5 000 50 1,300

5 000 50 1,100

rpm mNm A

5 000 50 0,540

thermal resistance Rth 2 by 40% reduced

Orientation with respect to motor terminals not defined

8x

M2 3,5 deep

ø0,2 A

-0,004

ø4 -0,010

0

ø14 -0,018

0

ø31,6

ø35 -0,1

0

-0,004

A

ø0,04 A 0,02

ø16 -0,018 ø4 -0,010

16,4

5,8

27,4 17,6 3,5

8x 45

2 ±0,2 1,4

ø22

9,8 ±0,5

57

13,8 ±0,3

3557 K

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

059

2,8

M2

2 deep

20 for Faston connector 2,8 x 0,8

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

110 mNm

Graphite Commutation

For combination with Gearheads: 38A, 38/1, 38/2, 44/1 Encoders: IE2 – 16 ... 512, 5500, 5540

DC-Micromotors

Series 3863 ... C 3863 H UN R P2 max.

d max.

012 C 12 0,16 204 85

018 C 18 0,40 189 84

024 C 24 0,62 220 85

036 C 36 1,58 197 85

048 C 48 2,47 226 85

Volt Ω W %

No-load speed No-load current (with shaft ø 6,0 mm) Stall torque Friction torque

no Io MH MR

6 500 0,480 1 200 8,1

6 600 0,320 1 090 8,0

6 700 0,240 1 250 8,0

6 400 0,150 1 170 7,9

6 700 0,120 1 290 8,1

rpm A mNm mNm

9 10 11 12

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

569 1,76 16,8 0,060

380 2,63 25,1 0,040

287 3,49 33,3 0,030

181 5,51 52,6 0,019

142 7,05 67,3 0,015

rpm/V mV/rpm mNm/A A/mNm

13 14 15 16 17

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

5,4 30 6 110 110

6,1 70 6,5 100 110

5,4 130 6 110 120

5,5 280 6 100 110

5,2 500 6 110 120

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance Output power Efficiency

5 6 7 8

om J

_ max.

18 Thermal resistance 19 Thermal time constant 20 Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

21 Shaft bearings 22 Shaft load max.: – with shaft diameter – radial at 3 000 rpm (3 mm from bearing) – axial at 3 000 rpm – axial at standstill 23 Shaft play: – radial – axial

1,5 / 6 33 / 843

K/W s

– 30 ... + 125 + 155

°C °C

ball bearings, preloaded

≤ =

24 Housing material 25 Weight 26 Direction of rotation

6,0 60 6 50

mm N N N

0,015 0

mm mm

steel, black coated 400 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other 27 Speed up to ne max. 28 Torque up to Me max. 29 Current up to (thermal limits) Ie max.

Orientation with respect to motor terminals not defined

6x

0

ø15 -0,025

0

ø 38 -0,1

8 000 110 7,6

0

ø16 -0,02

M3 3 deep

ø0,3 A

A -0,004

8 000 110 4,9

-0,004

ø 6 -0,010 ø0,04 A 0,02

ø 6-0,010

8 000 110 3,8

8 000 110 2,4

Scale reduced

-0,03

ø11,6 -0,11

ø0,07 A 0,04 DIN 58400 m=0,5 z=21

rpm mNm A

8 000 110 1,9

3 x ø 2,75 2,8 deep ø 25 for screw M3 DIN 7500

27,5 0,5

6x

14,8

60 22

1,5 2,2

1 1,1

17,5 ±0,5

64 3863 H

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

22,8 25 ±0,3

5 9 ±0,4 3863 A for Gearheads 38/...

060

3,5 2,8

7

11,5 ±0,5

for Faston connector 2,8 x 0,5

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Flat DC-Micromotors Precious Metal Commutation 1 2 3

DC-Micromotors

4

5 6 7

DC-Gearmotor with integrated encoder 1

End cap with encoder PCB

2

Sintered bearing

3

Washer

4

Brush cover

5

Coils and collector

6

Sintered bearing

7

Washer

8

Housing with integrated gears

9

Intermediate plate

10

Sintered bearing

11

Output shaft

12

Washer

13

Sleeve bearing

14

Front cover

8

9 10

11 12 13

14

Features

Benefits

The heart of these Flat DC-Micromotors is the ironless

■ No cogging

rotor made up of three flat self supporting coils.

■ Extremely low current consumption – low starting voltage

The rotor coil has exceptionally low inertia and inductance and rotates in an axial magnetic field.

■ Highly dynamic performance due to a low inertia, low inductance coil

Motor torque can be increased by the addition of an inte-

■ Light and compact

grated reduction gearhead. This also reduces the speed to

■ Precise speed control

fit the specifications in the application.

■ Simple to control due to the linear performance characteristics

FAULHABER specializes in the modification of their drive systems to fit the customer‘s particular application requirements. Common modifications include vaccuum compatibility, extreme temperature compatability, modified shaft

Product Code

geometry, additional voltage types, custom motor leads and connectors, and much more.

26 19 S 012 S R

061

Motor diameter [mm] Motor length [mm] Shaft type Nominal voltage [V] Type of commutation (precious metal) Version (rare earth magnet)

2619 S 012 SR

Flat DC-Micromotors

0,3 mNm

Precious Metal Commutation

DC-Micromotors

Series 1506 ... SR 1506 N UN R P2 max.

d max.

003 SR 3 13,5 0,15 62

006 SR 6 54,7 0,15 63

012 SR 12 155 0,22 67

Volt 1 W %

No-load speed No-load current (with shaft ø 0,8 mm) Stall torque Friction torque

no Io MH MR

11 100 0,010 0,52 0,02

11 800 0,005 0,49 0,02

12 800 0,003 0,64 0,02

rpm A mNm mNm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

3 884 0,257 2,46 0,407

2 053 0,487 4,65 0,215

1 107 0,903 8,63 0,116

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

21 333 275 17 0,08 68

24 135 1 157 19 0,08 63

19 947 3 550 16 0,08 83

rpm/mNm μH ms gcm2 ·103rad/s2

Thermal resistance Thermal time constant Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

Nominal voltage Terminal resistance Output power Efficiency

om J

_ max. 25 / 35 4,5 / 48,4

K/W s

– 30 ... + 80 + 85

°C °C

sintered sleeves bearings

Shaft bearings Shaft load max.: – with shaft diameter – radial at 3000 rpm (3 mm from bearing) – axial at 3000 rpm – axial at standstill Shaft play: – radial – axial

) )

Housing material Weight Direction of rotation

0,8 0,5 0,1 10

mm N N N

0,03 0,2

mm mm

plastic 4,3 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other ne max. Speed up to Me max. Torque up to Ie max. Current up to (thermal limits)

10 000 0,3 0,122

10 000 0,3 0,064

rpm mNm A

10 000 0,3 0,035

M 1:1 Orientation with respect to motor terminals ±10°

0

A

ø4

4x

0

ø2

ø6 –0,05

ø15 –0,15 0 –0,05

0

1,4

ø1,5 –0,03 ø0,07 0,04

6,45

4,9 ±0,2

1,4 ±0,2

4,5 ±0,3 0,5 5,5 ±0,2

4 ±0,3

2

2 ø19

1506 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

17,5

A

1506 N ... SR X3697

062

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Flat DC-Micromotors

0,3 mNm

Precious Metal Commutation with integrated Encoder

For combination with Drive Electronics: SC 1801

1506 N UN R P2 max.

d max.

003 SR 3 11 0,19 68

006 SR 6 48,5 0,17 66

012 SR 12 130 0,26 70

IE2-8 Volt 1 W %

No-load speed No-load current (with shaft ø 0,8 mm) Stall torque Friction torque

no Io MH MR

13 400 0,010 0,54 0,02

14 300 0,005 0,46 0,02

15 500 0,003 0,64 0,02

rpm A mNm mNm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

4 640 0,216 2,06 0,486

2 480 0,403 3,84 0,260

1 340 0,749 7,15 0,140

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

24 700 175 24 0,09 58

31 400 720 30 0,09 50

24 200 2 100 23 0,09 71

rpm/mNm μH ms gcm2 .103rad/s2

Thermal resistance Thermal time constant Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

Nominal voltage Terminal resistance Output power Efficiency

Shaft bearings Shaft load max.: – with shaft diameter – radial at 3000 rpm (3 mm from bearing) – axial at 3000 rpm – axial at standstill Shaft play: – radial – axial Housing material Weight Direction of rotation

om J

_ max. 36 / 61 5,4 / 190

K/W s

– 30 ... + 70 + 85

°C °C

sintered sleeves bearings

) )

0,8 0,5 0,1 10

mm N N N

0,03 0,2

mm mm

plastic 7,1 clockwise, viewed from the front face

g

Recommended values - mathematically independent of each other Speed up to ne max. Torque up to Me max. Current up to (thermal limits) Ie max.

10 000 0,3 0,206

10 000 0,3 0,098

10 000 0,3 0,060

rpm mNm A

M 1:1 0 ø15 –0,15

0 ø 6 –0,05 0

A

ø1,5 –0,03 ø0,07 A 0,04

14 150 ±10

0,5 4,5 ±0,3 2,3 5,5 ±0,2

5 ±0,3

1506 N ... SR IE2-8

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

063

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 1506 ... SR IE2-8

1) 2)

IE2 -8 8 2 3,2 ... 5,5 typ. 8, max. 15 5 180 ± 45 90 ± 45 2,5 / 0,3 4,5 0 ... + 70

N UDD IDD IOUT P \ tr/tf f

channels V DC mA mA °e °e μs kHz °C

Ambient temperature 22°C (tested at 1kHz) Velocity (rpm) = f (Hz) x 60/N

Features Full product description

In this version, the DC-Micromotors have an optical encoder with two output channels. A code wheel on the shaft is optically captured and further processed. At the encoder outputs, two 90° phaseshifted rectangular signals are available with 8 impulses per motor revolution.

Examples: 1506N003SR IE2-8 1506N012SR IE2-8

The encoder is suitable for the monitoring and regulation of the speed and direction of rotation and for positioning the drive shaft. The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Output signals / Circuit diagram / Connector information Output signals with clockwise rotation as seen from the shaft end

Output circuit Pin Function 4

P

Φ

Ω 5/6

3

Channel B



150 ±10 Channel A/B

GND

6\ = 90° –

\ P

* 180° ≤ 45°

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Motor – Motor + GND UDD channel B channel A

PVC ribbon cable 6-conductors – 0,09 mm2

6,1 12,2

Rotation Admissible deviation of phase shift:

1 2 3 4 5 6

UDD

Channel A 6k8

Amplitude

DC-Micromotors

Integrated optical Encoder Lines per revolution Signal output, square wave Supply voltage Current consumption, typical (UDD = 5 V DC) Output current, max. allowable (at Uout < 1,5V) Pulse width 1) Phase shift, channal A to B 1) Signal rise/fall time, max. (CLOAD = 50 pF) Frequency range 2), up to Operating temperature range

* An additional external pull-up resistor can be added to improve the rise time. Caution: IOUT max. 5 mA must not be exceeded!

064

642 531 Connector DIN-41651 grid 2,54 mm

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Gearmotors

30 mNm

Precious Metal Commutation

Nominal voltage Terminal resistance Output power

1512 U UN R P2 max.

003 SR 3 13,5 0,15

006 SR 6 54,7 0,15

012 SR 12 155 0,22

Volt 1 W

No-load speed (motor)

no

11 100

11 980

12 800

rpm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

3 884 0,257 2,46 0,407

2 053 0,487 4,65 0,215

1 107 0,903 8,63 0,116

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inductance Rotor inertia

6n/6M L J

21 330 275 0,08

24 135 1 157 0,08

19 947 3 550 0,08

rpm/mNm μH gcm2

Housing material Geartrain material Backlash, at no-load Bearings on output shaft Shaft load max.: – radial (5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (5 mm from mounting face) – axial Operating temperature range

plastic metal 4 plastic / brass bearing

)

°

) ) )

1,4 1 15

N N N N

) )

0,08 0,25 – 30 ... + 80

mm mm °C

Specifications reduction ratio (rounded)

output speed up to nmax rpm 779 372 129 45 15

6:1 13 : 1 39 : 1 112 : 1 324 : 1

weight with motor g 6,9 7,0 7,2 7,4 7,7

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) Mmax Mmax mNm mNm % 1,4 3 = 81 2,8 5 ≠ 73 7,0 10 = 60 19,8 30 ≠ 59 30,0 50 = 53

M 1:1 Orientation with respect to motor terminals ±10°

2x

M1,6 1 deep

0

ø4 –0,05

0

4,9 ±0,2

ø15 –0,15

1,4

6,45

0

ø4 –0,05

0

ø2 –0,02

ø8,25 ø12,2

1,4 ±0,2 4 ±0,3

1 12

6 ±0,3 7 ±0,3

1512 U

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

065

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 1512 ... SR

DC-Gearmotors

30 mNm

Precious Metal Commutation with integrated Encoder

For combination with Drive Electronics: SC 1801

DC-Micromotors

Series 1512 ... SR ... IE2-8 Nominal voltage Terminal resistance Output power

1512 U UN R P2 max.

003 SR 3 11 0,19

006 SR 6 48,5 0,17

012 SR 12 130 0,26

IE2-8 Volt 1 W

No-load speed (motor)

no

13 400

14 300

15 500

rpm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

4 640 0,216 2,06 0,486

2 480 0,403 3,84 0,260

1 340 0,749 7,15 0,140

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inductance Rotor inertia

6n/6M L J

24 700 175 0,09

31 400 720 0,09

24 200 2 100 0,09

rpm/mNm μH gcm2

Housing material Geartrain material Backlash, at no-load Bearings on output shaft Shaft load max.: – radial (5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (5 mm from mounting face) – axial Operating temperature range

plastic metal 4 plastic / brass bearing

)

°

) ) )

1,4 1 15

N N N N

) )

0,08 0,25 – 30 ... + 80

mm mm °C

Specifications reduction ratio (rounded)

output speed up to nmax rpm 779 372 129 45 15

6:1 13 : 1 39 : 1 112 : 1 324 : 1

weight with motor g 6,9 7,0 7,2 7,4 7,7

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) Mmax Mmax mNm mNm % 1,4 3 = 81 2,8 5 ≠ 73 7,0 10 = 60 19,8 30 ≠ 59 30,0 50 = 53

M 1:1 Orientation with respect to motor terminals ±10°

90°

0

ø15 –0,15

ø12,2

0

ø 4 –0,05

ø8,25

0

ø2 –0,02 14

2x M 1,6 1 deep

150 ±10 6 ±0,3

1

45° ±10°

2,3

7 ±0,3

12

1512U ... SR ... IE2-8

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

066

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

1) 2)

IE2 -8 8 2 3,2 ... 5,5 typ. 8, max. 15 5 180 ± 45 90 ± 45 2,5 / 0,3 4,5 0 ... + 70

N UDD IDD IOUT P \ tr/tf f

channels V DC mA mA °e °e μs kHz °C

Ambient temperature 22°C (tested at 1kHz) Velocity (rpm) = f (Hz) x 60/N

Features Full product description

In this version, the DC-Micromotors have an optical encoder with two output channels. A code wheel on the shaft is optically captured and further processed. At the encoder outputs, two 90° phaseshifted rectangular signals are available with 8 impulses per motor revolution.

Examples: 1512U003SR 6:1 IE2-8 1512U012SR 324:1 IE2-8

The encoder is suitable for the monitoring and regulation of the speed and direction of rotation and for positioning the drive shaft. The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Output signals / Circuit diagram / Connector information Output circuit Pin Function 4

P

Φ

Ω 5/6

3

Channel B



150 ±10 Channel A/B

GND

6\ = 90° –

\ P

* 180° ≤ 45°

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Motor – Motor + GND UDD channel B channel A

PVC ribbon cable 6-conductors – 0,09 mm2

6,1 12,2

Rotation Admissible deviation of phase shift:

1 2 3 4 5 6

UDD

Channel A 6k8

Amplitude

Output signals with clockwise rotation as seen from the shaft end

* An additional external pull-up resistor can be added to improve the rise time. Caution: IOUT max. 5 mA must not be exceeded!

067

642 531 Connector DIN-41651 grid 2,54 mm

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Integrated optical Encoder Lines per revolution Signal output, square wave Supply voltage Current consumption, typical (UDD = 5 V DC) Output current, max. allowable (at Uout < 1,5V) Pulse width 1) Phase shift, channal A to B 1) Signal rise/fall time, max. (CLOAD = 50 pF) Frequency range 2), up to Operating temperature range

Flat DC-Micromotors

3 mNm

Precious Metal Commutation

DC-Micromotors

Series 2607 ... SR 2607 T UN R P2 max.

d max.

006 SR 6 8,2 1,08 81

012 SR 12 36,5 0,97 80

024 SR 24 128 1,1 81

Volt 1 W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

6 600 0,007 6,26 0,06

5 900 0,004 6,21 0,07

6 200 0,002 6,77 0,07

rpm A mNm mNm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 111 0,9 8,59 0,116

500 2 19,09 0,052

261 3,83 36,54 0,027

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

1 055 465 7,5 0,68 92

957 2 200 6,8 0,68 92

917 8 400 6,5 0,68 100

rpm/mNm μH ms gcm2 .103rad/s2

Thermal resistance Thermal time constant Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

Nominal voltage Terminal resistance Output power Efficiency

om J

_ max.

Shaft bearings Shaft load max.: – with shaft diameter – radial at 3000 rpm (3 mm from bearing) – axial at 3000 rpm – axial at standstill Shaft play: – radial – axial

) )

Housing material Weight Direction of rotation

2,7 / 24,45 1,8 / 163

K/W s

– 30 ... + 80 +100

°C °C

sintered sleeves bearings (standard) 1,5 1,2 0,2 20

ball bearings (optional) 1,5 5 0,5 10

mm N N N

0,03 0,2

0,015 0,2

mm mm

plastic 16,1 clockwise, viewed from the front face

Recommended values - mathematically independent of each other Speed up to ne max. Torque up to Me max. Current up to (thermal limits) Ie max.

ø26

0 –0,15

ø25,8 A

0 –0,05

5 500 3 0,156

5 500 3 0,081

Orientation with respect to motor terminals ±10°

0

rpm mNm A

M 1:1

4x

8,5

ø6 –0,05

2,3 ±0,3 ø6

5 500 3 0,348

g

ø2,1 26,2

0

ø1,5 –0,01 ø0,05 A 0,04

2,5

2,5 1,4 0,7±0,3 1,6 ±0,2

1,3

4,0 ±0,3 1 6,9 ±0,3

ø30

6 ±0,3 7 ±0,3

2607 T ... SR

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

2607 T ... SR 3697

068

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Flat DC-Micromotors

2 mNm

Precious Metal Commutation with integrated Encoder

For combination with Drive Electronics: SC 1801

2607 T UN R P2 max.

d max.

006 SR 6 7,9 1,11 80

012 SR 12 30,8 1,14 80

024 SR 24 115 1,22 80

IE2-16 Volt 1 W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque

no Io MH MR

6 700 0,010 6,33 0,08

6 900 0,005 6,31 0,08

7 200 0,0025 6,48 0,08

rpm A mNm mNm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 130 0,884 8,44 0,118

582 1,72 16,4 0,061

304 3,29 31,4 0,032

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inductance Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

1 060 420 7,5 0,68 94

1 090 1 600 7,8 0,68 93

1 110 5 800 7,9 0,68 95

rpm/mNm μH ms gcm2 .103rad/s2

Thermal resistance Thermal time constant Operating temperature range: – motor – rotor, max. permissible

Rth 1 / Rth 2 o w1 / o w2

Nominal voltage Terminal resistance Output power Efficiency

Shaft bearings Shaft load max.: – with shaft diameter – radial at 3000 rpm (3 mm from bearing) – axial at 3000 rpm – axial at standstill Shaft play: – radial – axial Housing material Weight Direction of rotation

om J

_ max.

) )

10 / 32 6 / 250

K/W s

– 30 ... + 70 +100

°C °C

sintered sleeves bearings (standard) 1,5 1,2 0,2 20

ball bearings (optional) 1,5 5 0,5 10

mm N N N

0,03 0,2

0,015 0,2

mm mm

plastic 18,6 clockwise, viewed from the front face

Recommended values - mathematically independent of each other Speed up to ne max. Torque up to Me max. Current up to (thermal limits) Ie max.

g

5 500 2 0,371

5 500 2 0,187

5 500 2 0,097

rpm mNm A

M 1:1 0 ø26 –0,15

ø 25,8 ø6

0 –0,05

A

0

ø1,5 –0,01 ø0,05 A 0,04

24 150 ±10 2,3

0,7± 0,3 1,3 1

6,9 ±0,3

6 ±0,3 7 ±0,3

2607 T ... SR IE2-16

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

069

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 2607 ... SR IE2-16

1) 2)

IE2 -16 16 2 3,2 ... 5,5 typ. 8, max. 15 5 180 ± 45 90 ± 45 2,5 / 0,3 4,5 0 ... + 70

N UDD IDD IOUT P \ tr/tf f

channels V DC mA mA °e °e μs kHz °C

Ambient temperature 22°C (tested at 1kHz) Velocity (rpm) = f (Hz) x 60/N

Features Full product description

In this version, the DC-Micromotors have an optical encoder with two output channels. A code wheel on the shaft is optically captured and further processed. At the encoder outputs, two 90° phaseshifted rectangular signals are available with 16 impulses per motor revolution.

Examples: 2607T006SR IE2-16 2607T024SR IE2-16

The encoder is suitable for the monitoring and regulation of the speed and direction of rotation and for positioning the drive shaft. The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Output signals / Circuit diagram / Connector information Output signals with clockwise rotation as seen from the shaft end

Output circuit

4

P

UDD

Φ

Ω

Channel A 6k8

Amplitude

DC-Micromotors

Integrated optical Encoder Lines per revolution Signal output, square wave Supply voltage Current consumption, typical (UDD = 5 V DC) Output current, max. allowable (at Uout < 1,5V) Pulse width 1) Phase shift, channal A to B 1) Signal rise/fall time, max. (CLOAD = 50 pF) Frequency range 2), up to Operating temperature range

5/6

Channel A/B

3

* 180° ≤ 45°

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

150 ±10

Motor – Motor + GND UDD channel B channel A

PVC ribbon cable 6-conductors – 0,09 mm2

6,1

Rotation

\ 6\ = 90° – P

1 2 3 4 5 6

GND

Channel B

Admissible deviation of phase shift:

Pin Function



* An additional external pull-up resistor can be added to improve the rise time. Caution: IOUT max. 5 mA must not be exceeded!

070

12,2 642 531

Connector DIN-41651 grid 2,54 mm

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Gearmotors

100 mNm

Precious Metal Commutation

Nominal voltage Terminal resistance Output power

2619 S UN R P2 max.

006 SR 6 8,2 1,08

012 SR 12 36,5 0,97

024 SR 24 128 1,1

Volt 1 W

No-load speed (motor)

no

6 600

5 900

6 200

rpm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 111 0,9 8,59 0,116

500 2 19,09 0,052

261 3,83 36,54 0,027

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inductance Rotor inertia

6n/6M L J

1 055 465 0,68

957 2 200 0,68

917 8 400 0,68

rpm/mNm μH gcm2

Housing material Geartrain material Backlash, at no-load Bearings on output shaft Shaft load max.: – radial (5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (5 mm from mounting face) – axial Operating temperature range

plastic metal 4 brass / ceramic bearings (standard) 3,5 2 10

) ) ) )

0,07 0,25 – 30 ... + 80

) )

° ball bearings (optional) 10,5 5 10

N N N N mm mm °C

0,03 0,25

Specifications reduction ratio (rounded)

output speed up to nmax rpm 635 223 151 44 24 14 6 4

8:1 22 : 1 33 : 1 112 : 1 207 : 1 361 : 1 814 : 1 1 257 : 1

weight with motor g 25 26 26 27 27 27 28 29

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) Mmax Mmax mNm mNm % 9 30 = 81 23 75 ≠ 73 30 100 = 60 93 180 ≠ 59 100 180 = 53 100 180 = 53 100 180 = 43 100 180 = 43 M 1:1

Orientation with respect to motor terminals ±10°

3x

0

ø1,48 4 deep tief

ø26 –0,15

ø25,8

0

0 ø12 –0,05 0 ø3 –0,02

0

ø6 –0,05 ø17

6x

60° 1,4

3x

M2 3,5 deep tief

8,5

ø26 –0,3

2,3 ±0,3 4 ±0,3

9,9 ±0,3 4,1±0,3 9,5 ±0,3 19,2 ±0,3

1,6 ±0,2

1 10,9 ±0,3

2619 S

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

071

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Series 2619 ... SR

DC-Gearmotors

100 mNm

Precious Metal Commutation with integrated Encoder

For combination with Drive Electronics: SC 1801

DC-Micromotors

Series 2619 ... SR ... IE2-16 Nominal voltage Terminal resistance Output power

2619 S UN R P2 max.

006 SR 6 7,9 1,11

012 SR 12 30,8 1,14

024 SR 24 115 1,22

IE2-16 Volt 1 W

No-load speed (motor)

no

6 700

6 900

7 200

rpm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 130 0,884 8,44 0,118

582 1,72 16,4 0,061

304 3,29 31,4 0,032

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inductance Rotor inertia

6n/6M L J

1 060 420 0,68

1 090 1 600 0,68

1 110 5 800 0,68

rpm/mNm μH gcm2

Housing material Geartrain material Backlash, at no-load Bearings on output shaft Shaft load max.: – radial (5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (5 mm from mounting face) – axial Operating temperature range

plastic metal 4 brass / ceramic bearings (standard) 3,5 2 10

) ) ) )

0,07 0,25 – 30 ... + 80

) )

° ball bearings (optional) 10,5 5 10

N N N N mm mm °C

0,03 0,25

Specifications reduction ratio (rounded)

output speed up to nmax rpm 635 223 151 44 24 14 6 4

8:1 22 : 1 33 : 1 112 : 1 207 : 1 361 : 1 814 : 1 1 257 : 1

weight with motor g 25 26 26 27 27 27 28 29

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) Mmax Mmax mNm mNm % 9 30 = 81 23 75 ≠ 73 30 100 = 60 93 180 ≠ 59 100 180 = 53 100 180 = 53 100 180 = 43 100 180 = 43 M 1:1

Orientation with respect to motor terminals ±10°

tief 3x M2 3,5 deep

3x ø1,48 4 deep tief

0 ø26 –0,15

ø 25,8

0 –0,3

ø 26

0

ø 12 –0,05 0

ø3 –0,02 24

ø17 6x

60°

9,9 ±0,3 2,3

150 ± 10

4,1±0,3 9,5 ±0,3

1

21,5 ± 0,5

10,9 ±0,3

2619S ... SR ... IE2-16

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

072

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

1) 2)

IE2 -16 16 2 3,2 ... 5,5 typ. 8, max. 15 5 180 ± 45 90 ± 45 2,5 / 0,3 4,5 0 ... + 70

N UDD IDD IOUT P \ tr/tf f

channels V DC mA mA °e °e μs kHz °C

Ambient temperature 22°C (tested at 1kHz) Velocity (rpm) = f (Hz) x 60/N

Features Full product description

In this version, the DC-Micromotors have an optical encoder with two output channels. A code wheel on the shaft is optically captured and further processed. At the encoder outputs, two 90° phaseshifted rectangular signals are available with 16 impulses per motor revolution.

Examples: 2619S006SR 8:1 IE2-16 2619S024SR 1257:1 IE2-16

The encoder is suitable for the monitoring and regulation of the speed and direction of rotation and for positioning the drive shaft. The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Output signals / Circuit diagram / Connector information Output circuit

4

P

UDD

Φ

Ω

Channel A 6k8

Amplitude

Output signals with clockwise rotation as seen from the shaft end

5/6

Channel A/B

3

* 180° ≤ 45°

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

150 ±10

Motor – Motor + GND UDD channel B channel A

PVC ribbon cable 6-conductors – 0,09 mm2

6,1

Rotation

\ 6\ = 90° – P

1 2 3 4 5 6

GND

Channel B

Admissible deviation of phase shift:

Pin Function



* An additional external pull-up resistor can be added to improve the rise time. Caution: IOUT max. 5 mA must not be exceeded!

073

12,2 642 531

Connector DIN-41651 grid 2,54 mm

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors

Integrated optical Encoder Lines per revolution Signal output, square wave Supply voltage Current consumption, typical (UDD = 5 V DC) Output current, max. allowable (at Uout < 1,5V) Pulse width 1) Phase shift, channal A to B 1) Signal rise/fall time, max. (CLOAD = 50 pF) Frequency range 2), up to Operating temperature range

Brushless DC-Motors

Brushless DC-Motors

WE CREATE MOTION For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

074

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Micromotors

Page Brushless DC-Micromotors 0206 … B 02/1

sensorless Micro Planetary Gearhead

0,012 mNm 0,15 mNm

79 80

0,023 mNm 0,88 mNm 2,8 N 0,20 mNm 25 mNm 41 N

81 82 83 84 85 86

0308 … B 03A 03A S3 0515 … B 06A 06A S2

sensorless Micro Planetary Gearhead Linear Actuator sensorless Micro Planetary Gearhead Linear Actuator

Brushless DC-Servomotors

Page Brushless DC-Servomotors 0620 … B 1226 … B 1628 … B 2036 … B 2057 … B 2444 … B 3056 … B 3564 … B 4490 … B, BS

with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors with integrated Hall Sensors

0,36 mNm 2,2 mNm 2,6 mNm 5,2 mNm 16,5 mNm 11,8 mNm 22,1 mNm 47,1 mNm 202 mNm

88 – 89 90 – 91 92 – 93 94 – 95 96 – 97 98 – 99 100 – 101 102 – 103 104 – 105

2,1 mNm 5,7 mNm 6,5 mNm 15,5 mNm

108 – 109 110 – 111 112 – 113 114 – 115

12 mNm 13 mNm 13 mNm 23 mNm 25 mNm 25 mNm

118 – 119 120 – 121 122 – 123 124 – 125 126 – 127 128 – 129

Brushless DC-Servomotors – SMARTSHELL® Technologiy 1524 … BSL 1536 … BSL 2232 … BSL 2248 … BSL

sensorless, with optional Hall Sensors sensorless, with optional Hall Sensors sensorless, with optional Hall Sensors sensorless, with optional Hall Sensors

Brushless DC-Servomotors – 4 Pole Technology 2232 … BX4 2232 … BX4 IE3 2232 … BX4 IE3 L 2250 … BX4 2250 … BX4 IE3 2250 … BX4 IE3 L

with integrated Hall Sensors with integrated Encoder with int. Encoder and Line Driver with integrated Hall Sensors with integrated Encoder with int. Encoder and Line Driver

Brushless DC-Motors with integrated Speed Controller

Page

Brushless DC-Motors 1525 … BRC 1935 … BRE 3153 … BRC

with integrated Drive Electronics with integrated Drive Electronics with integrated Drive Electronics

1,8 mNm 3,2 mNm 28 mNm

131 132 133

13 mNm 25 mNm

134 – 135 136 – 137

Brushless DC-Servomotors – 4 Pole Technology 2232 … BX4 SC 2250 … BX4 SC

with integrated Speed Controller with integrated Speed Controller

Brushless Flat DC-Micromotors & DC-Gearmotors

Page ®

Brushless Flat DC-Micromotors & DC-Gearmotors – penny-motor Technology 1202 … BH 1307 … BH 1309 … BH 2209 … B SC 12 Bit For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

with integrated Hall Sensors with integrated Gearhead with integrated Gearhead with integrated Position Controller 075

0,16 mNm 5 mNm 5 mNm 0,09 mNm

139 140 141 142 – 145

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Brushless DC-Micromotors – smoovy® Technology

Brushless DC-Servomotors Technical Information

No-load current Io [A] ± 50 % The current consumption of the motor at nominal voltage and under no-load conditions. This value varies proportionally to speed and is influenced by temperature.

Brushless DC-Motors

Brushless DC-Servomotors

Co + Cv · no Io = –––––––––– kM

Series 1628 ... B 1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 No-load speed 6 No-load current (with shaft ø 1,5 mm)

Stall torque MH [mNm] The torque developed by the motor at zero speed and nominal voltage.

1628 T UN R P2 max.

d max.

UN – C MH = kM · —— o R

no Io

Friction torque CO [mNm] The sum of torque losses not depending from speed. This torque is caused by static mechanical friction of the ball bearings and magnetic hysteresis of the stator.

Notes on technical data The perfomance lifetime of Brushless DC-Servomotors is mainly influenced by the ball bearings service life and the electronic components used. On average, the lifetime may exceed 10 000 hours if the motors are operated within the recommended values indicated on the data sheet.

Viscous damping factor CV [·10-5 mNm/rpm] The multiplier factor defining the torque losses proportional to speed. This torque is due to the viscous friction of the ball bearings as well as to the Foucault currents in the stator, originated by the rotating magnetic field of the magnet.

All values at 22 °C. All values at nominal voltage, motor only, without load.

Nominal voltage UN [Volt] The direct voltage applied on the motor phases correspond to a bipolar supply with a 120° square-wave commutation logic. Definition of motor parameters η, no and Io are directly related to it. A higher or lower voltage may be applied according to the application requirement.

Speed constant kn [rpm/V] The speed variation per Volt applied to the motor phases at constant load. 1 000 no kn = ——–––– = ––––– U N – Io · R kE

Terminal resistance, phase to phase R [ ] ±12 % The resistance measured between two motor phases. The value is directly affected by the coil temperature (temperature coefficient: α 22 = 0,004 K-1).

Back-EMF constant kE [mV/rpm] The constant corresponding to the relationship between the induced voltage in the motor phases and the rotation speed.

Output power P2 max. [W] The maximum obtainable mechanical power achieved by the motor at continuous operation and at the thermal limit. This power can only be obtained at high speeds.

2 π · kM kE = ——––– 60

Torque constant kM [mNm/A] The constant corresponding to the relationship between the torque developed and the current drawn.

π P2 max. = –––––– · n · (km · Ie max. – Co – Cv · n) 30 000

Current constant kI [A/mNm] The constant corresponding to the relationship between the current drawn and torque developed.

Efficiency η max. [%] The max. ratio between the absorbed electrical power and the obtained mechanical power of the motor. It does not always correspond to the optimum working point of the motor.

1 kI = —— kM

No-load speed no [rpm] ±12 % The maximum speed the motor attains under no-load conditions at the nominal voltage. This value varies according to the voltage applied to the motor.

Slope of n-M curve Δn/ΔM [rpm/mNm] The ratio of the speed to torque variations. The smaller this value, the more powerful the motor. Δn = 30 000 ––– R ––– –––––– · 2 ΔM π kM

000 no = (Un – Io · R) · 1 ––––– kE 1628_B_front.indd 1

076

14.10.09 15:58

Direction of rotation The direction of rotation is given by the external servo amplifier. All motors are designed for clockwise (CW) and counter-clockwise (CCW) operation; the direction of rotation is reversible.

Mechanical time constant τ m [ms] The time required by the motor to reach a speed of 63% of its final no-load speed, from standstill. m

Recommended values

100 · R · J = ––––––––– kM2

The maximum recommended values for continuous operation to obtain optimum life performance are listed below.

Rotor intertia J [gcm2] Rotor’s mass. dynamic inertia moment.

These values are independent each other.

Angular acceleration αmax. [·103 rad/s2] No-load rotor acceleration, from standstill and at nominal voltage. max.

The recommended torque (Me max.) and current (Ie max.) are given with the Rth 2 value reduced by 55%. Speed ne max. [rpm] The max. operation speed limited by Foucault currents is generated by the rotation of the magnet and the magnetic field in the stator. The values are calculated at 2/3 of the max. permissible motor temperature, rounded off.

(UN /R) · kM – Co · 10 = ––––––––––––– J

Thermal resistance Rth 1 / Rth 2 [K/W] Rth 1 corresponds to the value between the coil and housing. Rth 2 corresponds to the value between the housing and the ambient air. Rth 2 can be reduced by enabling exchange of heat between the motor and the ambient air (for example using a heat sink or forced air cooling). All parameters calculated at thermal limit are given with a Rth 2 value reduced by 55%.

ne max. =

Co2 + –––––––––––––––– Co 30 000 · (T83 – T22) – ––––– –––––– π · 0,45 · Rth 2 · Cv 2 · Cv 4 · Cv2

Torque Me max. [mNm] The calculated torque for a motor at the thermal limit. Me max. = kM · le max. – Co – Cv · n

Thermal time constant τ w1 / τ w2 [s] The thermal time constant specifies the time needed for the rotor and housing to reach a temperature equal to 63% of final value.

Current le max. [A] The calculated current for a motor at the thermal limit.

Operating temperature range [°C] The min. and max. permissible operating temperature of the motor.

Ie max. =

Shaft bearings The standard bearings used for the Brushless DC-Servomotor. Shaft load max. [N] The max. load values allow a motor lifetime of 20 000 hours. This is in accordance with the values given by the bearing manufacturer. The radial load is defined for a force applied at the center of the standard shaft length. Shaft play [mm] The shaft play on the bearings, measured at the bearing exit. Housing material The housing material and the surface protection. Weight [g] The average weight of the basic motor type.

077

π T125 – T22 – –––––– · n · 0,45 · Rth 2 · (Co + Cv · n) 30 000 –––––––––––––––––––––––––––––––––––––––– R · (1 + 22 · (T125 – T22 )) · (Rth 1 + 0,45 · Rth 2)

Brushless DC-Motors

Terminal inductance, phase to phase L [μH] The inductance measured between two phases at 1 kHz.

Brushless DC-Micromotors 1

2 3 4

5

Brushless DC-Motors

6

7 10

Brushless Blind DC-Micromotor

8

11

1

Blind

1 2

Housing Blind

2 3

Rear Blindcover

3 4

support Bearing Blind

10

Satellite carrier

4 5

Bearing Blind

11

Satellite gear

5 6

Magnet Blind

12

Sun gear

6 7

Washer Blind

13

Planetary stage

7

Coil

14

Output shaft

8

Shaft

15

Housing

9

Cover / Bearing

16

Bearing / Cover

support

17

Retaining ring

Micro Planetary Gearhead

4

12 13

9

14

15

16 17

Features

Benefits

This smallest, brushless DC-Micromotor is based on the

■ Extremely light and compact

System FAULHABER skew wound coil technology.

■ Exceptional power to volume ratio

It is essentially comprised of a three phase coil, a stator

■ Brushless commutation for long life

housing, and a two-pole NdFeB magnet on the ouput

■ Low operating voltage

shaft as the rotor.

■ For combination with micro planetary gearheads

®

A Micro Planetary Gearhead of conventional design was likewise developed for combination with the brushless DC-Micromotor. The production employs LIGA-technology, a method combining lithography, electroforming and mold-copying. Special involute toothing with a module of 55 μm and a reduction ratio of 3,6 : 1 per gear stage is

Product Code

used, providing the three stage gear motor combination with 150 μNm torque. The microdrive is produced in series under cleanroom conditions. Brushless DC-Micromotors require an external electronic controller. FAULHABER offers a wide variety of speed control solutions for operation of the microdrive.

02 06 H 001 B

078

Motor diameter [mm] Motor length [mm] Shaft type Nominal voltage [V] Type of commutation (brushless)

0 20 6 H 0 0 1 B

Brushless DC-Micromotors

0,012 mNm

sensorless

For combination with Micro Planetary Gearhead: 02/1 Motion Controller: contact the manufacturer

Nominal voltage Terminal resistance, phase-phase Output power max. 1) Efficiency max.

0206 H UN R P2 max. d max.

001 B 1 7,2 0,13 26,7

V eff Ω W %

No-load speed No-load current Stall torque Friction torque, static Friction torque, dynamic

n max. lo M max. Co Cv

100 000 0,032 0,0095 0,001 0,0015 .10-5

rpm A mNm mNm mNm/rpm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kl

126 320 0,00792 0,0756 13,223

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L om J

12 030 000 3,9 9 0,00007 1 350

rpm/mNm μH ms gcm2 . 103rad/s2

Thermal resistance Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

_ max.

50 / 250 0,15 / 9,2

K/W s

Operating temperature range

– 30 ... + 125

°C

Shaft bearings: Shaft load max.: – radial at 20 000 rpm – axial at 20 000 rpm – axial at standstill

sleeve bearing

Shaft play: – radial – axial Housing material Weight Direction of rotation

≤ ≤

0,2 0,2 1

N N N

20 50

μm μm

steel, nickel plated 0,09 electronically reversible

g

Recommended values - mathematically independent of each other Speed up to 2) ne max. Torque up to 1) 2) Me max. 1) 2) Current up to (thermal limits) le max. 1) 2)

100 000 0,012 0,2

rpm mNm A

at 100 000 rpm thermal resistance Rth 2 not reduced Scale enlarged

Actual size

0

ø1,9 -0,01

5,5 Leadwires with connector length approx. 200 mm

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

+0,03 0

ø 0,24

+0,006 +0,002

1,3

0206 H

079

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Series 0206 ... B

Micro Planetary Gearhead

0,15 mNm For combination with Micro Brushless DC-Motor: 0206

Brushless DC-Motors

Series 02/1 02/1 plastic plastic

Housing material Geartrain material Recommended max. input speed for: – continuous operation – intermittent operation Bearings on output shaft Shaft load, max.: – radial (1 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (1,2 mm from mounting flange) – axial Operating temperature range

20 000 50 000 sleeve bearings

rpm rpm

≤ 0,5 ≤ 0,5 ≤1

N N N

≤ 50 ≤ 30 – 20 ... + 60

μm μm °C

Specifications reduction ratio (nominal)

13 47

:1 :1

number of gear stages

weight with motor

2 3

mg 110 110

length without motor L2 mm 3,02 3,78

length with motor L1 mm 8,82 9,58

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 0,15 0,30 = 60 0,15 0,30 = 50

Note: The Micro Planetary Gearhead is only available in combination with the micro brushless DC-motor series 0206 ... B. For more robust handling, the motor-gearhead combination is also available with a reinforcing tube with an other diameter of Ø 2,2 mm. The reduction ratios are rounded, the exact values are available on request.

Scale enlarged

Actual size

0

ø1,9

ø1,9 -0,01

0

ø1,4 ø0,5 -0,004

ø1,6

0,2 ±0,02 L2 ±0,02

5,72 ±0,06 L1

1,55 2

±0,14

02/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

080

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Micromotors

0,023 mNm

sensorless smoovy® Technology

For combination with Gearheads: 03A Drive Electronics: BLD 05002 S, SC 1801 F

0308 H UN R P2 max.

d max.

003 B 3 33,5 0,04 16,94

Volt 1 W %

No-load speed No-load current (with shaft ø 0,6 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

60 500 0,029 0,024 1,77 ·10-3 1,09 ·10-7

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

33 043 0,03 0,289 3,46

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

3,8·106 60 8 2 ·10-4 1 200

rpm/mNm μH ms gcm2 ·103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant

29 / 188 0,4 / 8

K/W s

21 Operating temperature range

– 30 ... + 60

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000 (1 mm from mounting flange) – axial at 3 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial – axial

jewel bearings

Rth 1 / Rth 2 o w1 / o w2

) )

25 Housing material 26 Weight 27 Direction of rotation

0,2 0,2 2

N N N

0,03 0,15

mm mm

Nickel alloy 0,31 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to (thermal limits) Ie max. 1) 2)

rpm mNm A

84 000 0,023 0,1

at 15 000 rpm thermal resistance Rth 2 not reduced

Scale enlarged M 2:1

0

ø3 -0,014 ø2 ±0,03 ø0,6 ±0,002

8 8,4 ±0,3

ø0,815 ±0,005

0,5

0,25 ±0,04 2

2,2

DIN 58400 m = 0,055 z = 12 x = +0,5

75 ± 0,7 4 ±0,1 +0,5

3,5 0

0,3 ±0,05

Connection No. 1 2 3

Function Phase A Phase B Phase C

Flex Print connector 3-pole, 1 mm pitch, e.g.: Molex: 52207-0390

8 ±0,2 0308 H

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

0308 A

081

1 3

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Series 0308 ... B

Micro Planetary Gearheads

0,88 mNm

smoovy® Technology

For combination with Micro Brushless DC-Motors: 0308

Brushless DC-Motors

Series 03A 03A plastic steel

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load max.: – radial (1,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play (on bearing output): – radial – axial Operating temperature range

15 000 rpm 4° bronze 0,1 N 0,2 N 1N ” 0,03 mm ” 0,15 mm – 20 … + 60°C

Specifications reduction ratio (absolute)

weight without motor g 0,20 0,18

25 : 1 125 : 1

output torque continuous intermittent directionoperation operation of rotation (reversible) Mmax Mmax. mNm mNm 0,28 0,42 = 0,88 1,32 =

Note: The Planetary Gearheads are only available in combination with the micro brushless DC-motor series 0308 ... B. Scale enlarged M 2:1

ø3 (0308...B) ø3,4

ø0,8 ±0,002

6 ±0,2 12,6 ±0,3

3 ±0,5

03A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

082

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear Actuators

2,8 N

smoovy® Technology

For combination with Micro Brushless DC-Motors: 0308

Series 03A S3 03A S3 plastic steel bronze

Housing material Geartrain and spindel material Nut material Recommended max. input speed for: – continuous operation Max. linear travel Bearings on output shaft Shaft play (on bearing output): – radial – axial Operating temperature range

” 0,03 mm ” 0,15 mm – 20 … + 60°C

Specifications reduction ratio (absolute)

25 : 1 125 : 1

1)

Brushless DC-Motors

15 000 rpm 7 mm bronze

Max. speed

weight without motor

mm / min 120 24

g 0,36 0,34

Nominal push force 1) continuous intermittent directionoperation operation of rotation (reversible) Fmax Fmax. N N 0,47 0,7 = 2,80 4,2 =

Capability of pushing / pulling the nut with a bearing at the end of the shaft.

Note: The Linear Actuators are only available in combination with the micro brushless DC-motor series 0308 ... B. Scale enlarged M 2:1

ø3 (0308...B) ø3,4

6 ±0,2 12,6 ±0,3

M1,6x0,2 ø0,99 ±0,005

ø3 10,25

03A S3

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

083

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Micromotors

0,2 mNm

sensorless smoovy® Technology

For combination with Gearheads: 06A Drive Electronics: BLD 05002 S, SC 1801 F

Brushless DC-Motors

Series 0515 ... B 0515 G UN R P2 max.

d max.

006 B 6 15,8 0,43 34,7

Volt 1 W %

No-load speed No-load current (with shaft ø 0,8 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

37 800 0,062 0,43 0,030 1,2 ·10-6

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

7 847 0,127 1,217 0,822

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

102 000 120 2,2 0,002 2 000

rpm/mNm μH ms gcm2 ·103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant

15 / 110 1,4 / 75

K/W s

21 Operating temperature range

– 30 ... + 80

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000 (1 mm from mounting flange) – axial at 3 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial – axial

sintered bronze sleeves

Rth 1 / Rth 2 o w1 / o w2

) )

25 Housing material 26 Weight 27 Direction of rotation

0,2 0,2 2

N N N

0,03 0,15

mm mm

Nickel alloy 1,5 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to (thermal limits) Ie max. 1) 2)

rpm mNm A

15 000 0,2 0,23

at 15 000 rpm thermal resistance Rth 2 by 55% reduced

ø5 ±0,02

Scale enlarged M 2:1

ø0,8 ±0,003

14,1 ±0,3 14,6 ±0,3

3,4 ±0,5

2,2 ±0,1 75 ± 0,7

0,3 ±0,05

+0,5

3,5 0

8 ± 0,2 0515 G

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Connection No. 1 2 3

4 ±0,1

Function Phase A Phase B Phase C

Flex Print connector 3-pole, 1 mm pitch, e.g.: Molex: 52207-0390

1 3

084

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Micro Planetary Gearheads

25 mNm

smoovy® Technology

For combination with Micro Brushless DC-Motors: 0515

Series 06A 06A plastic bronze

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load max.: – radial (2,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play (on bearing output): – radial – axial Operating temperature range

15 000 rpm 4° bronze Brushless DC-Motors

” 0,3 N ” 0,5 N 2N ” 0,03 mm ” 0,1 mm – 20 … + 60°C

Specifications reduction ratio (absolute)

weight without motor g 1,24 1,32 1,40

25 : 1 125 : 1 625 : 1

length without motor L2 mm 11,0 11,0 12,7

output torque length continuous intermittent directionwith motor operation operation of rotation 0515 B (reversible) L1 Mmax Mmax. mm mNm mNm 22,8 1,2 1,8 = 22,8 6,0 9,0 = 24,5 25,0 37,5 =

Note: The Planetary Gearheads are only available in combination with the micro brushless DC-motor series 0515 ... B. Scale enlarged M 2:1

ø3,3 ±0,1

ø 5 (0515...B)

ø 5,8 ±0,02

0

0

ø 1,4 – 0,01 1,3 –0,08

2,5 ± 0,1 L2 ±0,2 L1 ±0,5

4,8 ± 0,5 0,4 ±0,15

06A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

085

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear Actuators

41 N

smoovy® Technology

For combination with Micro Brushless DC-Motors: 0515

Brushless DC-Motors

Series 06A S2 06A S2 plastic bronze steel bronze

Housing material Geartrain material Screw material Nut material Recommended max. input speed for: – continuous operation Max. linear travel Bearings on output shaft Shaft play (on bearing output): – radial – axial Operating temperature range

15 000 rpm 12 mm bronze ” 0,03 mm ” 0,1 mm – 20 … + 60 °C

Specifications reduction ratio (absolute)

25 : 1 125 : 1 625 : 1

1)

Max. speed

weight without motor

mm / min 150 30 6

g 1,79 1,92 2,05

length without motor L2 mm 11,0 11,0 12,7

Nominal push force1) length continuous intermittent directionwith motor operation operation of rotation 0515 B (reversible) L1 Fmax Fmax. mm N N 22,8 1,6 2,4 = 22,8 15,7 23,6 = 24,5 41,2 61,8 =

Capability of pushing / pulling the nut with a bearing at the end of the shaft.

Note: The Linear Actuators are only available in combination with the micro brushless DC-motor series 0515 ... B. Scale enlarged M 2:1

ø5 (0515...B)

+0,03

ø5,8 ±0,02 M2,5x0,25 ø 5 0

0

ø1,995 –0,005

2 2,2

L2 ±0,2 14,7

L1 ±0,5

06A S2

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

086

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors 1 2 3 4 5 6

7 14

1

Rear cover

2

PCB

3

Hall sensors

4

Bearing support

5

Ball bearing

6

Shaft

7

Magnet

8

PCB

9

Coil

10

Spring washer

11

Spacer

12

Stator laminations

13

Housing

14

Lead wires

Brushless DC-Motors

Brushless DC-Servomotor

8

9

10 11

12

13

Features

Benefits

The FAULHABER Brushless DC-Servomotors are built

■ System FAULHABER®, ironless stator coil

for extreme operating conditions. They are precise, have

■ High reliability and operational lifetime

extreme long lifetimes and are highly reliable. Exceptio-

■ Wide range of linear torque / speed performance

nal qualities such as smooth running and especially low

■ No sparking

noise level are of particular note. The rare-earth magnet

■ No cogging

as rotor, and FAULHABER skew winding technology ensure

■ Dynamically balanced rotor

that these motors deliver top performance dynamics

■ Simple design

within minimum overall dimensions.

■ Standard with digital hall sensors with optional analog hall sensors

This series is also available in an autoclavable version and is ideally suited for application in laboratory and medical equipment.

Product Code

Sterilizing conditions ■ Temperature 134 °C ± 2 °C ■ Water vapour pressure 2,1 bar ■ Relative humidity 100 % ■ Duration of cycle 20 min. ■ Rated for a minimum of 100 cycles

24 44 S 024 B

087

Motor diameter [mm] Motor length [mm] Shaft type Nominal voltage [V] Type of commutation (brushless)

2444 S 024 B

Brushless DC-Servomotors

0,36 mNm For combination with Gearheads: 06/1 Encoder: PA2-50, HXM3-64 Drive Electronics: SC 1801, BLD 2401, MCBL ...

Brushless DC-Motors

Series 0620 ... B 0620 K UN R P2 max.

d max.

006 B 6 9,1 1,47 52

012 B 12 59,0 1,49 50

Volt Ω W %

No-load speed No-load current (with shaft ø 1,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

46 500 0,062 0,73 0,023 1,0 .10-6

35 600 0,020 0,57 0,023 1,0 .10-6

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

8 451 0,118 1,13 0,885

3 282 0,305 2,91 0,344

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

68 054 26 6 0,0095 768

66 533 187 6 0,0095 601

rpm/mNm μH ms gcm2 .103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant 21 Operating temperature range: – motor – coil, max. permissible

Rth 1 / Rth 2 o w1 / o w2

14 / 88,0 1 / 149

K/W s

– 20 ... +100 +125

°C °C

22 Shaft bearings 23 Shaft load max.: – radial at 10 000/50 000 rpm (3,7 mm from mounting flange) – axial at 10 000/50 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: ≤ – radial = – axial

ball bearings, preloaded

25 Housing material 26 Weight 27 Direction of rotation

2,0 / 1,5 0,6 / 0,2 10

N N N

0,012 0

mm mm

aluminium, black anodized 2,5 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

100 000 0,351 0,367

100 000 0,356 0,144

rpm mNm A

at 40 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] ne max. = 100 000 rpm

100 000 90 000 80 000 70 000 60 000 50 000

n = 40 000 rpm 1,49 Watt

40 000 30 000

Me max. = 0,36 mNm

20 000 10 000 0

M [mNm] 0

0,10

0,15

0,20

0,25

0,30

0,35

0,40

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

088

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options K1855: Motors for operation with Motion Controllers MCBL 3003/06 S, MCBL 3003/06 C.

0620 ... B 0

ø5 -0,018 A

-0,009

-0,03

ø1,0 -0,012

M4,5x0,5

ø1,75 -0,05

ø0,05 A 0,02

ø0,07 A 0,04 DIN 58400 m=0,12 z=12 x=+0,2

0,4

Brushless DC-Motors

ø6 ±0,03

1,9 16,7 ±0,2 20

5,15

3,35

±0,3

80 ±1

1,8

5,5 ±0,5

4 ±0,3 1

0,3 ±0,03

8

4,5 ±0,07 0620 C for Gearheads 06/1

0620 K

Cable and connection information Reccomended connector

Flexboard

Molex - ZIF Connector, No. 52745-0896.

8 circuits; 0,5mm pitch, Top Contact Style.

1

+5V

Connection

Δ Coil winding 3 x 120° +5V

N S

+5V

+5V

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

089

8

No. 1 2 3 4 5 6 7 8

Function Phase C Phase B Hall sensor C +5V GND Hall sensor A Hall sensor B Phase A

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

2,2 mNm For combination with Gearheads: 10/1, 12/3, 12/4, 12/5 Drive electronics: SC 1801, BLD 4803, MCBL ...

Brushless DC-Motors

Series 1226 ... B 1226 S UN R P2 max.

d max.

006 B 6 2,30 9,6 68

012 B 12 5,30 9,3 69

Volt Ω W %

No-load speed No-load current (with shaft ø 1,2 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

20 100 0,088 7,19 0,079 8,2 .10-6

27 200 0,074 9,21 0,079 8,2 .10-6

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

3 447 0,290 2,77 0,361

2 335 0,428 4,09 0,244

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

2 862 35 4 0,145 496

3 026 80 4 0,145 635

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant 21 Operating temperature range: – motor – coil, max. permissible

Rth 1 / Rth 2 o w1 / o w2

22 Shaft bearings 23 Shaft load max.: – radial at 10 000/30 000 rpm (3,7 mm from mounting flange) – axial at 10 000/30 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial = 25 Housing material 26 Weight 27 Direction of rotation

7 / 38,0 3 / 186

K/W s

– 20 ... +100 +125

°C °C

ball bearings, preloaded 4,9 / 4,0 2,6 / 1,1 11

N N N

0,012 0

mm mm

aluminium, black anodized 13 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

60 000 2,28 0,97

60 000 2,21 0,64

rpm mNm A

at 40 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] 70 000

ne max. = 60 000 rpm

60 000 50 000

n = 40 000 rpm

9,6 Watt

40 000 30 000

Me max. = 2,28 mNm

20 000 10 000

M [mNm]

0 0

0,5

1,0

1,5

2,0

2,5

3,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

090

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options K1855: Motors for operation with Motion Controllers MCBL 3003/06 S, MCBL 3003/06 C.

1226 ... B

ø0,05 A 0,02

A M5,5x0,5

0

ø2,92 -0,015

-0,04

0

ø3,65 -0,06

ø2,38 -0,015

ø0,07 A 0,04 DIN 58400 m=0,2 z=12 x=+0,2

ø0,07 A 0,04 DIN 58400 m=0,2 z=9 x=+0,35

ø0,07 A 0,04 DIN 58400 m=0,25 z=12 x=+0,2

Brushless DC-Motors

-0,007

0

ø12 ±0,03 ø6 -0,018 ø1,2 -0,01

wire 1

5,6 wire 8

0,4 1,9 26 1226 S

3,35

1,8

2,15

2,1

3,9

2,9 3,6

3

5,15 ±0,3 1226 M for Gearhead 10/1

1226 E 1226 A for Gearheads 12/3, 12/5 for Gearhead 12/4

Cable and connection information

7

Cable Single wires, material PTFE Length 80 mm ± 3 mm 8 conductors, AWG 30

+5V

Connection

Δ Coil winding 3 x 120° +5V

N S

+5V

+5V

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

091

No. 1 2 3 4 5 6 7 8

Function Phase C Phase B Hall sensor C Logical supply +5V Logical GND Hall sensor A Hall sensor B Phase A

Colour yellow orange grey red black green blue brown

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

2,6 mNm For combination with Gearheads: 16/7 Encoders: IE2 – 64 ... 512 Drive Electronics: SC ..., BLD ..., MCBL ...

Brushless DC-Motors

Series 1628 ... B 1628 T UN R P2 max.

d max.

012 B 12 4,3 10 68

024 B 24 15,1 11 68

Volt Ω W %

No-load speed No-load current (with shaft ø 1,5 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

28 650 0,098 11 0,15 8,0 .10-6

29 900 0,052 12 0,15 8,0 .10-6

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

2 474 0,404 3,86 0,259

1 287 0,777 7,42 0,135

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

2 737 141 15 0,54 198

2 610 525 14 0,54 217

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

7,8 / 30,1 8 / 379

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (4,5 mm from mounting flange) – axial at 3 000/20 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

25 Housing material 26 Weight 27 Direction of rotation

17 / 10 10 / 6 20

N N N

0,015 0

mm mm

aluminium, black anodized 31 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

65 000 2,5 0,77

65 000 2,6 0,41

rpm mNm A

at 40 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] ne max. = 65 000 rpm

70 000 60 000 50 000

n = 40 000 rpm

11 Watt

40 000 30 000

Me max. = 2,6 mNm

20 000 10 000

M [mNm]

0 0

0,5

1,0

1,5

2,0

2,5

3,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

092

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options K1000: Motors in autoclavable version. K1155: Motors for operation with Motion Controllers MCBL 3003/06 S, MCBL 3003/06 C.

1628 T ... B

0

ø16 ±0,1

2 deep

ø6 -0,005 A

-0,006

ø1,5 -0,010 ø0,05 A 0,02

Brushless DC-Motors

M1,6

3x 120

1 20 ±0,5

ø10

28

7,1

±0,3

8,1

±0,3

1628 T ... B - K312 with rear end shaft

-0,006

ø1,5 -0,010

4 ±0,3

Cable and connection information

7

Cable Single wires, material PTFE Length 300 mm ± 15 mm 8 conductors, AWG 26

+5V +5V

Connection

N S

+5V

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

+5V

Δ Coil winding 3 x 120°

093

Function A Hall sensor A Phase B Hall sensor B Phase C Hall sensor C Phase +5V Logical supply GND Logical

Colour green brown blue orange grey yellow red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

5,2 mNm For combination with Gearheads: 20/1 Encoders: IE2 – 64 ... 512, 5500, 5540 Drive Electronics: SC ..., BLD ..., MCBL ...

Brushless DC-Motors

Series 2036 ... B 2036 U UN R P2 max.

d max.

012 B 12 3,4 20 70

024 B 24 14,0 19 69

036 B 36 27,9 18 69

048 B 48 62,2 18 69

Volt Ω W %

No-load speed No-load current (with shaft ø 2,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

17 600 0,102 22 0,27 2,14 .10-5

18 000 0,053 21 0,27 2,14 .10-5

19 500 0,040 22 0,27 2,14 .10-5

17 400 0,025 20 0,27 2,14 .10-5

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 506 0,664 6,34 0,158

773 1,294 12,36 0,081

557 1,796 17,15 0,058

374 2,677 25,56 0,039

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

808 148 16 1,95 114

875 600 18 1,95 107

906 1 160 18 1,95 113

909 2 500 18 1,95 100

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant

5,7 / 19,9 9 / 577

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (4,5 mm from mounting flange) – axial at 3 000/20 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

Rth 1 / Rth 2 o w1 / o w2

25 Housing material 26 Weight 27 Direction of rotation

14 / 7 8/4 30

N N N

0,015 0

mm mm

aluminium, black anodized 50 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

49 000 5,2 0,98

49 000 4,9 0,48

49 000 4,8 0,34

49 000 4,8 0,23

rpm mNm A

at 36 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] ne max. = 49 000 rpm 50 000 45 000 40 000 35 000 30 000 25 000

n = 36 000 rpm

20 000

20 Watt

Me max. = 5,2 mNm

15 000 10 000 5 000 0

M [mNm] 0

1,0

2,0

3,0

4,0

5,0

6,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

094

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options K1000: Motors in autoclavable version. K1155: Motors for operation with Motion Controllers MCBL 3003/06 S, MCBL 3003/06 C.

2036 U ... B

M2 2,5

ø20 ±0,1

deep

0

ø6 -0,005

ø0,05 A 0,02 Brushless DC-Motors

A

-0,004

ø2 -0,008

3x120

max.

1

20

7,1 ±0,3

ø12

8,1 ±0,3

36

2036 U ... B - K312 with rear end shaft

-0,004

ø2 -0,008

5

±0,3

Cable and connection information Cable

7

Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 24 5 conductors, AWG 26

+5V

Connection +5V

N S

+5V

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

+5V

Δ Coil winding 3 x 120°

095

A A B B C C +5V GND

Function Hall sensor Phase Hall sensor Phase Hall sensor Phase Logical supply Logical

Colour green brown blue orange grey yellow red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

16,5 mNm For combination with Gearheads: 20/1, 23/1 Encoders: IE2 – 64 ... 512, 5500, 5540 Drive Electronics: SC ..., BLD ..., MCBL ...

Brushless DC-Motors

Series 2057 ... B 2057 S UN R P2 max.

d max.

012 B 12 0,55 61 82

024 B 24 1,42 62 83

Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

21 900 0,210 113 0,28 3,70 .10-5

26 500 0,147 144 0,28 3,70 .10-5

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 840 0,543 5,19 0,193

1 116 0,896 8,56 0,117

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

195 68 8 3,95 286

185 117 8 3,95 365

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max. 2,8 / 11,5 10 / 590

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (4,5 mm from mounting flange) – axial at 3 000/20 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

19 Thermal resistance 20 Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

25 Housing material 26 Weight 27 Direction of rotation

28 / 14 17 / 11 75

N N N

0,015 0

mm mm

aluminium, black anodized 95 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

52 000 16,1 3,41

52 000 16,5 2,12

rpm mNm A

at 36 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] 60 000

ne max. = 52 000 rpm

50 000 40 000

n = 36 000 rpm

62 Watt

30 000

Me max. = 16,5 mNm

20 000 10 000

M [mNm]

0 0

2,0

4,0

6,0

8,0 10,0 12,0 14,0 16,0 18,0 20,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

96

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options K1000: Motors in autoclavable version. K1155: Motors for operation with Motion Controllers MCBL 3003/06 S, MCBL 3003/06 C.

2057 S ... B

-0,006

0

ø20 ±0,1

2,5 deep

ø3 -0,010

ø9 -0,005 A

ø0,05 A 0,02

3x120

ø12 ø17 1

3x 120

9 ±0,3

3x

M2

2 deep

max.

20

57

10 ±0,3

2057 S ... B - K312 with rear end shaft

-0,006

ø3 -0,010

7,4

57,5

±0,3

Cable and connection information Cable

7

Single wires, material PTFE Length 300 mm ± 15 mm 5 conductors, AWG 26 3 conductors, AWG 24

+5V

Connection +5V

N S

+5V

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

+5V

Δ Coil winding 3 x 120°

97

A A B B C C +5V GND

Function Hall sensor Phase Hall sensor Phase Hall sensor Phase Logical supply Logical

Colour green brown blue orange grey yellow red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

3x

M2

Brushless DC-Servomotors

11,8 mNm For combination with Gearheads: 23/1, 26/1, 30/1, 38/3 Encoders: IE2 – 64 ... 512, 5500, 5540 Drive Electronics: SC ..., BLD ..., MCBL ...

Brushless DC-Motors

Series 2444 ... B 2444 S UN R P2 max.

d max.

024 B 24 2,1 36 77

048 B 48 8,4 37 77

Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

23 000 0,184 111 1,00 3,5 .10-5

22 500 0,088 115 1,00 3,5 .10-5

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

974 1,026 9,8 0,102

473 2,115 20,2 0,050

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

209 180 14 6,5 171

197 760 13 6,5 177

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant

4,1 / 14,8 16 / 680

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (6 mm from mounting flange) – axial at 3 000/20 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

Rth 1 / Rth 2 o w1 / o w2

25 Housing material 26 Weight 27 Direction of rotation

30 / 17 16 / 10 57

N N N

0,015 0

mm mm

aluminium, black anodized 100 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

38 000 11,4 1,37

38 000 11,8 0,69

rpm mNm A

at 30 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] ne max. = 38 000 rpm

40 000 35 000

n = 30 000 rpm

30 000

37 Watt

25 000 20 000 15 000

Me max. = 11,8 mNm

10 000 5 000

M [mNm]

0 0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

98

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options K1000: Motors in autoclavable version. K1155: Motors for operation with Motion Controllers MCBL 3003/06 S, MCBL 3003/06 C.

2444 S ... B

M2 3

0

ø24 ±0,1

deep

ø10 -0,006

ø0,05 A 0,02 Brushless DC-Motors

A

-0,004

ø3 -0,008

3x120

max.

20

1

12,6 ±0,3

44

ø17

11,6 ±0,3

2444 S ... B - K312 with rear end shaft

-0,004

ø3 -0,008

7,4 ±0,3

Cable and connection information Cable

7

Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 24 5 conductors, AWG 26

+5V

Connection +5V

N S

+5V

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

+5V

Δ Coil winding 3 x 120°

99

A A B B C C +5V GND

Function Hall sensor Phase Hall sensor Phase Hall sensor Phase Logical supply Logical

Colour green brown blue orange grey yellow red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

22,1 mNm For combination with Gearheads: 30/1, 38/1, 38/2 Encoders: 5500, 5540 Drive Electronics: SC ..., BLD ..., MCBL ...

Brushless DC-Motors

Series 3056 ... B 3056 K UN R P2 max.

d max.

012 B 12 1,6 48 73

024 B 24 6,6 51 74

036 B 36 13,7 49 74

048 B 48 26,5 49 74

Volt Ω W %

No-load speed No-load current (with shaft ø 4,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

8 790 0,168 95 0,91 1,4 .10-4

8 200 0,075 98 0,91 1,4 .10-4

8 840 0,056 99 0,91 1,4 .10-4

8 740 0,042 100 0,91 1,4 .10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

750 1,334 12,74 0,078

350 2,861 27,32 0,037

251 3,981 38,02 0,026

186 5,374 51,32 0,019

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

94 160 13 13,6 70

84 720 12 13,6 72

91 1 400 13 13,6 73

89 2 520 12 13,6 73

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant

3,3 / 9,4 19 / 1 034

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (7,4 mm from mounting flange) – axial at 3 000/20 000 rpm (axial push-on only) – axial at standstill (axial push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

Rth 1 / Rth 2 o w1 / o w2

25 Housing material 26 Weight 27 Direction of rotation

72 / 51 18 / 12 62

N N N

0,015 0

mm mm

aluminium, black anodized 190 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

28 000 20,7 1,94

28 000 22,1 0,96

28 000 21,2 0,66

28 000 21,5 0,50

rpm mNm A

at 22 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] 30 000

ne max. = 28 000 rpm

25 000

n = 22 000 rpm

51 Watt

20 000 15 000

Me max. = 22,1 mNm

10 000 5 000

M [mNm]

0 0

5,0

10,0

15,0

20,0

25,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

100

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options K1000: Motors in autoclavable version. K1155: Motors for operation with Motion Controllers MCBL 3003/06 S, MCBL 3003/06 C.

3056 K ... B 5 deep

ø30 ±0,1

0

+0,003 -0,002

A

ø0,05 A 0,02

ø13 -0,005 ø4

Brushless DC-Motors

M2

4x 90

5

1,4

max.15

45

12,6 ±0,3 14 ±0,3

ø19

56

3056 K ... B - K312 with rear end shaft

ø4

M1,6

+0,003 -0,002

3 deep 3x120

9,6 ±0,3

ø20,9

57,8

Cable and connection information Cable

7

Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 20 5 conductors, AWG 26

+5V +5V

Connection

N S

+5V

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

+5V

Δ Coil winding 3 x 120°

101

A A B B C C +5V GND

Function Hall sensor Phase Hall sensor Phase Hall sensor Phase Logical supply Logical

Colour green brown blue orange grey yellow red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

47,1 mNm For combination with Gearheads: 30/1, 32/3, 38/1, 38/2 Encoders: 5500, 5540 Drive Electronics: SC ..., BLD ..., MCBL ...

Brushless DC-Motors

Series 3564 ... B 3564 K UN R P2 max.

d max.

012 B 12 0,6 109 81

024 B 24 1,2 101 81

036 B 36 2,8 101 81

048 B 48 4,4 101 82

Volt Ω W %

No-load speed No-load current (with shaft ø 4,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

7 850 0,206 291 1,10 2,4 .10-4

11 300 0,189 371 1,10 2,4 .10-4

11 550 0,131 379 1,10 2,4 .10-4

12 200 0,109 401 1,10 2,4 .10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

658 1,521 14,52 0,069

475 2,107 20,12 0,050

324 3,089 29,50 0,034

258 3,877 37,02 0,027

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

27 96 10 34 86

31 194 11 34 109

31 427 11 34 111

31 678 11 34 118

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant

2,5 / 6,3 23 / 1 175

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (7,4 mm from mounting flange) – axial at 3 000/20 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

Rth 1 / Rth 2 o w1 / o w2

25 Housing material 26 Weight 27 Direction of rotation

108 / 73 50 / 30 131

N N N

0,015 0

mm mm

aluminium, black anodized 310 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

27 000 47,1 3,68

27 000 44,0 2,50

27 000 43,9 1,71

27 000 44,0 1,36

rpm mNm A

at 22 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] 30 000

ne max. = 27 000 rpm

25 000

n = 22 000 rpm

109 Watt

20 000 15 000

Me max. = 47 mNm

10 000 5 000

M [mNm]

0 0

10

20

30

40

50

60

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

102

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options K1000: Motors in autoclavable version. K1155: Motors for operation with Motion Controllers MCBL 3003/06 S, MCBL 3003/06 C.

3564 K ... B

ø35 ±0,1

5 deep

0

+0,003

A

ø0,05 A 0,02

ø16 -0,008 ø4 -0,002

Brushless DC-Motors

M2

4x 90

max.

45

20

ø22

1,4

12,6 ±0,3 14 ±0,3

64

3564 K ... B - K312 with rear end shaft

ø4

+0,003 -0,002

M1,6

3 deep 3x120

9,6 ±0,3

ø20,9

65,8

Cable and connection information Cable

7

Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 20 5 conductors, AWG 26

+5V +5V

Connection

N S

+5V

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

+5V

Δ Coil winding 3 x 120°

103

A A B B C C +5V GND

Function Hall sensor Phase Hall sensor Phase Hall sensor Phase Logical supply Logical

Colour green brown blue orange grey yellow red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

202 mNm For combination with Gearheads: 44/1 Encoders: 40B Servo Amplifiers: BLD 5018, BLD 7010 Motion Controllers: contact the manufacturer

Brushless DC-Motors

Series 4490 ... B, 4490 ... BS 4490 H

024 B

1 2 3 4

Coil connection Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

048 B

024 BS

d max.

24 0,237 201 86

036 B Δ Delta 36 0,445 201 86

UN R P2 max.

5 6 7 8 9

48 0,720 200 86

No-load speed No-load current (with shaft ø 6,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

9 550 0,554 2 406 3,65 1,0 .10-3

10 450 0,432 2 637 3,65 1,0 .10-3

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

401 2,495 23,83 0,042

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

_ max.

4,0 76 5 130 185

Rth 1 / Rth 2 o w1 / o w2

1,35 / 3,94 29 / 1 756

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/10 000 rpm (13,5 mm from mounting flange) – axial at 3 000/10 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: ≤ – radial = – axial

ball bearings, preloaded

25 Housing material 26 Weight 27 Direction of rotation

om J

19 Thermal resistance 20 Thermal time constant

1)

048 BS 48 2,130 212 86

Volt Ω W %

11 000 0,354 2 758 3,65 1,0 .10-3

5 450 0,217 1 455 3,65 1,0 .10-3

5 790 0,160 1 584 3,65 1,0 .10-3

6 060 0,129 1 689 3,65 1,0 .10-3

rpm A mNm mNm mNm/rpm

292 3,422 32,68 0,031

231 4,335 41,40 0,024

228 4,384 41,86 0,024

162 6,185 59,06 0,017

127 7,871 75,16 0,013

rpm/V mV/rpm mNm/A A/mNm

4,0 143 5 130 203

4,0 236 5 130 212

3,8 220 5 130 112

3,7 435 5 130 122

3,6 720 5 130 130

rpm/mNm μH ms gcm2 .103rad/s2

103 / 66 45 / 30 135

N N N

0,015 0

mm mm

aluminium, black anodized 750 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 16 000 29 Torque up to 1) 2) Me max. 191,8 1) 2) 30 Current up to Ie max. 8,62 2)

24 0,690 207 85

036 BS Star 36 1,340 210 85

16 000 191,9 6,29

16 000 191,1 4,95

16 000 197,8 5,05

16 000 200,4 3,63

16 000 202,4 2,88

rpm mNm A

at 10 000 rpm thermal resistance Rth 2 by 55% reduced

I [A]

Me max.

n [rpm] 20 000

10

ne max.

15 000

4490 H 024 B

Δ Delta

8 6

10 000

4 5 000

4490 H 048 BS Star

2

M [mNm]

0 0

50

100

150

200

250

300

50

100

150

200

250

Current vs. torque

Operating area Continuous

M [mNm]

0 0

350

Intermittent (e.g. 2 s on, 2 s off)

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

104

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options K1155: Motors with linear Hall sensors.

4490 H ... B, ... BS scale reduced

M3

+0,003

0

ø6 -0,002

ø16 -0,02

ø44 ±0,1

5/6,5 deep

A

ø0,08 A 0,04

Brushless DC-Motors

6x

M3

6x60°

max.

20

1,5 ø22

90

23,5 ±0,3

5

25 ±0,3

6,5

1,5

Mounting holes scale 1:1 4490 H ... B, ... BS - K312 with rear end shaft scale reduced 2x

+0,003

M2 1,8

ø6 -0,002

deep

14°

22,5 ±0,3

ø32,5

Cable and connection information Cable

7

Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 16 5 conductors, AWG 26

Coil winding 3 x 120°

Δ Delta

+5V +5V

Star

+5V

Connection

N S

+5V

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

+5V

A A B B C C +5V GND

Function Hall sensor Phase Hall sensor Phase Hall sensor Phase Logical supply Logical

105

Colour green brown blue orange grey yellow red black

+5V

N S +5V

+5V

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Notes

106

Brushless DC-Servomotors Sensorless, SMARTSHELL® Technology 2 3

1

4

8 9 10 11 Brushless DC-Motors

12 13

Brushless DC-Servomotor, sensorless

5 1

Cover / Bearing support

2

Ball bearing

3

Shaft

4

Magnet

5

Lead wires

6

Spring washer

7

Stator:

7

Hall sensor Module 6 8

Flange

7.1

PCB

9

PCB

7.2

Coil

10

Hall sensors

7.3

Stator laminations

11

Lead wires

Cover / Bearing

12

Sensor magnet

support

13

Housing

7.4

7.1 7.2 7.3

7.4

Features

Benefits

The skew-wound self-supporting coil, System FAULHABER®,

■ System FAULHABER®, ironless stator coil

the printed circuit board, the laminated stack and the

■ High reliability and operational lifetime

front-end bearing cover are all encapsulated and meshed

■ Wide range of linear torque / speed performance

together with a mould-injected LCP (Liquid Crystal

■ No sparking

Polymer), exhibiting outstanding mechanical and thermal

■ No cogging

features.

■ Dynamically balanced rotor ■ Simple design

The modular design concept of the SMARTSHELL® motors

■ Available with optional digital or analog hall sensors

offers two Hall sensor modules for precise speed and position control. With these modules assembled to the rear end of the motors, the BDS (Brushless Digital Sensors) and BAS (Brushless Analog Sensors) options are available

Productt Code

for use with the appropriate drive electronics.

22 32 S 048 B SL

107

Motor diameter [mm] Motor length [mm] Shaft type Nominal voltage [V] Type of commutation (brushless) Version (sensorless)

2 2 32 S 0 4 8 B S L

Brushless DC-Servomotors

2,1 mNm

sensorless, with optional Hall Sensors SMARTSHELL® Technology

For combination with Gearheads: 15/3, 15/4, 15/5, 15/8, 16/7 Drive Electronics: BLD 4803-SL2P

Brushless DC-Motors

Series 1524 ... BSL 1524 U UN R P2 max.

d max.

006 BSL 6 4,30 8 54

009 BSL 9 9,7 8 53

012 BSL 12 15,3 8 54

Volt Ω W %

No-load speed No-load current (with shaft ø 2,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

18 500 0,110 4 0,140 9,5 .10-6

19 200 0,078 4 0,140 9,5 .10-6

19 900 0,062 4 0,140 9,5 .10-6

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

3 339 0,299 2,86 0,350

2 318 0,431 4,12 0,243

1 805 0,554 5,29 0,189

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

5 020 82 15 0,30 129

5 457 169 16 0,30 123

5 221 273 16 0,30 133

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max. 2,6 / 29,0 1 / 326

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (4,5 mm from mounting flange) – radial at 3 000/20 000 rpm (2,0 mm from mounting flange) – axial at 3 000/20 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

19 Thermal resistance 20 Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

25 Housing material 26 Weight 27 Direction of rotation

for series 1524 U ... B .. 5/4 5,5 / 4,5 for series 1524 E ... B .. 4 / 3,5 17

N N N N

0,015 0

mm mm

mounting face in aluminium, housing in plastic 20 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

62 000 2,1 0,91

62 000 2,0 0,61

62 000 2,1 0,48

rpm mNm A

at 36 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] ne max. = 62 000 rpm

70 000 60 000 50 000

n = 36 000 rpm

40 000

8 Watt

30 000 20 000

Me max. = 2,1 mNm

10 000

M [mNm]

0 0

0,5

1,0

1,5

2,0

2,5

3,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

108

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options Motors with digital sensors: 1524 U ... BDS, 1524 E ... BDS Motors with analog sensors: 1524 U ... BAS, 1524 E ... BAS

1524 U ... BSL sensorless Orientation with respect to cable ±5˚

3x M1,6 2 deep

+0,006

ø15 ±0,1

ø2 -0

ø6

+0 -0,012 A

+0,006

ø2 -0

ø4

+0,012 -0 0,6 deep

ø0,05 A 0,02 Brushless DC-Motors

3x120

ø10

7

0,75

7,4 ±0,3

7,35 ±0,3

24,2

max. 20

Connection

8,1 ±0,3

Function Phase A Phase B Phase C

1524 U ... BSL for combination with: Gearheads 16/7 Servo Amplifier BLD 4803-SL2P

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 26

Colour brown orange yellow

1524 E ... BSL sensorless Orientation with respect to cable ±5˚

3x M1,6 2 deep

+0,006

ø15 ±0,1

ø2 -0

+0

+0 -0,015 ø0,07 A 0,04

ø6 -0,012 ø2,38 A

3x120

ø4

+0,012 -0 0,6 deep

DIN 58400 m=0,2 z=9 x=+0,35

ø10

7

0,75

7,4 ±0,3

2,1

1,1

24,2

max. 20

Connection

4,3 ±0,3

Function Phase A Phase B Phase C

1524 E ... BSL for combination with: Gearheads 15/3, 15/4, 15/5, 15/8 Servo Amplifier BLD 4803-SL2P

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 26

Colour brown orange yellow

1524 U ... BAS, 1524 U ... BDS, 1524 E ... BAS, 1524 E ... BDS with Hall sensors

2

max.10

max.10

ø2,38

Inertia of magnet disc J = 0,025 gcm2

5x AWG 28

7

7 8,5

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 26 5 conductors, AWG 28

24,2 32,7

8,5

24,2 32,7

Connection

1524 U ... BDS for combination with: Servo Amplifier BLD 4803-SH4P, BLD 3502, BLD 5604

1524 E ... BDS for combination with: Servo Amplifier BLD 4803-SH4P, BLD 3502, BLD 5604

1524 U ... BAS for combination with: Motion Controllers MCBL 3003/06 S/C

1524 E ... BAS for combination with: Motion Controllers MCBL 3003/06 S/C

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

109

3x AWG 26

Function Phase A Phase B Phase C Hall sensor A Hall sensor B Hall sensor C +5V - Logical supply GND - Logical

Colour brown orange yellow green blue grey red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

5,7 mNm

sensorless, with optional Hall Sensors SMARTSHELL® Technology

For combination with Gearheads: 15/3, 15/4, 15/5, 15/8, 16/7 Drive Electronics: BLD 4803-SL2P

Brushless DC-Motors

Series 1536 ... BSL 1536 U UN R P2 max.

d max.

009 BSL 9 3,28 22 69

012 BSL 12 5,48 21 69

024 BSL 24 21,42 21 69

Volt Ω W %

No-load speed No-load current (with shaft ø 2,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

15 100 0,086 15 0,230 1,61 .10-5

15 900 0,069 15 0,230 1,61 .10-5

16 200 0,036 15 0,230 1,61 .10-5

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 739 0,575 5,49 0,182

1 364 0,733 7,00 0,143

698 1,433 13,68 0,073

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

1 039 102 6 0,55 269

1 068 170 6 0,55 275

1 093 654 6 0,55 274

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max.

19 Thermal resistance 20 Thermal time constant

1,9 / 20,9 2 / 430

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (4,5 mm from mounting flange) – radial at 3 000/20 000 rpm (2,0 mm from mounting flange) – axial at 3 000/20 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

Rth 1 / Rth 2 o w1 / o w2

25 Housing material 26 Weight 27 Direction of rotation

5,5 / 4,5 for series 1536 U ... B .. for series 1536 E ... B .. 6/5 4 / 3,5 17

N N N N

0,015 0

mm mm

mounting face in aluminium, housing in plastic 33 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

55 000 5,7 1,19

55 000 5,6 0,92

55 000 5,6 0,47

rpm mNm A

at 36 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] ne max. = 55 000 rpm

60 000 50 000

n = 36 000 rpm

40 000

22 Watt

30 000 20 000

Me max. = 5,7 mNm

10 000

M [mNm]

0 0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

110

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options Motors with digital sensors: 1536 U ... BDS, 1536 E ... BDS Motors with analog sensors: 1536 U ... BAS, 1536 E ... BAS

1536 U ... BSL sensorless Orientation with respect to cable ±5˚

+0,006

3x M1,6 2 deep

ø15 ±0,1

ø2 -0

ø6

+0 -0,012 A

+0,006 0 ø0,05 A 0,02

ø2

+0,012 -0 0,6 deep

Brushless DC-Motors

3x120

ø4

ø10

7

0,75

7,4 ±0,3

7,35 ±0,3 36,6

max. 20

Connection

8,1 ±0,3

Function Phase A Phase B Phase C

1536 U ... BSL for combination with: Gearheads 16/7 Servo Amplifier BLD 4803-SL2P

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 26

Colour brown orange yellow

1536 E ... BSL sensorless Orientation with respect to cable ±5˚

3x M1,6 2 deep

+0,006

+0

ø15 ±0,1

ø2 -0

+0 -0,015 ø0,07 A 0,04

ø6 -0,012 ø2,38 A

3x120

ø4

+0,012 -0 0,6 deep

DIN 58400 m=0,2 z=9 x=+0,35

ø10

7

0,75

7,4 ±0,3

1,1 36,6

max. 20

2,1 4,3 ±0,3

Connection Function Phase A Phase B Phase C

1536 E ... BSL for combination with: Gearheads 15/3, 15/4, 15/5, 15/8 Servo Amplifier BLD 4803-SL2P

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 26

Colour brown orange yellow

1536 U ... BAS, 1536 U ... BDS, 1536 E ... BAS, 1536 E ... BDS with Hall sensors

ø2

max.10

ø2,38

Inertia of magnet disc J = 0,025 gcm2

5x AWG 28

3x AWG 26

7 8,5

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 26 5 conductors, AWG 28

36,6 45,1

Connection

1536 U ... BDS for combination with: Servo Amplifier BLD 4803-SH4P, BLD 3502, BLD 5604

1536 E ... BDS for combination with: Servo Amplifier BLD 4803-SH4P, BLD 3502, BLD 5604

1536 U ... BAS for combination with: Motion Controllers MCBL 3003/06 S/C

1536 E ... BAS for combination with: Motion Controllers MCBL 3003/06 S/C

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

111

Function Phase A Phase B Phase C Hall sensor A Hall sensor B Hall sensor C +5V - Logical supply GND - Logical

Colour brown orange yellow green blue grey red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

6,5 mNm

sensorless, with optional Hall Sensors SMARTSHELL® Technology

For combination with Gearheads: 20/1, 22/2, 22/5, 22/6, 22/7, 23/1, 26/1, 30/1, 38/3 Drive Electronics: BLD 4803-SL2P

Brushless DC-Motors

Series 2232 ... BSL 2232 S UN R P2 max.

d max.

006 BSL 6 1,11 13 61

012 BSL 12 4,33 14 61

024 BSL 24 14,46 14 62

048 BSL 48 41,20 13 62

Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

15 600 0,294 18 0,389 4,05 .10-5

15 600 0,146 19 0,389 4,05 .10-5

17 100 0,085 21 0,389 4,05 .10-5

20 950 0,060 24 0,389 4,05 .10-5

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

2 752 0,363 3,47 0,288

1 370 0,730 6,97 0,143

751 1,331 12,71 0,079

460 2,175 20,77 0,048

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

880 38 17 1,92 96

851 153 17 1,92 99

855 509 17 1,92 108

912 1 337 18 1,92 124

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max. 3,56 / 17,2 3 / 645

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (6 mm from mounting flange) – radial at 3 000/20 000 rpm (4,5 mm from mounting flange) – axial at 3 000/20 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

19 Thermal resistance 20 Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

25 Housing material 26 Weight 27 Direction of rotation

28 / 24 29 / 25 21 / 16 45 0,015 0

mm mm

mounting face in aluminium, housing in plastic 60 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

N N N N

for series 2232 S ... B .. for series 2232 U ... B ..

39 000 6,3 2,17

39 000 6,5 1,10

39 000 6,5 0,60

39 000 6,2 0,36

rpm mNm A

at 20 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] 50 000

ne max. = 39 000 rpm

40 000 30 000

n = 20 000 rpm 14 Watt

20 000

Me max. = 6,5 mNm

10 000

M [mNm]

0 0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

112

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options Motors with digital sensors: 2232 S ... BDS, 2232 U ... BDS Motors with analog sensors: 2232 S ... BAS, 2232 U ... BAS

2232 S ... BSL sensorless Orientation with respect to cable ±5˚

3x

M2

ø3

3 deep

+0,006 0

0

ø22 ±0,1

ø10 -0,015 A

+0,006 0 ø0,05 A 0,02

ø3

ø6

+0,012 0 1 deep

Brushless DC-Motors

3x120

ø17 1 7,3 ±0,3

7

11,6 ±0,3

max. 20

32,4

Connection

12,6 ±0,3

Function Phase A Phase B Phase C

2232 S ... BSL for combination with: Gearheads 22/7, 23/1, 26/1, 30/1, 38/3 Servo Amplifier BLD 4803-SL2P

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 24

Colour brown orange yellow

2232 U ... BSL sensorless Orientation with respect to cable ±5˚

6x

M2

ø3

3,7 deep

+0,006 0

ø22 ±0,1

0

-0,004

A

ø0,05 A 0,02

ø7 -0,05 ø2 -0,009

ø6

+0,012 0 1 deep

6x 60

ø12

1 7,3 ±0,3

7

7,1 ±0,3

max. 20

36,1

Connection

8,1 ±0,3

Function Phase A Phase B Phase C

2232 U ... BSL for combination with: Gearheads 20/1, 22/2, 22/5, 22/6 Servo Amplifier BLD 4803-SL2P

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 24

Colour brown orange yellow

2232 S ... BAS, 2232 S ... BDS, 2232 U ... BAS, 2232 U ... BDS with Hall sensors Inertia of Magnet disc J = 0,025 gcm2

ø3

ø15

ø2

7

Connection max. 20

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 24 5 conductors, AWG 26

8,5 2232 S ... BDS for combination with: Servo Amplifier BLD 4803-SH4P, BLD 5606, BLD 5608

2232 U ... BDS for combination with: Servo Amplifier BLD 4803-SH4P, BLD 5606, BLD 5608

2232 S ... BAS for combination with: Motion Controllers MCBL 3003/06 S/C

2232 U ... BAS for combination with: Motion Controllers MCBL 3003/06 S/C

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

113

Function Phase A Phase B Phase C Hall sensor A Hall sensor B Hall sensor C +5V - Logical supply GND - Logical

Colour brown orange yellow green blue grey red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

15,5 mNm

sensorless, with optional Hall Sensors SMARTSHELL® Technology

For combination with Gearheads: 20/1, 22/2, 22/5, 22/6, 22/7, 23/1, 26/1, 30/1, 38/3 Drive Electronics: BLD 4803-SL2P

Brushless DC-Motors

Series 2248 ... BSL 2248 S UN R P2 max.

d max.

012 BSL 12 1,15 32 74

024 BSL 24 4,20 33 75

048 BSL 48 17,00 31 74

Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

13 700 0,217 85 0,640 8,31 .10-5

14 100 0,114 90 0,640 8,31 .10-5

14 600 0,060 86 0,640 8,31 .10-5

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 167 0,857 8,18 0,122

599 1,668 15,93 0,063

311 3,215 30,70 0,033

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

164 71 6 3,36 252

158 276 5 3,36 269

172 1 048 6 3,36 256

rpm/mNm μH ms gcm2 . 103rad/s2

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

_ max. 4,5 / 12,6 7 / 710

K/W s

21 Operating temperature range

– 30 ... +125

°C

22 Shaft bearings 23 Shaft load max.: – radial at 3 000/20 000 rpm (6 mm from mounting flange) – radial at 3 000/20 000 rpm (4,5 mm from mounting flange) – axial at 3 000/20 000 rpm (push-on only) – axial at standstill (push-on only) 24 Shaft play: – radial ≤ – axial =

ball bearings, preloaded

19 Thermal resistance 20 Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

25 Housing material 26 Weight 27 Direction of rotation

31 / 23 32 / 24 18 / 13 45 0,015 0

mm mm

mounting face in aluminium, housing in plastic 95 electronically reversible

g

Recommended values - mathematically independent of each other 28 Speed up to 2) ne max. 29 Torque up to 1) 2) Me max. 1) 2) 30 Current up to Ie max. 1) 2)

N N N N

for series 2248 S ... B .. for series 2248 U ... B ..

32 000 15,2 2,14

32 000 15,5 1,12

32 000 14,8 0,56

rpm mNm A

at 20 000 rpm thermal resistance Rth 2 by 55% reduced

n [rpm] ne max. = 32 000 rpm

35 000 30 000 25 000

n = 20 000 rpm

20 000

33 Watt

15 000 10 000

Me max. = 15,5 mNm

5 000

M [mNm]

0 0

4,0

8,0

12,0

16,0

20,0

24,0

Recommended area for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

114

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Options Motors with digital sensors: 2248 S ... BDS, 2248 U ... BDS Motors with analog sensors: 2248 S ... BAS, 2248 U ... BAS

2248 S ... BSL sensorless Orientation with respect to cable ±5˚

3x

M2

3 deep

ø3

+0,006 0

0

ø22 ±0,1

ø10 -0,015 A

+0,006 0 ø0,05 A 0,02

ø3

ø6

+0,012 0 1 deep

Brushless DC-Motors

3x120

ø17 1 7,4 ±0,3

7

11,6 ±0,3

max. 20

48

12,6 ±0,3

Function Phase A Phase B Phase C

2248 S ... BSL for combination with: Gearheads 22/7, 23/1, 26/1, 30/1, 38/3 Servo Amplifier BLD 4803-SL2P

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 24

Connection Colour brown orange yellow

2248 U ... BSL sensorless Orientation with respect to cable ±5˚ +0,006 ø3 0 6x M2 3,7 deep

ø22 ±0,1

0

-0,004

A

ø0,05 A 0,02

ø7 -0,05 ø2 -0,009

ø6

+0,012 0 1 deep

6x 60

ø12

1 7,4 ±0,3

7

7,1 ±0,3

max. 20

51,7

8,1 ±0,3

Function Phase A Phase B Phase C

2248 U ... BSL for combination with: Gearheads 20/2, 22/2, 22/5, 22/6 Servo Amplifier BLD 4803-SL2P

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 24

Connection Colour brown orange yellow

2248 S ... BAS, 2248 S ... BDS, 2248 U ... BAS, 2248 U ... BDS with Hall sensors Inertia of magnet disc J = 0,025 gcm2

ø3

ø15

ø2

7

Connection max. 20

Cable Single wires, material PTFE Length 300 mm ± 15 mm 3 conductors, AWG 24 5 conductors, AWG 26

8,5 2248 S ... BDS for combination with: Servo Amplifier BLD 4803-SH4P, BLD 5606, BLD 5608

2248 U ... BDS for combination with: Servo Amplifier BLD 4803-SH4P, BLD 5606, BLD 5608

2248 S ... BAS for combination with: Motion Controllers MCBL 3003/06 S/C

2248 U ... BAS for combination with: Motion Controllers MCBL 3003/06 S/C

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

115

Function Phase A Phase B Phase C Hall sensor A Hall sensor B Hall sensor C +5V - Logical supply GND - Logical

Colour brown orange yellow green blue grey red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Notes

116

Brushless DC-Servomotors 4 Pole Technology

1

2 3 4 5

6

Brushless DC-Motors

12

Brushless DC-Servomotor 4 Pole Technology 7 1

Rear cover

2

PCB

3

Retaining ring

4

Spring washer

5

Ball bearing

6

Coil with Hall sensors

7

Housing

8

Stator laminations

9

Magnet

10

Shaft

11

Front flange

12

Flat cable

8

9

10 5

11

3

Features

Benefits

The brushless servo motors in the FAULHABER BX4

■ High torque 4 Pole Technology

series are characterised by their innovative design, which

■ Compact, robust design

comprises just a few individual components.

■ Modular concept

Despite their compact dimensions, the 4 pole magnet

■ Available with integrated encoders and speed controllers

technology gives these drives a high continuous torque

■ High reliability and operational lifetime

with smooth running characteristics and a particularly

■ No sparking

low noise level. The modular rotor system makes it pos-

■ No cogging

sible to tune the performance of the motor to the higher

■ Dynamically balanced rotor

torque or higher speed needs of the application.

■ Simple design

Thanks to the electronic commutation of the drives, the lifetime is much longer in comparison with mechanically

Product Code

commutated motors. Alongside the basic version in which the commutation is provided by an external control, the highly flexible BX4 series also includes advanced specifications with integrated speed controller or integrated encoder. The motors come standard with digital Hall sensors.

22 32 S 012 BX4

117

Motor diameter [mm] Motor length [mm] Shaft type Nominal voltage [V] Type of commutation (brushless), 4 Pole Technology

2 2 32 S 0 1 2 B X 4

Brushless DC-Servomotors

6,3 / 12 mNm

4 Pole Technology

For combination with Gearheads: 22F Encoders: IE3 ... Drive Electronics: SC 2804

Brushless DC-Motors

Series 2232 ... BX4 2232 S UN R P2 max.

d max.

012 BX4 S 12 3,5 3,8 60,9

024 BX4 S 24 12,4 3,9 61,7

012 BX4 12 3,5 7,6 66,9

024 BX4 24 12,4 7,7 67,6

Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

13 200 0,163 27,3 0,6 5,5 ·10-5

14 000 0,088 29,4 0,6 5,5 ·10-5

6 600 0,112 55,7 0,85 1,5 ·10-4

7 000 0,061 59,9 0,85 1,5 ·10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 173 0,852 8,14 0,123

616 1,623 15,50 0,065

579 1,728 16,50 0,061

304 3,288 31,40 0,032

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

Δn/ΔM L

_ max.

504 130 22 4,2 65

493 470 22 4,2 70

123 120 6,7 5,2 107

120 440 6,5 5,2 115

rpm/mNm μH ms gcm2 ·103rad/s2

Rth 1 / Rth 2 o w1 / o w2

2 / 17 4,1 / 360

2 / 17 4,1 / 370

K/W s

– 40 ... + 100

– 40 ... + 100

°C

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) 2) Efficiency

5 6 7 8 9

19 Thermal resistance 20 Thermal time constant

om J

21 Operating temperature range 22 Shaft bearings 23 Shaft load max.: – radial at 3 000 rpm (4 mm from mounting flange) – axial at 3 000 rpm – axial at standstill 24 Shaft play: – radial – axial 25 26 27 28

ball bearings, preloaded

≤ =

Housing material Weight Direction of rotation Number of pole pairs

20 2 20

N N N

0,015 0

mm mm

stainless steel 70 electronically reversible 2

Recommended values - mathematically independent of each other 29 Speed up to 2) ne max. 30 Torque up to 1) 2) Me max. 1) 2) 31 Current up to Ie max. 1) 2)

g

16 500 6,2 0,94

16 500 6,3 0,50

10 400 11,8 0,90

10 400 12 0,48

rpm mNm A

at 5 000 rpm thermal resistance Rth 2 not reduced

Note: The diagram indicates the maximum speed in relation to the available torque at the output shaft for a given ambient temperature of 22°C. The motor can provide more power with adequate cooling (for ex. Rth 2 reduction of –55%). The maximum available torque and speed will be reduced if the ambient temperature is higher than 22°C and / or the motor is thermally insulated to the ambient environment.

Watt

n [rpm] 5

30 000

10

15

20

2232...BX4 S 2232...BX4 S (Rth2 -55%)

25 000 20 000

2232...BX4 2232...BX4 (Rth2 -55%)

15 000 10 000 5 000

M [mNm]

0 0

5

10

15

20

Recommended areas for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

118

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

2232 ... BX4 and BX4 S M 1:1

Orientation with respect to motor cable ± 10 °

ø17

-0,006

0

ø22 ±0,1

ø3 -0,010

ø10 -0,05

ø0,06 A 0,02

A

M2 3 deep

Brushless DC-Motors

6x

ø0,2 A

175 ±5

0

6x 60°

1 -0,05 3 ±0,5

33,8

12,2 ±0,3 1

8

2232 S ... BX4 and BX4 S

Options connector variants Motor: AWG 26 / PVC ribbon cable (8-conductors), with connector MicroFit

2

4

6

8

1

3

5

7

Full product description Examples: 2232S024BX4 2232S012BX4S

Cable and connection information Cable Jacket Material: PVC 8 conductors, AWG 26 grid 1,27 mm wires tinned

2 ±0,5 1

UDD

Connection

Δ Coil winding 3 x 120°

S

UDD

8

N N S UDD UDD

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

119

No. 1 2 3 4 5 6 7 8

Function Phase C Phase B Phase A GND UDD (2,2 ... 18V DC) Hall sensor C Hall sensor B Hall sensor A

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

7 / 13 mNm

with integrated Encoder 4 Pole Technology

For combination with Gearheads: 22F

Brushless DC-Motors

Series 2232 ... BX4 IE3 2232 S UN R P2 max.

d max.

012 BX4 S 12 3,5 4,4 60,9

024 BX4 S 012 BX4 24 12 12,4 3,5 4,5 8,8 61,7 66,9

024 BX4 24 12,4 8,9 67,6

IE3 Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

13 200 0,163 27,3 0,6 5,5 ·10-5

14 000 0,088 29,4 0,6 5,5 ·10-5

6 600 0,112 55,7 0,85 1,5 ·10-4

7 000 0,061 59,9 0,85 1,5 ·10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 173 0,852 8,14 0,123

616 1,623 15,50 0,065

579 1,728 16,50 0,061

304 3,288 31,40 0,032

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

Δn/ΔM L

_ max.

504 130 22 4,2 65

493 470 22 4,2 70

123 120 6,7 5,2 107

120 440 6,5 5,2 115

rpm/mNm μH ms gcm2 ·103rad/s2

Rth 1 / Rth 2 o w1 / o w2

2 / 13 4,1 / 274

2 / 13 4,1 / 283

K/W s

– 40 ... + 85

– 40 ... + 85

°C

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) 2) Efficiency

5 6 7 8 9

om J

19 Thermal resistance 20 Thermal time constant 21 Operating temperature range 22 Shaft bearings 23 Shaft load max.: – radial at 3 000 rpm (4 mm from mounting flange) – axial at 3 000 rpm – axial at standstill 24 Shaft play: – radial – axial 25 26 27 28

ball bearings, preloaded

≤ =

20 2 20

N N N

0,015 0

mm mm

stainless steel 81 electronically reversible 2

Housing material Weight Direction of rotation Number of pole pairs

Recommended values - mathematically independent of each other 29 Speed up to 2) ne max. 30 Torque up to 1) 2) Me max. 1) 2) 31 Current up to Ie max. 1) 2)

g

16 700 7 0,99

16 700 7 0,52

10 500 13 0,95

10 500 13 0,50

rpm mNm A

at 5 000 rpm thermal resistance Rth 2 not reduced M 1:1 Orientation with respect to motor cable ± 10 °

ø17

ø22 ±0,1

M2 3 deep 6x

0

ø10 -0,05 A

ø0,2 A

6x 60°

32

20° 162 ±10

49,6 ±0,6

-0,006

ø3 -0,010

PVC ribbon cable 6 x AWG 28, 1,27 mm

ø0,06 A 0,02

1

1

0

1 -0,05 12,2 ±0,3

6

8

PVC ribbon cable 8 x AWG 26, 1,27 mm

2232 ... BX4(S) IE3

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

120

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Magnetic Encoder Lines per revolution Frequency range 1), up to Signal output, square wave

N f

IE3 - 32 32 15 2 + 1 Index

IE3 - 128 128 60

IE3 - 256 256 120

Supply voltage Current consumption, typical 2) Output current, max. allowable 3)

UDD Enc IDD Enc IOUT

4,5 ... 5,5 typ. 16, max. 21 4

V DC mA mA

Index Pulse width 4) Phase shift, channel A to B 4) Signal rise/fall time, max. (CLOAD = 50 pF)

P0 \ tr/tf

90 ± 45 90 ± 45 0,1 / 0,1

°e °e μs

Inertia of encoder magnet

J

0,08

gcm2

kHz channels

Brushless DC-Motors

IE3 - 64 64 30

1)

speed (rpm) = f (Hz) x 60/N UDD Enc = 5 V: with unloaded outputs UDD Enc = 5 V: low logic level < 0,4 V, high logic level > 4,5 V: CMOS- and TTL compatible 4) at 5 000 rpm 2) 3)

Features Options

In this version, the brushless DC servomotors have an encoder with 3 output channels. A permanent magnet on the shaft creates a moving magnetic field which is captured using a single-chip angular sensor and further processed. At the encoder outputs, two 90° phase-shifted rectangular signals are available with up to 256 impulses and an index impulse per motor revolution.

Connector variants Encoder: AWG 28 / PVC ribbon cable (6-conductors), with connector PicoBlade (pitch 1,25 mm)

The encoder is available in a variety of different resolutions and is suitable for speed control and positioning applications. The motor and encoder cables are connected via separate ribbon cables.

Motor: AWG 26 / PVC ribbon cable (8-conductors), with connector MicroFit

A detailed instruction manual is included with the product or is available online at www.faulhaber.com

1

2

4

6

8

1

3

5

7

Full product description Examples: 2232S024BX4 IE3-256 2232S012BX4S IE3-32

Output signals / Circuit diagram / Connector information Output circuit

Output signals with clockwise rotation as seen from the shaft end

Connection Encoder

1

6

Amplitude

P

A

UDD Enc

Φ

A, B, I B

1

Po

GND Enc

8

Connection Motor

I

Rotation

Caution: Incorrect lead connection will damage the motor electronics!

Admissible deviation of phase shift / Index pulse: \ Po 6Po = 90° – 180° ” 45° 6\ = 90° – 180° ” 45° P * P *

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

121

No. 1 2 3 4 5 6

Function n.c. Channel I (Index) GND Enc UDD Enc Channel B Channel A

No. 1 2 3 4 5 6 7 8

Function Phase C Phase B Phase A GND UDD (2,2 ... 18 V DC) Hall sensor C Hall sensor B Hall sensor A

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

7 / 13 mNm

with integrated Encoder and Line Driver 4 Pole Technology

For combination with Gearheads: 22F

Brushless DC-Motors

Series 2232 ... BX4 IE3 L 2232 S UN R P2 max.

d max.

012 BX4 S 12 3,5 4,4 60,9

024 BX4 S 012 BX4 24 12 12,4 3,5 4,5 8,8 61,7 66,9

024 BX4 24 12,4 8,9 67,6

IE3 L Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

13 200 0,163 27,3 0,6 5,5 ·10-5

14 000 0,088 29,4 0,6 5,5 ·10-5

6 600 0,112 55,7 0,85 1,5 ·10-4

7 000 0,061 59,9 0,85 1,5 ·10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 173 0,852 8,14 0,123

616 1,623 15,50 0,065

579 1,728 16,50 0,061

304 3,288 31,40 0,032

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

Δn/ΔM L

_ max.

504 130 22 4,2 65

493 470 22 4,2 70

123 120 6,7 5,2 107

120 440 6,5 5,2 115

rpm/mNm μH ms gcm2 ·103rad/s2

Rth 1 / Rth 2 o w1 / o w2

2 / 13 4,1 / 274

2 / 13 4,1 / 283

K/W s

– 40 ... + 85

– 40 ... + 85

°C

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) 2) Efficiency

5 6 7 8 9

om J

19 Thermal resistance 20 Thermal time constant 21 Operating temperature range 22 Shaft bearings 23 Shaft load max.: – radial at 3 000 rpm (4 mm from mounting flange) – axial at 3 000 rpm – axial at standstill 24 Shaft play: – radial – axial 25 26 27 28

ball bearings, preloaded

≤ =

20 2 20

N N N

0,015 0

mm mm

stainless steel 81 electronically reversible 2

Housing material Weight Direction of rotation Number of pole pairs

Recommended values - mathematically independent of each other 29 Speed up to 2) ne max. 30 Torque up to 1) 2) Me max. 1) 2) 31 Current up to Ie max. 1) 2)

g

16 700 7 0,99

16 700 7 0,52

10 500 13 0,95

10 500 13 0,50

rpm mNm A

at 5 000 rpm thermal resistance Rth 2 not reduced M 1:1 Orientation with respect to motor cable ± 10 °

ø17

M2 3 deep

ø22 ±0,1

6x

0

ø10 -0,05 A

ø0,2 A

6x 60°

32

20° 150 ±10

49,6 ±0,6

-0,006

ø3 -0,010

PVC ribbon cable 8 x AWG 26, 1,27 mm

ø0,06 A 0,02

8

1

0

1 -0,05 12,2 ±0,3

1

10

PVC ribbon cable 10 x AWG 28, 1,27 mm

2232 ... BX4(S) IE3 L

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

122

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Magnetic Encoder Lines per revolution Frequency range 1), up to Signal output, square wave

N f

IE3 - 32 L IE3 - 64 L IE3 - 128 L 32 64 128 15 30 60 2 + 1 index and complementary outputs

IE3 - 256 L 256 120

Supply voltage Current consumption, typical 2)

UDD Enc IDD Enc

4,5 ... 5,5 typ. 17, max. 25

V DC mA

Index Pulse width 3) Phase shift, channel A to B 3)

P0 \

90 ± 45 90 ± 45

°e °e

Inertia of encoder magnet

J

0,08

gcm2

Brushless DC-Motors

kHz channels

1)

speed (rpm) = f (Hz) x 60/N UDD Enc = 5 V: with unloaded outputs 3) at 5 000 rpm 2)

Notes: The output signals are TIA-422 compatible. Examples of Line driver Receivers: ST26C32ABD (STM), ST26C32IP16 (EXAR), DS26C32AT (NSC). Features Options

In this version, the brushless DC servomotors have an encoder with 3 output channels. A permanent magnet on the shaft creates a moving magnetic field which is captured using a single-chip angular sensor and further processed. At the encoder outputs, two 90° phase-shifted rectangular signals are available with up to 256 impulses and an index impulse per motor revolution.

Connector variants Encoder: AWG 28 / PVC ribbon cable (10-conductors), with connector DIN-41651 (pitch 2,54 mm)

The Line Driver version has differential signal outputs (TIA-422). Differential signals reduce ambient interference and are suitable for applications with high ambient interference. The line driver amplifies the encoder signal which means that long cables can be used without signal degradation. Differential signal outputs must be decoded by the appropriate receiver module.

Motor: AWG 26 / PVC ribbon cable (8-conductors), with connector MicroFit

1

9

2

10

2

4

6

8

1

3

5

7

Full product description Examples:

The encoder is available in a variety of different resolutions and is suitable for speed control and positioning applications. The motor and encoder cables are connected via separate ribbon cables.

2232S024BX4 IE3-256 L 2232S012BX4S IE3-32 L

A detailed instruction manual is included with the product or is available online at www.faulhaber.com

Output signals / Circuit diagram / Connector information Output circuit

Output signals with clockwise rotation as seen from the shaft end

8

1

A

P

Amplitude

Connection Motor

A

A

A

B

Φ

B

B I

Po

B

I

1

10

Connection Encoder

I

UDD Enc I

GND Enc

Rotation

Caution: Incorrect lead connection will damage the motor electronics!

Admissible deviation of phase shift / Index pulse: \ Po 6Po = 90° – 180° ” 45° 6\ = 90° – 180° ” 45° P * P *

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

123

No. 1 2 3 4 5 6 7 8

Function Phase C Phase B Phase A GND UDD (2,2 ... 18V DC) Hall sensor C Hall sensor B Hall sensor A

No. 1 2 3 4 5 6 7 8 9 10

Function n.c. UDD Enc GND Enc n.c. Channel A Channel A Channel B Channel B Channel I (Index) Channel I (Index)

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

14 / 23 mNm

4 Pole Technology

For combination with Gearheads: 22F Encoders: IE3 ... Drive Electronics: SC 2804

Brushless DC-Motors

Series 2250 ... BX4 2250 S UN R P2 max.

d max.

024 BX4 S 24 5,9 8,8 70,4

024 BX4 24 5,9 14,6 75,0

Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

10 500 0,105 84,7 0,75 1,4 ·10-4

6 000 0,072 149,0 1,20 2,4 ·10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

451 2,218 21,1 0,047

259 3,860 36,9 0,027

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

Δn/ΔM L

_ max.

125,6 250 6,97 5,3 160

41,4 240 4,30 10,0 149

rpm/mNm μH ms gcm2 ·103rad/s2

Rth 1 / Rth 2 o w1 / o w2

1,2 / 14 4,2 / 443

1,2 / 14 4,2 / 566

K/W s

– 40 ... + 100

– 40 ... + 100

°C

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) 2) Efficiency

5 6 7 8 9

19 Thermal resistance 20 Thermal time constant

om J

21 Operating temperature range 22 Shaft bearings 23 Shaft load max.: – radial at 3 000 rpm (4 mm from mounting flange) – axial at 3 000 rpm – axial at standstill 24 Shaft play: – radial – axial 25 26 27 28

ball bearings, preloaded

≤ =

Housing material Weight Direction of rotation Number of pole pairs

20 2 20

N N N

0,015 0

mm mm

stainless steel

Recommended values - mathematically independent of each other 29 Speed up to 2) ne max. 30 Torque up to 1) 2) Me max. 1) 2) 31 Current up to Ie max. 1) 2)

90

106

g

12 300 14 0,79

9 000 23 0,74

rpm mNm A

electronically reversible 2

at 5 000 rpm thermal resistance Rth 2 not reduced

Note: The diagram indicates the maximum speed in relation to the available torque at the output shaft for a given ambient temperature of 22°C. The motor can provide more power with adequate cooling (for ex. Rth 2 reduction of –55%). The maximum available torque and speed will be reduced if the ambient temperature is higher than 22°C and / or the motor is thermally insulated to the ambient environment.

Watt

n [rpm]

10 15

25 000

25

35

2250...BX4 S 2250...BX4 S (Rth2 -55%)

20 000 15 000

2250...BX4 2250...BX4 (Rth2 -55%)

10 000 5 000

M [mNm]

0 0

10

20

30

40

Recommended areas for continuous operation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

124

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

2250 ... BX4 and BX4 S M 1:1

Orientation with respect to motor cable ± 10 °

ø17

-0,006

0

ø22 ±0,1

ø3 -0,010

ø10 -0,05

ø0,06 A 0,02

A

M2 3 deep

Brushless DC-Motors

6x

ø0,2 A

0

6x 60°

175 ±5

1 -0,05 3 ±0,5

51,8

12,2 ±0,3 1

8

2250 S ... BX4 and BX4 S

Options connector variants Motor: AWG 26 / PVC ribbon cable (8-conductors), with connector MicroFit

2

4

6

8

1

3

5

7

Full product description Examples: 2250S024 BX4 2250S024 BX4 S

Cable and connection information Cable Jacket Material: PVC 8 conductors, AWG 26 grid 1,27 mm wires tinned

2 ±0,5 1

UDD

Connection

Δ Coil winding 3 x 120°

S

UDD

8

N N S UDD UDD

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

125

No. 1 2 3 4 5 6 7 8

Function Phase C Phase B Phase A GND UDD (2,2 ... 18V DC) Hall sensor C Hall sensor B Hall sensor A

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

15 / 25 mNm

with integrated Encoder 4 Pole Technology

For combination with Gearheads: 22F

Brushless DC-Motors

Series 2250 ... BX4 IE3 2250 S UN R P2 max.

d max.

024 BX4 S 24 5,9 10,3 70,4

024 BX4 24 5,9 17,3 75,0

IE3 Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

10 500 0,105 84,7 0,75 1,4 ·10-4

6 000 0,072 149,0 1,2 2,4 ·10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

451 2,218 21,1 0,047

259 3,860 36,9 0,027

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

Δn/ΔM L

_ max.

125,6 250 6,97 5,3 160

41,4 240 4,30 10 149

rpm/mNm μH ms gcm2 ·103rad/s2

Rth 1 / Rth 2 o w1 / o w2

1,2 / 10,5 4,2 / 332

1,2 / 10,5 4,2 / 424

K/W s

– 40 ... + 85

– 40 ... + 85

°C

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) 2) Efficiency

5 6 7 8 9

19 Thermal resistance 20 Thermal time constant

om J

21 Operating temperature range 22 Shaft bearings 23 Shaft load max.: – radial at 3 000 rpm (4 mm from mounting flange) – axial at 3 000 rpm – axial at standstill 24 Shaft play: – radial – axial 25 26 27 28

ball bearings, preloaded

≤ =

20 2 20

N N N

0,015 0

mm mm

stainless steel

Housing material Weight Direction of rotation Number of pole pairs

Recommended values - mathematically independent of each other 29 Speed up to 2) ne max. 30 Torque up to 1) 2) Me max. 1) 2) 31 Current up to Ie max. 1) 2)

101

117

g

12 500 15 0,84

9 200 25 0,79

rpm mNm A

electronically reversible 2

at 5 000 rpm thermal resistance Rth 2 not reduced M 1:1 Orientation with respect to motor cable ± 10 °

ø17

M2 3 deep

ø22 ±0,1

6x

0

ø10 -0,05

50

20° 162 ±10

67,6 ±0,6

PVC ribbon cable 6 x AWG 28, 1,27 mm

ø0,06 A 0,02

A

ø0,2 A

6x 60°

-0,006

ø3 -0,010

1

1

0

1 -0,05 12,2 ±0,3

6

8

PVC ribbon cable 8 x AWG 26, 1,27 mm

2250 ... BX4(S) IE3

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

126

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Magnetic Encoder Lines per revolution Frequency range 1), up to Signal output, square wave

N f

IE3 - 32 32 15 2 + 1 Index

IE3 - 128 128 60

IE3 - 256 256 120

Supply voltage Current consumption, typical 2) Output current, max. allowable 3)

UDD Enc IDD Enc IOUT

4,5 ... 5,5 typ. 16, max. 21 4

V DC mA mA

Index Pulse width 4) Phase shift, channel A to B 4) Signal rise/fall time, max. (CLOAD = 50 pF)

P0 \ tr/tf

90 ± 45 90 ± 45 0,1 / 0,1

°e °e μs

Inertia of encoder magnet

J

0,08

gcm2

kHz channels

Brushless DC-Motors

IE3 - 64 64 30

1)

speed (rpm) = f (Hz) x 60/N UDD Enc = 5 V: with unloaded outputs UDD Enc = 5 V: low logic level < 0,4 V, high logic level > 4,5 V: CMOS- and TTL compatible 4) at 5 000 rpm 2) 3)

Features Options

In this version, the brushless DC servomotors have an encoder with 3 output channels. A permanent magnet on the shaft creates a moving magnetic field which is captured using a single-chip angular sensor and further processed. At the encoder outputs, two 90° phase-shifted rectangular signals are available with up to 256 impulses and an index impulse per motor revolution.

Connector variants Encoder: AWG 28 / PVC ribbon cable (6-conductors), with connector PicoBlade (pitch 1,25 mm)

The encoder is available in a variety of different resolutions and is suitable for speed control and positioning applications. The motor and encoder cables are connected via separate ribbon cables.

Motor: AWG 26 / PVC ribbon cable (8-conductors), with connector MicroFit

A detailed instruction manual is included with the product or is available online at www.faulhaber.com

1

2

4

6

8

1

3

5

7

Full product description Examples: 2250S024BX4 IE3-256 2250S024BX4S IE3-32

Output signals / Circuit diagram / Connector information Output circuit

Output signals with clockwise rotation as seen from the shaft end

Connection Encoder

1

6

Amplitude

P

A

UDD Enc

Φ

A, B, I B

1

Po

GND Enc

8

Connection Motor

I

Rotation

Caution: Incorrect lead connection will damage the motor electronics!

Admissible deviation of phase shift / Index pulse: \ Po 6Po = 90° – 180° ” 45° 6\ = 90° – 180° ” 45° P * P *

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

127

No. 1 2 3 4 5 6

Function n.c. Channel I (Index) GND Enc UDD Enc Channel B Channel A

No. 1 2 3 4 5 6 7 8

Function Phase C Phase B Phase A GND UDD (2,2 ... 18 V DC) Hall sensor C Hall sensor B Hall sensor A

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotors

15 / 25 mNm

with integrated Encoder and Line Driver 4 Pole Technology

For combination with Gearheads: 22F

Brushless DC-Motors

Series 2250 ... BX4 IE3 L 2250 S UN R P2 max.

d max.

024 BX4 S 24 5,9 10,3 70,4

024 BX4 24 5,9 17,3 75,0

IE3 L Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

10 500 0,105 84,7 0,75 1,4 ·10-4

6 000 0,072 149,0 1,2 2,4 ·10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

451 2,218 21,1 0,047

259 3,860 36,9 0,027

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

Δn/ΔM L

_ max.

125,6 250 6,97 5,3 160

41,4 240 4,30 10 149

rpm/mNm μH ms gcm2 ·103rad/s2

Rth 1 / Rth 2 o w1 / o w2

1,2 / 10,5 4,2 / 332

1,2 / 10,5 4,2 / 424

K/W s

– 40 ... + 85

– 40 ... + 85

°C

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) 2) Efficiency

5 6 7 8 9

19 Thermal resistance 20 Thermal time constant

om J

21 Operating temperature range 22 Shaft bearings 23 Shaft load max.: – radial at 3 000 rpm (4 mm from mounting flange) – axial at 3 000 rpm – axial at standstill 24 Shaft play: – radial – axial 25 26 27 28

ball bearings, preloaded

≤ =

20 2 20

N N N

0,015 0

mm mm

stainless steel

Housing material Weight Direction of rotation Number of pole pairs

Recommended values - mathematically independent of each other 29 Speed up to 2) ne max. 30 Torque up to 1) 2) Me max. 1) 2) 31 Current up to Ie max. 1) 2)

101

117

g

12 500 15 0,84

9 200 25 0,79

rpm mNm A

electronically reversible 2

at 5 000 rpm thermal resistance Rth 2 not reduced M 1:1 Orientation with respect to motor cable ± 10 °

ø17

M2 3 deep

ø22 ±0,1

6x

0

ø10 -0,05

50

20° 150 ±10

67,6 ±0,6

PVC ribbon cable 8 x AWG 26, 1,27 mm

ø0,06 A 0,02

A

ø0,2 A

6x 60°

-0,006

ø3 -0,010

8

1

0

1 -0,05 12,2 ±0,3

1

10

PVC ribbon cable 10 x AWG 28, 1,27 mm

2250 ... BX4(S) IE3 L

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

128

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Magnetic Encoder Lines per revolution Frequency range 1), up to Signal output, square wave

N f

IE3 - 32 L IE3 - 64 L IE3 - 128 L 32 64 128 15 30 60 2 + 1 index and complementary outputs

IE3 - 256 L 256 120

Supply voltage Current consumption, typical 2)

UDD Enc IDD Enc

4,5 ... 5,5 typ. 17, max. 25

V DC mA

Index Pulse width 3) Phase shift, channel A to B 3)

P0 \

90 ± 45 90 ± 45

°e °e

Inertia of encoder magnet

J

0,08

gcm2

Brushless DC-Motors

kHz channels

1)

speed (rpm) = f (Hz) x 60/N UDD Enc = 5 V: with unloaded outputs 3) at 5 000 rpm 2)

Notes: The output signals are TIA-422 compatible. Examples of Line driver Receivers: ST26C32ABD (STM), ST26C32IP16 (EXAR), DS26C32AT (NSC). Features Options

In this version, the brushless DC servomotors have an encoder with 3 output channels. A permanent magnet on the shaft creates a moving magnetic field which is captured using a single-chip angular sensor and further processed. At the encoder outputs, two 90° phase-shifted rectangular signals are available with up to 256 impulses and an index impulse per motor revolution.

Connector variants Encoder: AWG 28 / PVC ribbon cable (10-conductors), with connector DIN-41651 (pitch 2,54 mm)

The Line Driver version has differential signal outputs (TIA-422). Differential signals reduce ambient interference and are suitable for applications with high ambient interference. The line driver amplifies the encoder signal which means that long cables can be used without signal degradation. Differential signal outputs must be decoded by the appropriate receiver module.

Motor: AWG 26 / PVC ribbon cable (8-conductors), with connector MicroFit

1

9

2

10

2

4

6

8

1

3

5

7

Full product description Examples:

The encoder is available in a variety of different resolutions and is suitable for speed control and positioning applications. The motor and encoder cables are connected via separate ribbon cables.

2250S024BX4 IE3-256 L 2250S024BX4S IE3-32 L

A detailed instruction manual is included with the product or is available online at www.faulhaber.com

Output signals / Circuit diagram / Connector information Output circuit

Output signals with clockwise rotation as seen from the shaft end

8

1

A

P

Amplitude

Connection Motor

A

A

A

B

Φ

B

B I

Po

B

I

1

10

Connection Encoder

I

UDD Enc I

GND Enc

Rotation

Caution: Incorrect lead connection will damage the motor electronics!

Admissible deviation of phase shift / Index pulse: \ Po 6Po = 90° – 180° ” 45° 6\ = 90° – 180° ” 45° P * P *

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

129

No. 1 2 3 4 5 6 7 8

Function Phase C Phase B Phase A GND UDD (2,2 ... 18V DC) Hall sensor C Hall sensor B Hall sensor A

No. 1 2 3 4 5 6 7 8 9 10

Function n.c. UDD Enc GND Enc n.c. Channel A Channel A Channel B Channel B Channel I (Index) Channel I (Index)

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors with integrated Drive Electronics 1

2

Brushless DC-Motors

4

5 3

Brushless DC-Motor 6

with integrated Drive Electronics 1

Rear cover

2

Drive Electronics

3

Flat cable

4

Housing

5

Coil

6

Spring washer

7

Ball bearing

8

Washer

9

Magnet

10

Shaft

7 8

9

11

Rotor back-iron

12

Front flange

10

11

7

12

Features

Benefits

These new brushless DC-Motors with integrated drive

■ System FAULHABER®, ironless stator coil

electronics combine the advantages of the System

■ High reliability and operational lifetime

FAULHABER skew wound coil technology with the lifetime

■ Wide range of linear torque / speed performance

benefits of electronic commutation. The motors are based

■ Programmable motor characteristics

on a three-phase ironless coil, a bipolar rare-earth perma-

■ No sparking

nent magnet and sensorless electronic commutation.

■ No cogging

®

■ Dynamically balanced rotor

To define the position of the rotor in relation to the

■ Intergrated electronics

rotating field of the coil, the back-EMF is measured and

■ Simple design

processed. The position detection of the rotor is sensorless.

■ Available with optional digital or analog Hall sensors

The design features the basic linear characteristics over a wide speed range and the absence of cogging torque just

Product Code

like the traditional brush commutated DC-Motors in the FAULHABER program. The rotating magnet and iron flux path avoid iron losses and results in higher efficiency. FAULHABER BX4 motors are available with an integrated speed controller for applications where exceptionally high torque performance is necessary.

31 53 K 012 BRC

130

Motor diameter [mm] Motor length [mm] Shaft type Nominal voltage [V] Type of commutation (brushless), with integrated electronics

3153 K 012 BRC

Brushless DC-Motors

1,8 mNm

with integrated Drive Electronics

Nominal voltage No-load speed No-load current (with shaft ø 2,0 mm)

1525 U UN no Io

009 BRC 9 16 300 0,047

012 BRC 12 15 800 0,037

015 BRC 15 15 500 0,033

Volt rpm A

Starting torque Torque constant Slope of n-M curve Rotor inertia

MA kM 6n/6M J

3,9 5,12 2 540 2,2

4,1 7,06 2 260 2,2

4,1 8,95 2 270 2,2

mNm mNm/A rpm/mNm gcm2

Operating temperature range

– 25 ... + 85

Shaft bearings Shaft load max.: – shaft diameter – radial at 3 000 rpm (3 mm from mounting face) – axial at 3 000 rpm – axial at standstill Shaft play: ≤ – radial = – axial

ball bearings, preloaded

Housing material Weight Direction of rotation

°C

2,0 8 0,8 10

mm N N N

0,015 0

mm mm

mounting face in aluminium, housing in plastic 16 reversible

g

Recommended values - mathematically independent of each other ne Speed range Me max. Torque up to 1) Ie max. Current up to (thermal limits) 1) 1) Specification applies to Unsoll = 10 V Electronic Supply voltage Current

Up I max.

Up

6

3

FG

min. 4 ... max. 18 15

V DC mA

Circuit diagram An additional external pull-up resistor can be added to improve the rise time.

GND

0

ø15 -0,1

0

+0,005

A

ø0,05 A 0,02

ø6 -0,05 ø2 0

M 1,6 2 deep

ø0,2 A

rpm mNm A

Caution: IOUT max. 15 mA must not be exceeded!

Orientation with respect to motor cable not defined

2x

1 000 – 16 000 1,8 1,8 0,31 0,25

*

Ω

22k

1

1,7 0,40

ø10 1

PVC ribbon cable 6 x AWG 28

25 ±1,5

5x 1

Cable connection No. 1 (red) 2 3 4 5 6

Function : electronic supply Up : coil supply Umot GND : ground : Speed command Unsoll DIR : direction of rotation FG : frequency output

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

150 ±10

6 7 ±0,4

1525 U 4 V DC - 18 V DC 1,7 V DC - 18 V DC 0 - 10 V DC | > 10 V DC - max. UP not defined on ground or U < 0,5 V = CCW, U > 3 V = CW (max. Up, I max. 15 mA) 3 lines per revolution

131

2 6

1

Caution: Incorrect lead connection will damage the motor electronics!

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Series 1525 ... BRC

Brushless DC-Motors

3,2 mNm

with integrated Drive Electronics

Nominal voltage 1) No-load speed No-load current (with shaft ø 3,0 mm)

1935 S UN no Io

006 BRE 6 7 400 0,050

009 BRE 9 7 650 0,035

012 BRE 12 7 400 0,027

Volt rpm A

Starting torque Torque constant Slope of n-M curve Rotor inertia

MA kM 6n/6M J

2,9 6,32 1 470 8,1

4,0 9,74 1 140 8,1

4,4 13,70 1 110 8,1

mNm mNm/A rpm/mNm gcm2 °C

Operating temperature range

0 ... + 70

Shaft bearings Shaft load max.: – shaft diameter – radial at 3 000 rpm (3 mm from mounting face) – axial at 3 000 rpm – axial at standstill Shaft play: ≤ – radial = – axial

ball bearings, preloaded

Housing material Weight Direction of rotation 1)

The supply voltage range for the integrated electronics is:

3 10 1 150

mm N N N

0,015 0

mm mm

mounting face in aluminium, housing in plastic 33 not reversible - clockwise rotation, viewed from the front face

g

min. 4,5 ... max. 16

V DC

Recommended values - mathematically independent of each other ne Speed range Me max. Torque up to Ie max. Current up to (thermal limits)

006 BRE

7 500 5 000 2 500 1 600 1

2

009 BRE

3

4

10 000 7 500 5 000 2 500 1 600

torque mNm

0

1

2

3

4

torque mNm

rpm mNm A

1 600 – 10 000 2,9 3,2 0,40 0,33

012 BRE

12 500 speed - rpm

10 000

0

2,4 0,50

12 500 speed - rpm

12 500 speed - rpm

Brushless DC-Motors

Series 1935 ... BRE

10 000 7 500 5 000 2 500 1 600 0

1

2

3

4

torque mNm

Recommended speed - torque range Orientation with respect to motor leadwires not defined

4x

0

M 2 3 deep

ø0,3 A

-0,004

ø19 -0,1

ø3 -0,009 0

ø7 -0,05

ø15

ø0,05 A 0,02

A

PVC leadwires 0,14 mm2

+ red - black

5,5 ø12

1

7 ±2 145 ±10

35 ±0,6

10 ±0,3 11 ±0,3

Caution: Incorrect lead connection will damage the motor electronics!

1935 S

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

132

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

28 mNm

with integrated Drive Electronics

Nominal voltage No-load speed No-load current (with shaft ø 4,0 mm)

3153 K UN no Io

009 BRC 9 5 200 0,142

012 BRC 12 5 200 0,107

024 BRC 24 5 200 0,057

Volt rpm A

Starting torque Torque constant Slope of n-M curve Rotor inertia

MA kM 6n/6M J

42 16,22 45,8 118

50 21,80 42,9 118

50 43,59 41,4 118

mNm mNm/A rpm/mNm gcm2 °C

Operating temperature range

– 25 ... + 85

Shaft bearings Shaft load max.: – shaft diameter – radial at 3 000 rpm (3 mm from mounting face) – axial at 3 000 rpm – axial at standstill Shaft play: ≤ – radial = – axial

ball bearings, preloaded

Housing material Weight Direction of rotation

4,0 30 5 50

mm N N N

0,015 0

mm mm

mounting face in aluminium, housing in plastic 155 reversible

g

Recommended values - mathematically independent of each other ne Speed range Me max. Torque up to 1) Ie max. Current up to (thermal limits) 1) 1) Specification applies to Unsoll = 10 V Electronic Supply voltage Current

Up I max.

Up

6

rpm mNm A

V DC mA

min. 5 ... max. 30 25

Circuit diagram An additional external pull-up resistor can be added to improve the rise time.

*

Ω

22k

1

1 000 – 6 500 28 28 1,46 0,75

27 1,90

FG

Caution: IOUT max. 15 mA must not be exceeded!

3

GND

Orientation with respect to motor cable not defined 0 4x ø31 -0,2 M 3 4 deep ø0,3 A

0

Scale reduced

+0,004

ø16 - 0,05 ø4 - 0,001 A

ø0,05 A 0,02

ø22

200 ±10 5x 1,27

PVC ribbon cable 6 x AWG 26

Cable connection No. 1 (red) 2 3 4 5 6

Function : electronic supply Up : coil supply Umot GND : ground : Speed command Unsoll DIR : direction of rotation FG : frequency output

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

1,4 53

±0,5

12,6 ±0,3

5 V DC - 30 V DC 0 V DC up to 2 · UN (max. 30 V DC) 0 - 10 V DC | > 10 V DC - max. UP not defined on ground or U < 0,5 V = CCW, U > 3 V = CW 15 mA) (max. Up, I max. 3153 K 3 lines per revolution

133

2

14 ±0,3

3153 K

6

1

Caution: Incorrect lead connection will damage the motor electronics!

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Series 3153 ... BRC

Brushless DC-Servomotors

7 / 13 mNm

with integrated Speed Controller 4 Pole Technology

For combination with Gearheads: 22F, 23/1, 26A

Brushless DC-Motors

Series 2232 ... BX4 SC 2232 S UN R P2 max.

d max.

012 BX4 S 12 3,5 4,4 60,9

024 BX4 S 012 BX4 24 12 12,4 3,5 4,5 8,8 61,7 66,9

024 BX4 24 12,4 8,9 67,6

SC Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

13 200 0,163 27,3 0,6 5,5 ·10-5

14 000 0,088 29,4 0,6 5,5 ·10-5

6 600 0,112 55,7 0,85 1,5 ·10-4

7 000 0,061 59,9 0,85 1,5 ·10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

1 173 0,852 8,14 0,123

616 1,623 15,50 0,065

579 1,728 16,50 0,061

304 3,288 31,40 0,032

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

Δn/ΔM L

_ max.

504 130 22 4,2 65

493 470 22 4,2 70

123 120 6,7 5,2 107

120 440 6,5 5,2 115

rpm/mNm μH ms gcm2 ·103rad/s2

Rth 1 / Rth 2 o w1 / o w2

2 / 13 4,1 / 274

2 / 13 4,1 / 283

K/W s

– 40 ... + 85

– 40 ... + 85

°C

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

om J

19 Thermal resistance 20 Thermal time constant 21 Operating temperature range 22 Shaft bearings 23 Shaft load max.: – radial at 3 000 rpm (4 mm from mounting flange) – axial at 3 000 rpm – axial at standstill 24 Shaft play: – radial – axial 25 26 27 28

ball bearings, preloaded

≤ =

Housing material Weight Direction of rotation Number of pole pairs

20 2 20

N N N

0,015 0

mm mm

stainless steel 77 electronically reversible 2

Recommended values - mathematically independent of each other 29 Speed up to 2) ne max. 30 Torque up to 1) 2) Me max. 1) 2) 31 Current up to Ie max. 1) 2)

g

16 700 7 0,99

16 700 7 0,52

10 500 13 0,95

rpm mNm A

10 500 13 0,50

at 5 000 rpm thermal resistance Rth 2 not reduced M 1:1 Orientation with respect to motor cable ± 10 °

ø17

M2 3

ø22 ±0,1

deep

6x

0

ø10 -0,05 A

ø0,2 A

6x 60°

32

20° 150 ±10

49,6 ±0,6

-0,006

ø3 -0,010 ø0,06 A 0,02

6

0

1 -0,05 12,2 ±0,3

1

PVC ribbon cable 6 x AWG 28, 1,27 mm

2232 ... BX4(S) SC

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

134

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Speed range electronic Scanning range

1) 2)

012 BX4 S 96 95 1 2 0,020

SC kHz % A A A

400 ... 50 000 2) 500

rpm μs

fPWM

d

Imax Iel nel TA

024 BX4 S 96 95 0,5 1

012 BX4 96 95 1 2

024 BX4 96 95 0,5 1

at 22°C ambient temperature and max. 60°C motor temperature respectively speed depend on motor operating voltage

Connection information Connection 1 “UP”: power supply electronic

UP = 5 ... 28 V

Connection 2 “Umot”:

power supply electronic coil

Umot = 6 ... 28 V

Connection 3 “GND”:

ground

ground

input voltage input resistance set speed value

Uin = 0 ... 10 V Rin • 5 kƻ per 1 V 2 000 Uin < 0,15 V » motor stops Uin > 0,3 V » motor starts

direction of rotation input resistance

to ground or level < 0,5 V » counterclockwise open or level > 3 V » clockwise Rin • 10 kƻ

frequency output

with max. UP » Imax = 15 mA; open collector with 22 k1 pull-up resistor 6 lines per revolution

Connection 4 “Unsoll”: – analog input

Connection 5 “DIR”: – analog input

Connection 6 “FG”: – digital output

012 BX4 S

Features In this variant, the brushless DC servomotors have an integrated Speed Controller. The motor is commutated using Hall sensors integrated into the motor. Speed control is via a PI regulator. The Speed Controller has a current limiting device which limits the maximum motor current if the thermal load is too high. Twice the continuous current is possible over a short time.

024 BX4 S

012 BX4

024 BX4

SC

2 000

1 000

1 000

rpm

The following parameters can be changed: current limit and regulator parameters. Full product description Examples:

Using the “FAULHABER Motion Manager” software, the customer can modify the Speed Controller to special conditions of use.

2232S024BX4 SC 2232S012BX4S SC

Circuit diagram / Connection information Output circuit

Options

Up Ω

22k

1

6

3

FG

GND

Cable connection

Connector variant AWG 26 / PVC ribbon cable with connector Molex Micro-Fit 3.0: 43025-0600

2

4

6

1

3

5

6

* An additional external pull-up resistor can be added to improve the rise time.

1

No. 1 2 3 4 5 6

Function UP Umot GND Unsoll DIR FG

Caution: Incorrect lead connection will damage the motor electronics!

Caution: IOUT max. 15 mA must not be exceeded!

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Connection

connector pin assignment:

135

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Speed Controller PWM switching frequency Efficiency Max. continuous output current 1) Max. peak output current Total standby current

Brushless DC-Servomotors

15 / 25 mNm

with integrated Speed Controller 4 Pole Technology

For combination with Gearheads: 22F

Brushless DC-Motors

Series 2250 ... BX4 SC 2250 S UN R P2 max.

d max.

024 BX4 S 24 5,9 10,3 70,4

024 BX4 24 5,9 17,3 75,0

SC Volt Ω W %

No-load speed No-load current (with shaft ø 3,0 mm) Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

10 500 0,105 84,7 0,75 1,4 ·10-4

6 000 0,072 149,0 1,2 2,4 ·10-4

rpm A mNm mNm mNm/rpm

10 11 12 13

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

451 2,218 21,1 0,047

259 3,860 36,9 0,027

rpm/V mV/rpm mNm/A A/mNm

14 15 16 17 18

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

Δn/ΔM L

_ max.

125,6 250 6,97 5,3 160

41,4 240 4,30 10 149

rpm/mNm μH ms gcm2 ·103rad/s2

Rth 1 / Rth 2 o w1 / o w2

1,2 / 10,5 4,2 / 332

1,2 / 10,5 4,2 / 424

K/W s

– 40 ... + 85

– 40 ... + 85

°C

1 2 3 4

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

5 6 7 8 9

19 Thermal resistance 20 Thermal time constant

om J

21 Operating temperature range 22 Shaft bearings 23 Shaft load max.: – radial at 3 000 rpm (4 mm from mounting flange) – axial at 3 000 rpm – axial at standstill 24 Shaft play: – radial – axial 25 26 27 28

Housing material Weight Direction of rotation Number of pole pairs

ball bearings, preloaded

≤ =

20 2 20

N N N

0,015 0

mm mm

stainless steel

Recommended values - mathematically independent of each other 29 Speed up to 2) ne max. 30 Torque up to 1) 2) Me max. 1) 2) 31 Current up to Ie max. 1) 2)

97

117

g

12 500 15 0,84

9 200 25 0,79

rpm mNm A

electronically reversible 2

at 5 000 rpm thermal resistance Rth 2 not reduced M 1:1 Orientation with respect to motor cable ± 10 °

ø17

M2 3 deep

ø22 ±0,1

6x

0

ø10 -0,05

ø0,06 A 0,02

A

ø0,2 A

6x 60°

50

20° 150 ±10

67,6 ±0,6

-0,006

ø3 -0,010

6

0

1 -0,05 12,2 ±0,3

1

PVC ribbon cable 6 x AWG 28, 1,27 mm

2250 ... BX4(S) SC

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

136

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Speed range electronic Scanning range

1) 2)

024 BX4 S 96 95 0,8 1,6 0,020

SC kHz % A A A

400 ... 50 000 2) 500

rpm μs

fPWM

d

Imax Iel nel TA

024 BX4 96 95 0,8 1,6

at 22°C ambient temperature and max. 60°C motor temperature respectively speed depend on motor operating voltage

Connection information Connection 1 “UP”: power supply electronic

UP = 5 ... 28 V

Connection 2 “Umot”:

power supply electronic coil

Umot = 6 ... 28 V

Connection 3 “GND”:

ground

ground

input voltage input resistance set speed value

Uin = 0 ... 10 V Rin • 5 kƻ 2 000 per 1 V Uin < 0,15 V » motor stops Uin > 0,3 V » motor starts

direction of rotation input resistance

to ground or level < 0,5 V » counterclockwise open or level > 3 V » clockwise Rin • 10 kƻ

frequency output

with max. UP » Imax = 15 mA; open collector with 22 k1 pull-up resistor 6 lines per revolution

Connection 4 “Unsoll”: – analog input

Connection 5 “DIR”: – analog input

Connection 6 “FG”: – digital output

024 BX4 S

Features In this variant, the brushless DC servomotors have an integrated Speed Controller. The motor is commutated using Hall sensors integrated into the motor. Speed control is via a PI regulator. The Speed Controller has a current limiting device which limits the maximum motor current if the thermal load is too high. Twice the continuous current is possible over a short time.

024 BX4

SC

1 000

rpm

The following parameters can be changed: current limit and regulator parameters. Full product description Examples:

Using the “FAULHABER Motion Manager” software, the customer can modify the Speed Controller to special conditions of use.

2250S024BX4 SC 2250S024BX4S SC

Circuit diagram / Connection information Output circuit

Options

Up Ω

22k

1

6

3

FG

GND

Cable connection

Connector variant AWG 26 / PVC ribbon cable with connector Molex Micro-Fit 3.0: 43025-0600

2

4

6

1

3

5

6

* An additional external pull-up resistor can be added to improve the rise time.

1

No. 1 2 3 4 5 6

Function UP Umot GND Unsoll DIR FG

Caution: Incorrect lead connection will damage the motor electronics!

Caution: IOUT max. 15 mA must not be exceeded!

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Connection

connector pin assignment:

137

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Speed Controller PWM switching frequency Efficiency Max. continuous output current 1) Max. peak output current Total standby current

Brushless Flat DC-Micromotors penny-motor® Technology

1

Brushless DC-Motors

2

3

4

5

Brushless Flat DC-Micromotor 1

PCB with coil

2

Bearing support

3

Ball bearing

4

Magnet

5

Rotor disc

6

Shaft

6

Features

Benefits

The extremely flat design of the brushless penny-motor®

■ Ultra flat design

is made possible by innovative coil design. Instead of being

■ No cogging and precise speed control

mechanically wound, it is fabricated by means of photo-

■ Exceptional power to volume ratio

lithographic processes. High power neodymium magnets

■ Very low current consumption

(NdFeB) and a precise bearing system complete the motors

■ High operational lifetime

for exceptional torque and smooth performance despite their extremely flat dimensions. Motors with integrated spur gears are available with coaxial or eccentric shafts for higher torque in a compact form. The motors are electronically commutated for extremely long operational lifetime. They are particularly

Product Code

suited for applications where precise speed control and continuous duty operation are a must; for example in high precision optical filters, choppers or scanning devices.

12 02 H 004 B H

138

Motor diameter [mm] Motor height [mm] Shaft type Nominal voltage [V] Type of commutation (brushless) Hall sensors

1202 H 004 BH

Brushless Flat DC-Micromotors

0,16 mNm

penny-motor® Technology

For combination with Drive Electronics: BLD 1501 H, BLD 05002 S, SC 1801 each with adapter board

1202 H UN R P2 max.

d max.

004 BH 4 16 0,652 51

006 BH 6 70 0,492 42

V 1 W %

No-load speed No-load current Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

41 740 0,028 0,222 0,003 0,52 ·10-6

37 600 0,015 0,124 0,003 0,52 ·10-6

rpm A mNm mNm mNm/rpm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

10 587 0,094 0,902 1,109

6 431 0,156 1,485 0,673

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Terminal inductance, phase-phase Mechanical time constant Rotor inertia Angular acceleration

6n/6M L

187 793 26 246 0,125 18 ·103

303 121 58 397 0,125 10 ·103

rpm/mNm μH ms gcm2 rad/s2

Thermal resistance Operating temperature range

Rth 1 / Rth 2

Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

om J

_ max.

Shaft bearing Shaft load max.: – radial at 10 000 rpm (at shaft step ø 3,4 mm) – axial at 10 000 rpm (axial push-on only) – axial at standstill (axial push-on only) Shaft play: – radial – axial

K/W °C

0 / 94 -30 ... + 85 ball bearing

) )

0,6 1 1

N N N

0,011 0,060

mm mm

Number of pole pairs

4

Weight Direction of rotation

1,1 electronically reversible

g

Recommended values - mathematically independent of each other ne max. Speed up to Me max. Torque up to 2) 3) 3) 4) Ie max. Thermal current up to 1)

at 40 000 rpm

2)

at 10 000 rpm

3)

40 000 0,16 0,199

thermal resistance Rth 2 not reduced

Scale enlarged  12 ±0,05 5)

4)

ø3,4 ±0,05

4x ø1,05 ±0,05 4x10 ±0,05

+0,01

ø1 0

3 ±0,05 6) 0,2 ±0,01 30 ± 0,6 3,2 ±0,1

+0,05 4,8 -0,06 5) 6)

5,4 ± 0,5

also available with round stator ø 12 ± 0,05 also available with 1 mm output shaft length

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

rpm mNm A

at standstill

ø11 ±0,04

1,48±0,12 0,56±0,15

40 000 0,12 0,095

0,2 ±0,03 15

1

Connection No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Function Star point Phase A Phase A Phase B Phase B Phase C Phase C Hall sensor In + Hall sensor In analog Hall A Out + analog Hall A Out analog Hall B Out + analog Hall B Out analog Hall C Out + analog Hall C Out -

Connectors 15-pole; 0,3 mm pitch; e.g.: Hirose: FH23-15S-0.3SHAW (05)

1202 H

139

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Series 1202 ... BH

Brushless DC-Gearmotors

5 mNm

penny-motor® Technology

For combination with Drive Electronics: BLD 1501 H, BLD 05002 S, SC 1801 each with adapter board

Brushless DC-Motors

Series 1307 ... BH Integrated Motor Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

1307 C UN R P2 max.

d max.

004 BH 4 16 0,206 52

006 BH 6 70 0,157 43

V 1 W %

No-load speed No-load current Stall torque

no Io MH

37 630 0,026 0,249

34 770 0,015 0,136

rpm A mNm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

9 502 0,105 1,005 0,995

5 902 0,169 1,618 0,618

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inertia

6n/6M J

151 272 0,16

255 336 0,16

rpm/mNm gcm2

Drive system backlash, at no-load Housing material / Geartrain material Shaft bearing Shaft load max.: – radial at 10 000 rpm (1,5 mm from bearing) – axial at 10 000 rpm – axial at standstill Shaft play: – radial (3 mm from bearing face) – axial Operating temperature range

plastic / metal combination ball bearings + sleeve bearings ) ) )

0,5 0,1 5

N N N

) )

0,12 0,2 0 ... + 85

mm mm °C

Recommended values - mathematically independent of each other ne max Speed up to Ie max Current up to (thermal limits) 2) 3) 1)

at 10 000 min-1

2)

3)

thermal resistance Rth2 not reduced

10 000 0,205

reduction ratio (rounded)

output speed up to nmax rpm

weight with motor

6:1 11 : 1 32 : 1 93 : 1 270 : 1 659 : 1

1 639 893 310 107 37 15

2,1 2,2 2,3 2,4 2,5 3,5

g

004 BH 006 BH output torque output torque continuous intermittent continuous intermittent direction efficiency operation operation operation operation of rotation (reversible) Mmax. Mmax. Mmax. Mmax. mNm mNm mNm mNm % 1,0 1,6 4,4 5,0 5,0 5,0

1,9 3,3 8,9 15,0 15,0 15,0

0,8 1,3 3,5 5,0 5,0 5,0

1,5 2,6 7,1 15,0 15,0 15,0

Scale enlarged

2 x ø0,85 – 1,65 ±0,05 deep ( for M1) +0,05 4,8 -0,06

= ≠ = ≠ = ≠

88 82 77 72 68 64

Connection

4,568

+0,05 ø12,5 –0,10

–0,005 ø5 –0,020

+0,004 ø1,5 +0,001

3,482

4,568

min-1 A

at standstill

Integrated Gearhead

ø1,5 H7 – 1,35 -0,05 deep

10 000 0,098

1,439 7,06 ±0,19 3,473 ±0,055 5,507 3,2 ±0,1

30 ± 0,6 5,82 ±0,1*

1,2 ±0,07 5,4 ±0,5

0,2 ±0,03 1307 C

15

1

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Function Star point Phase A Phase A Phase B Phase B Phase C Phase C Hall sensor In+ Hall sensor Inanalog Hall A Out+ analog Hall A Outanalog Hall B Out+ analog Hall B Outanalog Hall C Out+ analog Hall C Out-

Connectors 15-pole; 0,3 mm pitch; e.g.: Hirose: FH23-15S-0.3SHAW (05)

* also available with 2,82 mm output shaft length

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

140

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Gearmotors

5 mNm

penny-motor® Technology

For combination with Drive Electronics: BLD 1501 H, BLD 05002 S, SC 1801 each with adapter board

Integrated Motor Nominal voltage Terminal resistance, phase-phase Output power 1) Efficiency

1309 C UN R P2 max.

d max.

004 BH 4 16 0,206 52

006 BH 6 70 0,157 43

V 1 W %

No-load speed No-load current Stall torque

no Io MH

37 630 0,026 0,249

34 770 0,015 0,136

rpm A mNm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

9 502 0,105 1,005 0,995

5 902 0,169 1,618 0,618

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve Rotor inertia

6n/6M J

151 272 0,16

255 336 0,16

rpm/mNm gcm2

Drive system backlash, at no-load Housing material / Geartrain material Shaft bearing Shaft load max.: – radial at 10 000 rpm (1,5 mm from bearing) – axial at 10 000 rpm – axial at standstill Shaft play: – radial (3 mm from bearing face) – axial Operating temperature range

plastic / metal combination ball bearings + sleeve bearings ) ) )

0,5 0,1 5

N N N

) )

0,12 0,2 0 ... + 85

mm mm °C

Recommended values - mathematically independent of each other ne max Speed up to Ie max Current up to (thermal limits) 2) 3) 1)

at 10 000 min-1

2)

thermal resistance Rth2 not reduced

3)

output speed up to nmax rpm 592 323 111 39 13 5

17 : 1 31 : 1 90 : 1 259 : 1 749 : 1 1 830 : 1

4

weight with motor g 2,6 2,7 2,8 2,9 2,9 3,0

Connection +0,05

4

–0,005

ø12,5 –0,10 ø10 , 2 ±0,03 ø5 –0,020

4

2 x ø0,85 – 1,9 +0,1 deep ( for M1)

+0,004

9,6 ± 0,23 3,2 ±0,1

ø1,5 +0,001 30 ±0,6

1,92 ± 0,08 5,82 ±0,1*

1,18 ± 0,07 +0,05 4,8 -0,06

min-1 A

004 BH 006 BH output torque output torque continuous intermittent continuous intermittent direction efficiency operation operation operation operation of rotation (reversible) Mmax. Mmax. Mmax. Mmax. mNm mNm mNm mNm % 2,5 5,0 2,0 3,9 ≠ 82 4,3 8,5 3,4 6,8 = 77 5,0 15,0 5,0 15,0 ≠ 72 5,0 15,0 5,0 15,0 = 68 5,0 15,0 5,0 15,0 ≠ 64 5,0 15,0 5,0 15,0 = 60

Scale enlarged

ø1 H7 – 1,9 +0,1 deep

10 000 0,098

at standstill

Integrated Gearhead reduction ratio (rounded)

10 000 0,205

5,4 ± 0,5

* also available with 2,82 mm output shaft length

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

0,2 ±0,03 15

1309 C

141

1

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Function Star point Phase A Phase A Phase B Phase B Phase C Phase C Hall sensor In+ Hall sensor Inanalog Hall A Out+ analog Hall A Outanalog Hall B Out+ analog Hall B Outanalog Hall C Out+ analog Hall C Out-

Connectors 15-pole; 0,3 mm pitch; e.g.: Hirose: FH23-15S-0.3SHAW (05)

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

Series 1309 ... BH

Brushless Flat DC-Micromotors

0,09 mNm

with integrated Position Controller and 12 Bit Encoder penny-motor® Technology

Series 2209 T 005 B SC ...

Brushless DC-Motors

Drive Operating voltage Standby current @ UDD = 5V Max. power consumption (start-up) @ UDD = 5V

2209 T UDD IDD 0 IDD max

12 Bit 2,7 ... 5,5 10 100

Operating temperature range

–30 ... + 85

Shaft bearings Shaft load max.: – radial at 5 000 rpm (6,2 mm from mounting flange) – axial at 5 000 rpm (push-on only) – axial at standstill (push-on only) Shaft play: – radial

ball bearings, preloaded



Housing material Weight

Volt mA mA °C

1 1 1

N N N

0,011

mm

aluminium 8,5

g

Integrated motor Terminal resistance, phase-phase Output power 1) Efficiency

R P2 max.

d max.

40 0,06 13

Ω W %

No-load speed No-load current Stall torque Friction torque, static Friction torque, dynamic

no Io MH Co Cv

19 620 80 0,102 0,025 4,5 ·10-6

rpm A mNm mNm mNm/rpm

Speed constant Back-EMF constant Torque constant Current constant

kn kE kM kI

6 763 0,148 1,412 0,708

rpm/V mV/rpm mNm/A A/mNm

Slope of n-M curve

Δn/ΔM

191 585

rpm/mNm

Mechanical time constant Rotor inertia Angular acceleration

om

2 001 1 1,03

ms gcm2 ·103rad/s2

10 000 0,094 0,090

rpm mNm A

J

_ max.

Recommended values - mathematically independent of each other Speed up to ne max. Torque up to 2) 3) Me max. 2) 3) Max. current up to Ie max. 1) at

10 000 rpm

2) at

standstill

3) thermal

resistance Rth 2 not reduced M 1:1 +0,05

6,9

ø21,95 -0,15 0,25 ±0,5

10

-0,006

ø1,5 -0,009

ø6 h7

8,5 ±0,1 5 ±0,1

1

ø14 3x120°

1

9

7,5

3x M3 2,3 deep

2209 T 005 B SC ...

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

142

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Integrated position regulator Steps per revolution Regulator type Recovery range without step loss

1 024 PID / PD ± 22,5

steps / 360°

Integrated encoder Resolution Precision Reproducibility Index impulse per revolution Absolut values angle range Absolut values margin

12 ± 0,5 2 4 90 10

Bit ° LSB pulses / 360° ° Bit

Gerneral information A high-resolution encoder, a position regulator and an electronically commuted flat motor are integrated into the 2209T005B SC 12 Bit.

Speed regulator with setpoint setting by analog voltage: A PI speed regulator (four-quadrant) with analog setpoint setting can be integrated instead of the position regulator on request (special version).

This Drive System with integrated electronics performs the following functions: Position regulation:

Various inputs and outputs are available:

The target position is specified via two digital lines ("Clock"and "Direction"). The position moves on one step in the specified direction per clock impulse. The regulator is set internally, but can be modified to customer requirements as a PID regulator (special version).

Using the "quadrature / serial" input, it is possible to output the encoder signal as a quadrature signal or via the serial interface.

A very precise synchronism can be achieved by applying an even cycle. The speed accuracy only depends on the accuracy of the specified cycle.

The absolute value of the encoder can be read out via the serial interface.

At the outputs "Qa" and "Qb", if the quadrature signal is selected, a 90° phase-shifted output signal is available. The index signal emits a pulse every 90° of a rotation (see diagram).

The direction of rotation of the motor can be changed using the "Direction" input. If the LOW Signal is set, the drive turns counterclockwise. If the input is not switched on, it is set to HIGH via an internal pull-up resistance and the drive turns clockwise.

Even lowest speeds incl. standstill are stable controlled. The complete bidirectional speed range is continuously usable. Integrated encoder:

The drive can be operated like a stepper motor using the "Clock" input: every time the flank of the input signal rises, the rotor is turned further by one position.

The actual position of the rotor is determined by the integrated encoder and used internally for position-control and sinuscommutation. A complete revolution is subdivided into four segments (90° each). The absolute position within one segment is measured with 10 Bit resolution. It is not possible to differentiate the segments from each other. The encoder position can be read out externally via a digital interface. Either a quadratur interface (Qa, Qb, Index) or a serial interface (SDA, SCL, SCTL) is available. The system switches between the two types with a special input.

If a very good synchronism is to be achieved, the "Clock" can be provided with a continuous cycle signal. The cycle of the required speed can be created directly, a ramp is not necessary, since the integrated electronic system takes over the start-up of the motor.

Output signals / Circuit diagram / Connector information Output signals

Connection diagramm

Plug connection Connection

Amplitude

+2,7V ... +5V

10

Qa Microcontroller etc.

Qb

Index 1022 1023

0

1

2

3

4

5

6

Quadratur/Seriell Qa/SDA Qb/SCL Index/SCTL

fclk

+5V GND Quadratur/Seriell Qa/SDA Qb/SCL Index/SCTL Clock Direction Dir

Drive 2209

7

No. 1 2 3 4 5 6 7 8 9 10

Function Direction Clock Index / SCTL Qb / SCL Qa / SDA (reserved) (reserved) Quadratur / Serial GND UDD

Connector FFC / FPC connector; 10-pole; 0,5 mm pitch; size 0,3 mm

Rotation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

1

143

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Motors

°

Interface Description of the serial interface

Closing sequence: The end is characterised in that the “SDA” signal is set back to HIGH without a falling flank of the “SCL” signal. This transition must be recognised by the master. The drive is then ready for a new start sequence.

General settings:

Correcting problems after data transmission: If the “SDA” signal is not set back to HIGH automatically in the closing sequence after transmission, it is possible that the drive or master has lost the status (e.g. due to a brownout or reset). This state can be corrected by supplying the drive with a cycle at the “SCL” signal (max. 10 cycles) until the “SDA” signal changes back to HIGH.

Start sequence: To start communication, the “SDA” signal must be set to LOW by the master (customer-side), while “SCL” remains HIGH. After this sequence the master must switch the “SDA” signal to an input and the drive takes over the function of driving the signal. Transmission sequence: During data transfer 10 bits are transferred beginning with the MSB. The drive sets the new value after every falling flank of “SCL”. When the 10 bits have been transferred, the drive stops controlling the “SDA” signal.

Output signals

Amplitude

Brushless DC-Motors

For serial communication the two signal lines “Quadrature/Serial” and “Index/SCTL” must be connected to GND. The 2209 drive acts as slave in serial transmission, i.e. it cannot actively drive the “SCL” signal.

tcl tch > 0,2μs > 0,2μs

start

end

SCL

Bit 9 (MSB)

tstt > 0,4μs

Bit 0 (LSB)

SDA

tcd 0,01 - 0,2μs

Time

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

144

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Accessory - Adapter board with ribbon cable Accessory optional: Adapter board with ribbon cable Part number: 6611.00016

Brushless DC-Motors

Thin Profile Brushless Motor Series 2209 ... B SC 12 Bit

Ribbon cable

Adapter board

Accessory - Combination possibility General:

Integrated oscillator:

The purpose of the adapter board is to facilitate quick start-up of the 2209...B SC.

The integrated oscillator is activated (ON) and deactivated (OFF) with the DIP switch S1 "Clk". The speed of the 2209...B SC can be changed between approximately 40 rpm (potentiometer completely to the left) and approximately 2 200 rpm (potentiometer completely to the right) by turning the potentiometer P1 "Freq". The direction of rotation of the motor can be changed with the DIP switch S1 "Dir".

The drive 2209...B SC and the adapter board are connected to each other with a 10-pin ribbon cable. The slot in the two sockets is arranged asymmetrically. The contact side of the ribbon cable must be aligned to the narrow side of the socket. The standard assigned connections according to the aforementioned description in this datasheet are easily accessible at the adapter board via marked screw terminals. As an alternative to an external clock generator, the adapter board has an integrated oscillator.

Motor speed: To expand the speed range, an external frequency fclk can be connected at the terminal K1 “CLK”. The DIP switch S1"Clk" must be set to position (OFF) for this.

When the oscillator has been activated, the operating voltage need only to be supplied at the screw terminals K1 "GND" and "UDD" on the adapter board in order to operate the 2209...B SC.

The resultant motor speed is calculated as follows:

Note: Place the adapter board on a non-conducting surface for start-up.

n=

ƒclk 60 sec · 1 024 1 min

Accessory - Dimensional drawing and connection information Connection information 4x

Terminal K1 Udd DIR CLK GND

ø2,2 ±0,1

S1

K1

Operating Voltage 2,7 V ... 5,5 V Direction of rotation (digital input) External clock signal (digital input) Ground

Terminal K2 Quad / Ser

X1

P1

32 ±0,1 36 ±0,5

100 ±4

K2

DIP switch S1 DIR ON OFF CLK ON OFF

37 ±0,1 41 ±0,5

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Qa / SDA Qb / SCL Idx / SCTL GND

Switchover encoder interface (input) HIGH » Quadrature LOW » Serial Qa (output) SDA (output) Qb (output) SCL (input) Index (output) SCTL (input: LOW) Ground

145

» » » »

direction of rotation clockwise direction of rotation counter clockwise integrated oscillator on integrated oscillator off

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Motion Control Systems

Motion Control Systems

WE CREATE MOTION

Brushless DC-Servomotors with integrated Motion Controller RS232 interface CAN interface

Page 50 mNm 50 mNm

152 – 154 155 – 157

Motion Control Systems

3564 K 024 B CS 3564 K 024 B CC

WE CREATE MOTION 148

Motion Control Systems

Motion Control Systems

Technical Information

Brushless DC-Servomotor with integrated Motion Controller 1

Heat sink/cover

2

Thermal conduction pad

3

Thermal protection

4

Motion Controller

5

Housing

6

Analog Hall sensors

7

Brushless DC-Servomotor

8

Interface cable

Features

Benefits

With its incredibly compact design, this all-round

■ Highly dynamic, compact drive system with brushless motor and integrated motion controller and encoder

package units a powerful brushless DC-Servomotor, a high-resolution encoder and a programmable position and speed regulator.

■ Controlled either by means of a RS232 interface oder CAN interface

Because of its brushless commutation, the service life of

■ Smallest integrated CANopen Motion Controller with CiA DS301 V4/ DSP402 V2 standard protocols

the 90 W complete system is only limited by the servicelife of the bearing and the electronic components used.

■ Exact torque regulation through improved power monitoring

As well as the familiar RS232 interface, the system is now

■ Very flexible motion control functionality

available for the first time with a CAN interface and

■ Digital inputs for TTL and PLC can be configured compatibly

CANopen protocol. This means that up to 127 can be linked and controlled with ease.

Product Code

The powerful motion controller, together with the valuator, permits a whole host of positioning tasks and speed regulations with a resolution of 1/3000 revolutions. The integrated self-protection against overheating and overvoltage ensures reliable operation. The use of the latest DSP technology enables very high regular sensing rates and PWM frequencies that make the dynamic power pack score extremely well in terms of regulation and effectiveness.

149

3564 K 024 B

Motor series Shaft type Nominal voltage [V] Type of commutation (brushless, integrated electronics)

CS

Type of interface

3 5 64 K 0 2 4 B C S

Motion Control Systems

Motion Manager The high-performance “Motion Manager” software from FAULHABER enables users to control and configure drive systems with motion controllers. The graphic user interface and commands use the same menus and functions regardless if the CAN or RS232 interface is in use. This can dramatically simplify the first steps into CAN applications. Motion Manager for all Windows™ versions can be downloaded free of charge in German or English from www.faulhaber.com.

Startup and configuration Motion Manager automatically searches for connected drive nodes and displays these in the “Node Explorer”. Transparent configuration dialogs and dynamic regulating parameter setting, make entry easy. Graphical online analysis of drive behavior (e.g. as step responses) and possibility to change the regulating parameter continuious, provide invaluable help during to enter commands. The program also supports the creation, transmission and administration of sequential programs and parameter files. The program is rounded off with an online help and the integrated Visual Basic Script language.

150

Motion Control Systems

Motion Control Systems

Integration in higher level control systems The ASCII commands and CAN telegrams make it possible to integrate the drive into a higher level control system as well as field bus based control environments. Visual Basic Script can be written and tested directly in the Motion Manager.

Programming Version with RS 232 Interface (3564K024B CS) A complete ASCII command set is available for operation and configuration of the drive. Motion programs can be created in the Motion Manager or other available terminal programs and then transmitted to the drive where they are stored in the on-board memory. The easy to use motion command library provides all the necessary commands for programming.

Furthermore, any high level language (Basic, C/C++, Delphi, LabView...) can be used to develop applications on the PC which send commands via RS232 directly to the drive mechanism or to read messages sent from there. Commands can also be used within a PLC program for data exchange with the drive unit.

Version with CAN Interface (3564K024B CC) In addition to the standard CANopen profiles as defined in the CiA DSP402 such as profile position mode and profile velocity mode, the drive supports a special FAULHABER Mode. With the help of the CAN command interpreter implemented in the FAULHABER Motion Manager software this mode allows the user to operate and configure the drive with the same easy to use command set as with the RS 232 version. The FAULHABER CANopen motion controller supports the standard CiA DS301 / DSP402 / DSP305 protocols. The CAN interface offers a wide range of functions. You will find details of how to use and configure the controller in the user‘s manual (available at www.faulhaber.com) Alternatively, you can contact your local support engineer.

151

Brushless DC-Servomotor

50 mNm

with integrated Motion Controller and RS232 interface

For combination with Gearheads: 30/1, 32/3, 38/1, 38/2

Series 3564 K 024 B CS 3564 K UN P2 max.

d max.

024 B CS 24 90 80

Volt W %

No-load speed No-load current Peak torque for 8 A Friction torque: – static – dynamic

no Io MP

10 500 0,28 160

rpm A mNm

Co Cv

1,10 2,4 .10-4

mNm mNm/rpm

Torque constant Current constant

kM kI

20,2 0,05

mNm/A A/mNm

31 11 34 109

rpm/mNm ms gcm2 . 103rad/s2

Motion Control Systems

Nominal voltage Output power Efficiency

n/ M

Slope of n/M curve Mechanical time constant Rotor inertia Angular acceleration

om J

_ max. Rth 1 / Rth 2 o w1 / o w2

Thermal resistance Thermal time constant

2,5 / 6,3 23 / 1 175

K/W s

Operating temperature range

– 5 ... + 85

°C

Shaft bearings Shaft load max.: – radial at 3000 rpm (7,4 mm from mounting flange) – axial at 3000 rpm (push-on only) – axial at standstill (push-on only) Shaft play: – radial – axial

ball bearings, preloaded

≤ =

Housing material Weight Direction of rotation

108 50 131

N N N

0,015 0

mm mm

aluminium, black anodized 440 electronically reversible

g

Recommended values - mathematically independent of each other ne Speed range 1) Me max. Torque up to 2) Ie max. Current up to 2) 1) 2)

Power rating of 44 Watt at 8 400 rpm and 50 mNm thermal resistance Rth 2 by 55% reduced

3)

rpm mNm A

5 - 12 000 50 2,80 3)

This is a preset value and can be changed over the RS232 interface scale reduced

Orientation with respect to connecting cable 45° ±5°

M2 5 deep

ø0,2 A

Connection ø35 ±0,1

+0,003 0 ø16 –0,008 ø4 –0,002 ø0,05 A A 0,02

20 22 54 ±1,5

45˚

+5

1,4

25,8 ±1,5 83,3 ±3

3564 K 024 B CS

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

152

Function GND + 24 V Analog input Fault output Analog GND RS232 RXD RS232 TXD Connection No. 3

Caution:

12,6 ±0,3 14 ±0,3

40 +0,3

Wires blue pink brown white grey yellow green red

PVC-cable, 8-conductors AWG 24 Conneting cable 1 meter

be sure to connect motor supply terminals to the correct polarity. Motor electronics are protected against polarity reversal by an internal fuse. In case of damage due to polarity reversal, this internal fuse can only be replaced at the factory.

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

UB I max.

Connection No. 1 (brown) – Speed command analog input – Speed command PWM input – Digital input – External encoder – Step frequency input

12 ... 30 8 3

V DC A

voltage range frequency range pulse duty factor 50% input resistance

±10 100 ... 2 000 0 5 400 400

V Hz rpm k kHz kHz

no error open collector input resistance

switched to GND max. UB / 30 mA 100

k

input resistance

22 12 ... 30

k V DC

100 3 000

μs Inc./turn

f max. f max.

Connection No. 2 (white) – Fault output – Digital output – Digital input Connection No. 3 (red) – Digital input – Electronic supply voltage 1)

UB

Encoder: – Scanning rate – Resolution internal encoder The signal level of the digital inputs can be set using the above commands: Standard (PLC): Low 0...7V / High 12,5V...UB, TTL: Low 0...0,5V / High 3,5V...UB 1)

A separate supply for motor and drive electronic is optional available (important for safety-relevant applications), here escapes the digital input, connection 3 (red).

2)

Preset value. Can be changed over the interface.

Position control + 24V DC 2,7k LED

pink

white Fault output 10k

Command position Example: Limit switch

brown Analog grey input + _ AGND

red

RS232

PC TXD

{ PC RXD

input 3

yellow RXD green TXD

GND

UB Protection: Overtemperature Current limit Overvoltage Position n soll controller Evaluation limit switch

PI-Speed controller n ist Speed calculation

Evaluation input 3 RS232

Communication and configurations module

Δϕ

3 Phase

MOSFET Power amplifier

PWM Ua

ϕ(t)

Sine wave commutator

Motor

Hall sensor A Hall sensor B Hall sensor C

Armature position calculation

I 2 t Current limiting

Phase A Phase B Phase C

I ist RS GND

blue

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

153

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Motion Control Systems

Motion Controller Supply voltage 1) Peak current 2) Input/output (see connection No. 1, 2 and 3)

Brushless DC-Servomotor with integrated Motion Controller General description

An extensive ASCII command set is available for programming and operation. This can be preset from the PC, e.g. via any terminal program, as contained in Windows, or via any other control computer.

The 3564 K 024 B CS combines an electronically commutated DC-Servomotor, a high-resolution encoder to determine actual position and a programmable position and speed controller, based on a highcapacity digital signal processor (DSP), within a complete drive unit. This intelligent EC servomotor performs the following drive functions:

Speed profiles such as ramp, triangular or trapezoidal movements are possible. Gentle acceleration or deceleration can be implement ed without problem. Positioning mode: Positioning with a resolution of 1/3 000 revolutions. Acquisition of reference marks and end position switches. Stepper motor mode, electronic gear or operation with external incremental encoder for high-precision applications. Torque control through current regulation. Self-protection against excess temperature in the case of high loading, against over-voltage during generator operation and against under-voltage.

Once programmed as a speed or position controller via the analogue input, as a stepper motor or electronic gear, the drive can be operated independently of the RS232 interface.

Fields of application Thanks to the integrated technology, the drive can be used in many different areas with minimal wiring effort. The flexible connection options open up a broad field of application in all areas, for example in decentralised systems of automation technology, as well as in pickand-place machines and machine tools.

Storage of the desired functions.

Options

Storage and execution of motion programs.

An adapter board and serial null modem cable can also be ordered, to enable immediate commissioning of the 3564 K 024 B CS.

Various inputs and outputs are available for implementation of these functions: Set-point input for speed presetting. Analogue or PWM signal can be used. The input can also read in a reference mark signal. Depending on mode, a frequency signal or external incremental encoder can also be connected. Error output (Open Collector). Can also be reprogrammed as a rotational direction or reference mark input. RS232 interface for connection to a PC with a transfer rate of up to 115k baud. The information can be stored in the integrated memory (FLASH). The interface also offers the facility to retrieve online operating data and values.

Separate supply of motor and control electronics is possible (important for safety-relevant applications); in this case the 3rd input is not required. Special preconfiguration of modes and parameters is possible on request. The Motion Manager program is available on request or on the Internet.

Note A detailed instruction manual for installation and operation are provided with the brushless DC-Servomotor.

Additional digital input.

Connection diagram Power supply

PC with RS232 interface

3564 K 024 B CS with serial RS232 interface

COM x

zero modem cable (RS232)

Adapter

otio

er

M

an nM ag

Motion Control Systems

Speed control from 5 to 12 000 rpm with superior performance specifications in respect of synchronous operation and minimal torque fluctuations. A PI controller ensures observance of set-point speeds.

For Windows 95/98/ME/NT/2000/XP, the “Faulhaber Motion Manager” program is available; this considerably simplifies operation and configuration of the units via the RS232 interface and also enables graphic online analysis of the operating data.

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

154

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotor

50 mNm

with integrated Motion Controller and CAN interface

For combination with Gearheads: 30/1, 32/3, 38/1, 38/2

3564 K UN P2 max.

d max.

024 B CC 24 90 80

Volt W %

No-load speed No-load current Peak torque for 8 A Friction torque: – static – dynamic

no Io MP

10 500 0,28 160

rpm A mNm

Co Cv

1,10 2,4 .10-4

mNm mNm/rpm

Torque constant Current constant

kM kI

20,2 0,05

mNm/A A/mNm

31 11 34 109

rpm/mNm ms gcm2 . 103rad/s2

Nominal voltage Output power Efficiency

n/ M

Slope of n/M curve Mechanical time constant Rotor inertia Angular acceleration

om J

_ max. Rth 1 / Rth 2 o w1 / o w2

Thermal resistance Thermal time constant

2,5 / 6,3 23 / 1 175

K/W s

Operating temperature range

– 5 ... + 85

°C

Shaft bearings Shaft load max.: – radial at 3000 rpm (7,4 mm from mounting flange) – axial at 3000 rpm (push-on only) – axial at standstill (push-on only) Shaft play: – radial – axial

ball bearings, preloaded

≤ =

Housing material Weight Direction of rotation

108 50 131

N N N

0,015 0

mm mm

aluminium, black anodized 440 electronically reversible

g

Recommended values - mathematically independent of each other ne Speed range 1) Me max. Torque up to 2) Ie max. Current up to 2) 1) 2)

Power rating of 44 Watt at 8 400 rpm and 50 mNm thermal resistance Rth 2 by 55% reduced

3)

rpm mNm A

5 - 12 000 50 2,80 3)

This is a preset value and can be changed over the interface scale reduced

Orientation with respect to connecting cable 45° ±5°

M2 5 deep

ø0,2 A

Connection ø35 ±0,1

+0,003 0 ø16 –0,008 ø4 –0,002 ø0,05 A A 0,02

20 22 54 ±1,5

45˚

+5

1,4

25,8 ±1,5 83,3 ±3

3564 K 024 B CC

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

155

Function GND + 24 V Connection No. 1 Connection No. 2 Analog GND CAN_L (RS232 RXD) CAN_H (RS232 TXD) Connection No. 3

Caution:

12,6 ±0,3 14 ±0,3

40 +0,3

Wires blue pink brown white grey yellow green red

PVC-cable, 8-conductors AWG 24 Conneting cable 1 meter

be sure to connect motor supply terminals to the correct polarity. Motor electronics are protected against polarity reversal by an internal fuse. In case of damage due to polarity reversal, this internal fuse can only be replaced at the factory.

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Motion Control Systems

Series 3564 K 024 B CC

Motion Controller Supply voltage 1) Peak current 2) Input/output (see connection No. 1, 2 and 3)

UB I max.

Connection No. 1 (brown) – Speed command analog input – Speed command PWM input

Motion Control Systems

– Digital input – External encoder – Step frequency input

12 ... 30 8 3

V DC A

voltage range frequency range pulse duty factor 50% input resistance

±10 100 ... 2 000 0 5 400 400

V Hz rpm k kHz kHz

no error open collector input resistance

switched to GND max. UB / 30 mA 100

k

input resistance

22 12 ... 30

k V DC

100 3 000

μs Inc./turn

f max. f max.

Connection No. 2 (white) – Fault output – Digital output – Digital input Connection No. 3 (red) – Digital input – Electronic supply voltage 1)

UB

Encoder: – Scanning rate – Resolution internal encoder The signal level of the digital inputs can be set using the above commands: Standard (PLC): Low 0...7V / High 12,5V...UB, TTL: Low 0...0,5V / High 3,5V...UB 1)

A separate supply for motor and drive electronic is optional available (important for safety-relevant applications), here escapes the digital input, connection 3 (red).

2)

Preset value. Can be changed over the interface.

Position control + 24V DC 2,7k LED

pink

white Fault output 10k

Command position Example: Limit switch

brown Analog grey input + _ AGND

red

Interface CAN-Bus

{

CAN_L CAN_H

input 3

yellow CAN_L green CAN_H

GND

UB Protection: Overtemperature Current limit Overvoltage Position n soll controller Evaluation limit switch

Δϕ

3 Phase

MOSFET Power amplifier

PWM

PI-Speed controller n ist Speed calculation

Evaluation input 3 CANopen

Communication and configurations module

Ua

Sine wave commutator

ϕ(t)

Motor

Hall sensor A Hall sensor B Hall sensor C

Armature position calculation

I 2 t Current limiting

Phase A Phase B Phase C

I ist RS GND

blue

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

156

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotor with integrated Motion Controller

This intelligent EC servomotor performs the following drive functions: Speed control from 5 to 12 000 rpm with superior performance specifications as regards synchronous operation and minimal torque fluctuations. A PI controller ensures observance of set-point speeds. Speed profiles such as ramp, triangular or trapezoidal movements are possible. Gentle acceleration or deceleration can be implement ed without problem.

Transfer rate and node no. are set via the network in accordance with the LSS protocol according to DSP305 V1.11, and automatic baud rate detection is also implemented. In addition, all functions and parameters of the drive unit can be very easily activated via a special FAULHABER PDO channel. For each FAULHABER command a corresponding CAN message frame is available on the PDO channel, enabling operation of the CAN unit analogously to the serial variant. Drive parameters can be analysed very quickly via the integrated trace function. For Windows 95/98/ME/NT/2K/XP the “FAULHABER Motion Manager” software is available; this considerably simplifies operation and configuration of the units via the CAN interface and also enables graphic online analysis of the operating data.

Positioning mode: Positioning with a resolution of 1/3 000 revolutions. Acquisition of reference marks and end position switches. Stepper motor mode, electronic gear or operation with external incremental encoder for high-precision applications. Torque control through current regulation. Self-protection against excess temperature in the case of high loading, against over-voltage during generator operation and against under-voltage.

Fields of application Thanks to the integrated technology, the drive can be used in a range of different areas with minimal wiring effort. The flexible connection options open up a broad field of application in all areas, for example in decentralised systems of automation technology, as well as in pickand-place machines and machine tools.

Storage of the set configuration. Various inputs and outputs are available for implementation of these functions: Set-point input for speed presetting. Analogue or PWM signal can be used. The input can also read in a reference mark signal. Depending on mode, a frequency signal or external incremental encoder can also be connected. Error output (Open Collector). Can also be reprogrammed as a rotational direction or reference mark input. Additional digital input.

Options An adapter board can also be ordered, to enable immediate commissioning of the 3564 K 024 B CC. Separate supply of motor and control electronics is possible (important for safety-relevant applications); in this case the 3rd input is not required. Special preconfiguration of modes and parameters is possible on request. The Motion Manager program is available on request or on the Internet.

CAN interface for integration into a CAN network with transfer rates up to 1Mbit/s. The CANopen communication profile according to DS301 V4.02 and DSP402 V2.0 in accordance with the CiA specification is supported for slave devices with the following services: – 1 Server SDO – 3 Transmit PDOs, 3 Receive PDOs – Static PDO Mapping – NMT with Node Guarding – Emergency Object

Note A detailed instruction manual for installation and operation are provided with the brushless DC-Servomotor.

Connection diagram 3 x 3564 K 024 B CC with CAN interface

PC with CAN interface e.g. 3 x adapter optional for connection assistance

Node n

Node q Node o

otio

er

M

an nM ag

Note The “FAULHABER Motion manager” software supports at the moment all CAN interface of the company IXXAT. Extensions for CAN interfaces of other manufacturers are possible.

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Node p Up to 127 CANopen devices (nodes) can be connected. e.g. digital inputs or a drive circuit.

Resistance on the adapter must be set

157

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Motion Control Systems

General description The 3564 K 024 B CC combines an electronically commutated DC-Servomotor, a high-resolution encoder to determine actual position and a programmable position and speed controller with CAN interface, based on a high-capacity digital signal processor (DSP), within a complete drive unit.

Stepper Motors

Stepper Motors

WE CREATE MOTION For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

158

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors – PRECIstep® Technology

Page Two Phase with Disc Magnet Two Phase Two Phase Two Phase with Disc Magnet Two Phase with Disc Magnet Two Phase Two Phase Two Phase Single Phase Single Phase

Lead Screws and Options – PRECIstep® Technology M1,2 x 0,25 x L1 M1,6 x 0,35 x L1 M2 x 0,2 x L1 M2,5 x 0,25 x L1 M3 x 0,5 x L1 Options

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Lead Screws Lead Screws Lead Screws Lead Screws Lead Screws

159

0,2 mNm 0,65 mNm 1,6 mNm 2,4 mNm 2,4 mNm 6 mNm 26 mNm 26 mNm

166 – 167 168 – 169 170 – 171 172 – 173 174 – 175 176 – 177 178 – 179 180 – 181 182 183 Page 184 185 186 187 188 189

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

ADM 0620-2R AM 0820 AM 1020 ADM 1220 ADM 1220 S AM 1524 AM 2224 AM 2224-R3 ASP 006 ASP 124

Stepper Motors

WE CREATE MOTION 160

Stepper Motors Technical Information

Stepper Motors

phase winding is energized. Residual torque is useful to hold a position without any current to save battery life or to reduce heat.

Two phase, 24 steps per revolution PRECIstep® Technology

Rotor inertia [kgm2] This value represents the inertia of the complete rotor.

ww =

V-6-35 Voltage

1 Nominal voltage 2 Nominal current per phase (both phases ON) 3 Phase resistance (at 20°C) 4 Phase inductance (1kHz) 5 Back-EMF amplitude

Curr

6 –

– 0,1 35 15 6

Electrical time constant [ms] Is the time needed to establish 67% of the max. possible phase current under a given operation point. It is one of the factors which reduce the provided torque at higher speed.

Notes on technical h i ld data Nominal voltage [Volts] Is the voltage applied to both phase windings that will not overheat the motor. The motor develops nominal holding torque using this voltage.

Ambient temperature range [°C] Temperatures at which the motor can operate.

Nominal current per phase (both phases ON) [A] Is the current level supplied to both phase windings that will not overheat the motor. The motor develops the nominal holding torque when energized this way.

Winding temperature tolerated max. [°C] Maximum temperature supported by the winding and the magnets. Thermal resistance winding-ambient air [°C/W] The gradient at which the motor winding temperature increases per Watt of power losses generated in the motor. Additional cooling surface is reducing it.

Phase resistance 1) [⍀] Phase winding resistance at 20 °C; tolerance is ±12%. Phase inductance [mH] Inductance of the phase windings, measured at 1 kHz.

Thermal time constant [s] Time needed to reach 67% of the final winding temperature. Adding cooling surfaces reduces the thermal resistance but will increase the thermal time constant.

Back-EMF 1) [V/k 1000step/s] Amplitude of the back-EMF at 1000 steps/s. It is one of the factors which reduce the provided torque at higher speed.

Shaft bearings Offered are either self lubricating sintered bronze bearings or 2 preloaded ball bearings. The ball bearing preload is assured by a spring washer assembled at the rear bearing.

Holding torque, at nominal current [mNm] Is the amplitude of the torque the motor generates with both phases energized in voltage or current mode. Holding torque, at 2 x nominal current [mNm] Is the amplitude of the torque the motor generates with both phases energized with 2 x nominal current.

Shaft load, max. radial [N] The figure is representing for all bearing types the recommended maximally supported radial load.

There is no risk of motor damage due to their magnetic design. However, to limit heat development the boost current should be applied only for short periods during critical sections of the motion cycle.

Shaft load, max. axial [N] The figure is representing for all bearing types the recommended maximally supported axial load. The load handling capability of ball-bearings is higher than the set preload. The rotor can be pulled without risk of damage to the motor by about 0,2 mm.

Step angle [degr.] Number of angular degrees the motor moves per full-step. Step angle accuracy [%] Percentage of a full step by which the unloaded motor with identical currents in both phases will be off from any calculated fullstep position. This error does not cumulate.

Shaft play max., radial [μm] The clearance between shaft and bearing tested with the indicated force to move the shaft. Shaft play max., axial [μm] Represents the axial play tested with the indicated force.

Residual torque 1) [mNm] Torque needed to rotate rotor by outside torque when no AM1524_PCS.indd 1

161

15.10.09 07:58

Stepper Motors

Resonance frequency (at no load) [Hz] Is the step rate at which the unload motor will show rotor resonance. It is recommended to start with a frequency above this frequency or to use half-, micro-step to operate outside this frequency. The resonance frequency changes with the addition of inertial loads.

AM1524-ww-ee

Isolation test voltage 1) [VDC] Is the test voltage for isolation test between housing and phase windings.

Torque (mNm) 1.25

Motor dimensions [mm] The values provide a rapid view about the motor housing diameter and length as well as the standard shaft diameter.

1 0.75 0.5

Weight [g] Is the motor weight in grams. 1)

0.25 0

these parameters are measured during final inspection on 100 % of the products delivered.

-0.25

0

500

1500

2000

2500

3000

3500

-0.5

Stepper Motor Selection

-0.75

T (ms)

The selection of a stepper motor requires the use of published torque speed curves based on the load parameters. Stepper Motors

1000

It is not possible to verify the motor selection mathematically without the use of the curves.

Depending on the motor size suitable for the application it is required to recompute the torque parameters with the motor inertia as well.

To select a motor the following parameters must be known:

In the present case it is assumed that a motor with an outside diameter of maximum 15 mm is suitable and the data has been computed with the inertia of the AM1524.

■ Motion profile ■ Load friction and inertia ■ Required resolution

2. Verification of the motor operation. The highest torque/speed point for this application is found at the end of the acceleration phase. The top speed is then n = 5000 rpm, the torque is M = 1 mNm.

■ Available space ■ Available power supply voltage

1. Definition of the load parameters at the motor shaft The target of this step is to determine a motion profile needed to move the motion angle in the given time frame and to calculate the motor torque over the entire cycle using the application load parameters such as friction and load inertia. The motion and torque profiles of the movement used in this example are shown below:

Using these parameters you can transfer the point into the torque speed curves of the motor as shown here with the AM1524 curves for a current mode drive. It is not possible to use the full torque of the motor: a safety factor of 30% is requested. The shown example assures that the motor will correctly fulfil the requested application conditions.

Torque

Power

(mNm)

(W) AM1524-A-0,25-12,5-ee 2 Phasen ON, 0.25A, 12V

Speed (rpm) 6000 5000 4000

3

1,5

2

1

1

0,5

3000 2000 1000

0

0 0

500

1000

1500 2000 T (ms)

2500

3000

0

3500

162

5000 10000 15000 20000 4000 6000 8000 2000

Speed

(rpm) (Step/s)

■ In full step mode (1 phase on) the phases are successively energised in the following way: 1. A+ 2. B+ 3. A– 4. B–.

The demonstrated method does not specify the differences between the two published torque speed curves, one for voltage mode and one for current mode (which was used as the solution for the application example).

■ Half step mode is obtained by alternating between 1-phase-on and 2-phases-on, resulting in 8 half steps per electrical cycle: 1. A+ 2. A+B+ 3. B+ 4. A–B+ 5. A– 6. A–B– 7. B– 8. A+B–.

The difference is mainly linked to the performance one may get from the motor. Whereas the voltage mode is offering good performance at low speed the torque will decrease rapidly, the current mode allows higher speed performance as the constant current mode drive (the current is controlled by a chip related control loop) which allows to apply a higher voltage to the motor phases.

■ If every half step should generate the same holding torque, the current per phase is multiplied by √2 each time only 1 phase is energised. The two major advantages provided by microstep operation are lower running noise and higher resolution, both depending on the number of microsteps per full step which can in fact be any number but is limited by the system cost.

Voltage mode is the best choice for application with supply voltage below 10 V mainly due to the availability of suitable driver chips. In voltage mode, the motor winding must have a nominal voltage equal to the power supply to get the best performances.

As explained above, one electrical cycle or revolution of the field vector (4 full steps) requires the driver to provide a number of distinct current values proportional to the number of microsteps per full step.

The moment the voltage is higher than 10 V a current mode driver will be the better choice. It is recommended to apply a supply voltage at least U = 5 x R x I of the selected motor winding.

For example, 8 microsteps require 8 different values which in phase A would drop from full current to zero following the cosine function from 0° to 90°, and in phase B would rise from zero to full following the sine function.

3. Verification of the resolution It is assumed that the application requires a resolution of 9° angular.

These values are stored and called up by the program controlling the chopper driver. The rotor target position is determined by the vector sum of the torques generated in phase A and B:

The selected motor AM1524 has a step angle of 15° which means that the motor is not suitable directly. It can be operated either in half-step, which reduces the step angle to 7,5°, or in micro stepping. With micro stepping, the resolution can be increased even higher whereas the precision is reduced because the error angle without load of the motor (expressed in % of a full-step) remains the same independently from the number of micro-steps the motor is operated.

MA = k · IA = k · Io · cos ϕ MB = k · IB = k · Io · sin ϕ where M is the motor torque, k is the torque constant and Io the nominal phase current. For the motor without load the position error is the same in full, half or microstep mode and depends on distortions of the sinusoidal motor torque function due to detent torque, saturation or construction details (hence on the actual rotor position), as well as on the accuracy of the phase current values.

For that reason the most common solution for adapting the motor resolution to the application requirements is the use of a gearhead or a lead-screw where linear motion is required.

General application notes

4. Verification in the application Any layout based on such considerations has to be verified in the final application under real conditions. Please make sure that all load parameters are taken into account during this test.

In principle each stepper motor can be operated in three modes: full step (one or two phases on), half step or microstep. Holding torque is the same for each mode as long as dissipated power (I2R losses) is the same. The theory is best presented on a basic motor model with two phases and one pair of poles where mechanical and electrical angle are equal. 163

Stepper Motors

In case that no solution is found, it is possible to adapt the load parameters seen by the motor by the use of a reduction gearhead.

Stepper Motors Two phase

1 2

6 3 7 4 5 8

Stepper Motors

Stepper Motor 1

Retaining ring

2

Washer

3

PCB

4

Ball bearing

5

Rear cover / stator

6

Coil, Phase A

7

Inner stator

8

Rotor

9

Magnets

10

Shaft

11

Housing

12

Coil, Phase B

13

Front cover / stator

10

11

9

13 4

12

Features

Benefits

PRECIstep® stepper motors are two phase multi-polar

■ Cost effective positioning drive without an encoder

motors with permanent magnets. The use of rare-earth

2 1

■ High power density

magnets provides an exceptionally high power to volume

■ Long operational lifetimes

ratio. Precise, open-loop, speed control can be achieved

■ Wide operational temperature range

with the application of full step, half step, or microstepping electronics.

■ Speed range up to 16 000 rpm using a current mode chopper driver

The rotor consists of an injection moulded plastic support

■ Possibility of full step, half step and microstep operation

and magnets which are assembled in a 10 or 12 pole configuration depending on the motor type. The large magnet volume helps to achieve a very high torque density. The use of high power rare-earth magnets also

Product Code

enhances the available temperature range of the motors from extremely low temperatures up to 180 °C as a special configuration. The stator consists of two discrete phase coils which are positioned on either side of the rotor. The inner and outer stator assemblies provide the necessary radial magnetic field.

164

AM1524 2R V-12-150

Motor series Bearing type Coil type

57

Motor version

A M 1 5 2 4 - 2 R - V- 1 2 - 1 5 0 - 5 7

Stepper Motors Two phase with Disc Magnet

3

1 4 2

5

Stepper Motor Retaining ring

2

PCB

3

Rear cover / stator

4

Coil

5

Housing

6

Sleeve

7

Disc Magnet

8

Shaft

9

Front cover

10

Sintered bearing

Stepper Motors

6 1

7 8

9

10 1

Features

Benefits

The rotor consists of a thin magnetic disc. The low rotor

■ Extremely low rotor inertia

inertia allows for highly dynamic acceleration. The rotor

■ High power density

disc is precisely magnetized with 10 pole pairs which

■ Long operational lifetimes

helps the motor achieve a very high angular accuracy.

■ Wide operational temperature range

The stator consists of four coils, two per phase, which

■ Ideally suited for micro-stepping applications

are located on one side of the rotor disc and provide the axial magnetic field. Special executions with additional rotating back-iron are available for exceptionally precise micro-stepping performance.

Product Code

ADM1220 2R V2 01

165

Motor series Bearing type Coil type Motor version

A D M 1 2 20 - 2 R - V 2 - 0 1

Stepper Motors

0,2 mNm

Two phase, 20 steps per revolution PRECIstep® Technology

ADM0620-2R-ww-ee ww =

V3 Current

Voltage

Current

3 –

– 0,075

6 –

– 0,04

1 Nominal voltage 2 Nominal current per phase (both phases ON)

30 3,5 0,5

3 Phase resistance (at 20°C) 4 Phase inductance (1kHz) 5 Back-EMF amplitude 6 Holding torque 1) (at nominal current in both phases) 7 Holding torque 1) (at twice the nominal current)

Drive mode

V DC A

120 9,9 0,9

Ω mH V/k step/s

0,2 0,28

mNm mNm

8 9 10 11 12 13

Step angle (full step) Angular accuracy 2) Residual torque Rotor inertia Resonance frequency (at no load) Electrical time constant

18 ±5 0,04 0,7 170 0,10

degree

14 15 16 17

Ambient temperature range Winding temperature tolerated, max. Thermal resistance winding-ambient air Thermal time constant

–35 ... +70 130 165 120

°C °C °C/W s

% of full step

mNm .10-9 kgm2 Hz ms

ball bearings, preloaded (standard)

18 Shaft bearings 19 Shaft load, max.: – radial (3 mm from bearing) – axial

0,3 0,5

N N

20 Shaft play, max.: – radial (0,2N) – axial (0,2N)

20 50

μm μm

21 Isolation test voltage

200

V DC

22 Motor dimensions: – diameter – length – shaft diameter

6 9,5 0,8

mm mm mm

23 Weight

1,4

g

1) 2) 3) 4)

with bipolar driver 2 phases ON, balanced phase currents Curves measured with a load inertia of 8 ·10-9 kgm2 Testing the motor at lower supply voltages in current mode will result in a decrease in torque at higher speed, even with the same current setting

Torque

Torque

(mNm) 0,16

(mNm) 0,16

ADM0620-V3-ee 2-phase ON, 3,3V

0,14 0,12

0,12

0,10

0,10

0,08

0,08

0,06

0,06

0,04

0,04

0,02

0,02

0

0

3000 1000

6000 2000

9000 12000 15000 3000 4000 5000

Speed (rpm) (Step/s)

0

CW CCW

ADM0620-V3-ee, 2-phase ON, 0.075A, 15V

0,14

Phase A

1 +

2 –

3 –

4 +

Phase B

+

+





+ 0

3000 1000

6000 2000

9000 12000 15000 3000 4000 5000

Speed (rpm) (Step/s)

A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Current mode (A) 3) 4) Driver AD CM M1S

166

CCW

nt f ro



3

ace vi e

Rotor

+

w

Voltage mode (V) 3) Driver AD VL M1S

2

1

F

Stepper Motors

V6

Voltage

B

CW 4



© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Dimensional drawing

-0,007

0

0

0

-0,03

ø0,8 -0,008

ø6 -0,03 ø5 -0,05

ø1-0,011

A

M4,5x0,5

ø1,75 -0,05

ø0,07 A 0,04

ø0,07 A 0,04 Z.12 m=0,12 x=+0,2 DIN 58400

0,4 ±0,05

50 ±5

+0,2

1,9 -0,05 3,5

0,7

9,3 ±0,2

5,15 ±0,2

3,35

1,8 5,15 ±0,2

1

4

4

1

Front face view

Rear shaft

Front shaft

Connector Molex 51021-400

for Gearhead 06/1

Combinations Drive Electronics

Stepper Motors

Encoders

ADM0620

AD VL M_S AD CM M_S

Gearheads / Lead screws

06/1 Lead screws M1,2 Lead screws M1,6

Ordering information Example: ADM0620-2R-V3-05

Motor type

Bearings (rr)

ADM = Motor design 06 = Motor diameter (mm) Special lubricant options available 20 = Steps per revolution ADM0620 -2R (2 ball bearings)

Winding (ww)

-V21) -V3 -V6

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Motor execution (ee) Only front output shaft

With double output shaft

Front output shaft

-01 -05 -21 -23

-00 -06 -20 -22

Plain shaft Pinion 06/1 Plain shaft 2) Plain shaft 3)

167

1)

Non-standard windings, for data please inquire with your point of sales

2)

Prepared for assembly of lead screws size M1,2

3)

Idem for size M1,6

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

ADM0620

Stepper Motors

0,65 mNm

Two phase, 20 steps per revolution PRECIstep® Technology

AM0820-ww-ee ww =

V-3-18

Voltage

Current

Voltage

Current

Drive mode

3 –

– 0,15

5 –

– 0,08

2 –

– 0,225

V DC A

18 5,2 0,8

3 Phase resistance (at 20°C) 4 Phase inductance (1kHz) 5 Back-EMF amplitude 6 Holding torque 1) (at nominal current in both phases) 7 Holding torque 1) (at twice the nominal current)

A-0,225-7

Current

1 Nominal voltage 2 Nominal current per phase (both phases ON)

56 16 1,4

7,3 2,1 0,5

Ω mH V/k step/s

0,65 1

mNm mNm

8 9 10 11 12 13

Step angle (full step) Angular accuracy 2) Residual torque Rotor inertia Resonance frequency (at no load) Electrical time constant

18 ± 10 0,06 2,75 170 0,29

mNm .10-9 kgm2 Hz ms

14 15 16 17

Ambient temperature range Winding temperature tolerated, max. Thermal resistance winding-ambient air Thermal time constant

–30 ... +70 130 76 180

°C °C °C/W s

degree % of full step

sintered bronze sleeves (standard)

ball bearings, preloaded (optional)

19 Shaft load, max.: – radial (3 mm from bearing) – axial

0,3 0,2

3,0 1,5

N N

20 Shaft play, max.: – radial (0,2N) – axial (0,2N)

15 140

12 ~0

μm μm

21 Isolation test voltage

200

V DC

22 Motor dimensions: – diameter – length – shaft diameter

8 13,8 1,0

mm mm mm

23 Weight

3,3

g

18 Shaft bearings

1) 2) 3) 4)

with bipolar driver 2 phases ON, balanced phase currents Curves measured with a load inertia of 10 ·10-9 kgm2 Testing the motor at lower supply voltages in current mode will result in a decrease in torque at higher speed, even with the same current setting

Torque

Torque

(mNm)

(mNm)

0,50

0,50

AM0820-V3-ee 2-phase ON, 3,3V

0,40

CW CCW

AM0820-A-0.225-7 2-phase ON, 0.225A, 15V

0,40

0,30

0,30

Phase A

1 +

2 –

3 –

4 +

0,20

0,20

Phase B

+

+





0,10

0,10

0

0

1500 500

3000 1000

4500 1500

6000 2000

Speed (rpm) (Step/s)

0

+ 0

3000 1000

9000 3000

15000 5000

Speed (rpm) (Step/s)

A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Current mode (A) 3) 4) Driver AD CM M1S

168

CCW

nt f ro



3

ace vi e

Rotor

+

w

Voltage mode (V) 3) Driver AD VL M1S

2

1

F

Stepper Motors

V-5-56

Voltage

B

CW 4



© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Dimensional drawing

0

0

ø7,9 -0,2

ø7,9 -0,2

0

0

ø8 -0,06 ø6 -0,012

-0,03

-0,007

ø1 -0,011

-0,04

ø2,34 -0,05

ø1,93 -0,06

Z.12 m=0,16 x=+0,2 DIN 58400

M5,5x0,5

Z.11 m=0,14 x=+0,3 DIN 58400

0

0,4 -0,05 +0,2 1,9 -0,05

3,35

2,15 3,5

0,8

13,8 ±0,2

1,8

6 ±0,3

3,45

1,7

5,15 ±0,2

4x Ø 0.7x0.6mm gold plated bores

5,15 ±0,2

Rear shaft

Front shaft

for Gearhead 08/1

for Gearheads 08/2, 08/3

Combinations Drive Electronics

Stepper Motors

Encoders

AM0820

AD VL M_S AD CM M_S

Gearheads / Lead screws

08/1 08/2 08/3* 10/1 Lead screws M1,2 Lead screws M1,6 Lead screws M2 * Zero Backlash Gearheads

Ordering information Example: AM0820-2R-V-3-18-08

Motor type

Bearings (rr)

= Motor design = Motor diameter (mm) Special lubricant options available = Steps per revolution - (sleeve bearings) AM0820 -2R (2 ball bearings)

Winding (ww)

AM 08 20

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

-V-3-18 -V-5-56 -A-0,225-7

Motor execution (ee) Only front output shaft

With double output shaft

Front output shaft

-01 -08 -10 -12 -21 -23 -25

-00 -09 -11 -13 -20 -22 -24

Plain shaft Pinion 08/1 Pinion 10/1 Pinion 08/2, 08/3 Plain shaft 1) Plain shaft 2) Plain shaft 3)

169

1)

Prepared for assembly of lead screws size M1,2

2)

Idem for size M2

3)

Idem for size M1,6

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

AM0820 Front face view

Stepper Motors

1,6 mNm

Two phase, 20 steps per revolution PRECIstep® Technology

AM1020-ww-ee ww =

V-3-16 Voltage

3 –

1 Nominal voltage 2 Nominal current per phase (both phases ON)

6 Holding torque 1) (at nominal current in both phases) 7 Holding torque 1) (at twice the nominal current)

V-12-250

A-0,25-8

Voltage

Current

Voltage

Current

Voltage

Current

– 0,18

6 –

– 0,09

12 –

– 0,045

2 –

– 0,25

16 4,5 2,2

3 Phase resistance (at 20°C) 4 Phase inductance (1kHz) 5 Back-EMF amplitude

65 18 4,4

250 70 8,8

Drive mode

V DC A

8 2,1 1,5

Ω mH V/k step/s

1,6 2,4

mNm mNm

8 9 10 11 12 13

Step angle (full step) Angular accuracy 2) Residual torque Rotor inertia Resonance frequency (at no load) Electrical time constant

18 ± 10 0,2 9 140 0,28

mNm .10-9 kgm2 Hz ms

14 15 16 17

Ambient temperature range Winding temperature tolerated, max. Thermal resistance winding-ambient air Thermal time constant

–35 ... +70 130 73 90

°C °C °C/W s

degree % of full step

sintered sleeve bearings (standard)

ball bearings, preloaded (optional)

19 Shaft load, max.: – radial (3 mm from bearing) – axial

0,3 0,3

4,0 2,0

N N

20 Shaft play, max.: – radial (0,2N) – axial (0,2N)

15 150

12 ~0

μm μm

21 Isolation test voltage

200

V DC

22 Motor dimensions: – diameter – length – shaft diameter

10 15,8 1,2

mm mm mm

23 Weight

5,5

g

18 Shaft bearings

1) 2) 3) 4)

with bipolar driver 2 phases ON, balanced phase currents Curves measured with a load inertia of 10 ·10-9 kgm2 Testing the motor at lower supply voltages in current mode will result in a decrease in torque at higher speed, even with the same current setting

Torque

Torque

(mNm)

(mNm)

1,00

1,50

AM1020-V3-16-ee 2-phase ON, 3V

0,80

CW CCW

AM1020-A-0,25-8-ee 2-phase ON, 0.25A, 12V

1,20

0,60

0,90

Phase A

1 +

2 –

3 –

4 +

0,40

0,60

Phase B

+

+





0,20

0,30

0

0

1500 500

3000 1000

4500 1500

Speed (rpm) (Step/s)

0

+ 0

4500 1500

9000 3000

13500 4500

18000 6000

Speed (rpm) (Step/s)

A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Current mode (A) 3) 4) Driver AD CM M1S

170

CCW

nt f ro



3

ace vi e

Rotor

+

w

Voltage mode (V) 3) Driver AD VL M1S

2

1

F

Stepper Motors

V-6-65

Current

B

CW 4



© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Dimensional drawing

0

0

0

ø9,65 -0,015 ø10 -0,07

ø9,65 -0,015

0

ø6 -0,012

-0,007

0

0

ø1,2 -0,011

ø2,92 -0,015

M5,5x0,5

ø2,38 -0,015

Z.12 m=0,2 x=+0,2

Z.9 m=0,2 x=+0,35

DIN 58400

DIN 58400

0

0,4 -0,05 +0,08 1,9 0

3,35

2,15 5,7

2,15

2,1

5,15 ±0,2

4,25 ±0,2

Front shaft

for Gearhead 10/1

for Gearhead 12/5

Encoders

Stepper Motors

15,8

1,7

15,8

1,8

±0,2

4x Ø 0.75x0.6mm gold plated bores

6,5 ±0,2

Rear shaft

Stepper Motors

AM1020 Front face view Combinations Drive Electronics

AE 30B19

AD VL M_S AD CM M_S

AM1020

Gearheads / Lead screws

10/1 12/5* Lead screws Lead screws Lead screws Lead screws

M1,2 M1,6 M2 M2,5

* Zero Backlash Gearheads

Ordering information Example: AM1020-2R-V-3-16-08

Motor type AM 10 20

Bearings (rr)

Winding (ww)

= Motor design = Motor diameter (mm) Special lubricant options available = Steps per revolution

AM1020

- (sleeve bearings) -V-3-16 -2R (2 ball bearings) -V-6-65 -V-12-250 -A-0,25-8

Motor execution (ee) Only front output shaft

With double output shaft

Front output shaft

-01 -08 -10

-00 -09 -11 -12 1) -13 1) -14 1) -20 -22 -24

Plain shaft Pinion 10/1 Pinion 12/5 Plain shaft Pinion 10/1 Pinion 12/5 Plain shaft 2) Plain shaft 3) Plain shaft 4)

-21 -23 -25

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

171

1)

Shortened rear shaft for assembly of encoder AE 30B19

2)

Prepared for assembly of lead screws size M1,2

3)

Idem for size M2 and M2,5

4)

Idem for size M1,6

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

2,4 mNm

Two phase, 20 steps per revolution PRECIstep® Technology

ADM1220-ww-ee ww =

V2

V3

Voltage

2 –

1 Nominal voltage 2 Nominal current per phase (both phases ON)

Current

Voltage

Current

Voltage

Current

– 0,3

3 –

– 0,2

6 –

– 0,09

12 –

– 0,055

13 3,8 2,2

48 7,2 4,2

Drive mode

V DC A

164 13 7,4

Ω mH V/k step/s

2,4 4,1

mNm mNm

8 9 10 11 12 13

Step angle (full step) Angular accuracy 2) Residual torque Rotor inertia Resonance frequency (at no load) Electrical time constant

18 ±5 0,3 7,6 187 0,3

degree

14 15 16 17

Ambient temperature range Winding temperature tolerated, max. Thermal resistance winding-ambient air Thermal time constant

–35 ... +70 130 62 205

°C °C °C/W s

% of full step

mNm .10-9 kgm2 Hz ms

sintered bronze sleeves (standard)

ball bearings, preloaded (optional)

19 Shaft load, max.: – radial (3 mm from bearing) – axial

0,5 0,5

6,0 3,0

N N

20 Shaft play, max.: – radial (0,2N) – axial (0,2N)

15 ~0

12 ~0

μm μm

21 Isolation test voltage

200

V DC

22 Motor dimensions: – diameter – length – shaft diameter

12 17,4 1,5

mm mm mm

23 Weight

9

g

18 Shaft bearings

1) 2) 3) 4)

with bipolar driver 2 phases ON, balanced phase currents Curves measured with a load inertia of 10 ·10-9 kgm2 Testing the motor at lower supply voltages in current mode will result in a decrease in torque at higher speed, even with the same current setting

Torque (mNm) 1,6

Torque (mNm) 2,0 ADM1220-V3-ee 2-phase ON, 3.3V

CW CCW

ADM1220-V2-ee 2-phase ON, 0.3A, 18V

1,5

1,2 0,8

1,0

0,4

0,5

0

0

Phase A

1 +

2 –

3 –

4 +

Phase B

+

+





+ 0

750 250

1500 500

2250 750

3000 1000

Speed (rpm) (Steps/s)

0

3000 1000

6000 2000

9000 3000

A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Current mode (A) 3) 4) Driver AD CM M1S

172



Speed (rpm) (Step/s)

CCW

nt f ro

3

ace vi e

Rotor

+

w

Voltage mode (V) 3) Driver AD VL M1S

2

1

F

Stepper Motors

6 Holding torque 1) (at nominal current in both phases) 7 Holding torque 1) (at twice the nominal current)

V12

Voltage

5,4 2,6 1,5

3 Phase resistance (at 20°C) 4 Phase inductance (1kHz) 5 Back-EMF amplitude

V6

Current

B

CW 4



© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Dimensional drawing

ø11,2

0

ø12 -0,07

0

A

3,75 ±0,015

0

-0,007

ø6 -0,022 ø1,5 -0,011

ø2,92 -0,015

ø0,05 A

DIN 58400 m=0,2 z=12 x=+0,2

M5,5x0,5

-0,04

0

ø3,65 -0,06

ø2,38 -0,015

DIN 58400 m=0,25 z=12 x=+0,2

DIN 58400 m=0,2 z=9 x=+0,35

A+

B+

B-

A-

5,8 ø1

+0,015 0

3,3

0,7

0,4

0 -0,05

1,9

±0,05

2,15

+0,2 -0,05

(4x) ø0,75x0,55

4,8

gold plated bores

3,85

17,4 ±0,2

1,8

3,4

5,2

6 ±0,2

2,15

2,1

3

3,9

6,9 ±0,2

4,25 ±0,2

±0,2

Rear shaft

Front shaft

for Gearhead 10/1

for Gearheads 12/3, 12/5

for Gearhead 12/4

Combinations Drive Electronics

Stepper Motors

Encoders

ADM1220

AD VL M_S AD VM M_S AD CM M_S

Gearheads / Lead screws

10/1 12/3 12/4 12/5* Lead screws M2 Lead screws M2,5

* Zero Backlash Gearheads

Ordering information Example: ADM1220-2R-V2-01

Motor type

Bearings (rr)

Winding (ww)

ADM = Motor design 12 = Motor diameter (mm) Special lubricant options available 20 = Steps per revolution

ADM1220

- (sleeve bearings) -V2 -2R (2 ball bearings) -V3 -V6 -V12

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

1)

Motor execution (ee) Only front output shaft

With double output shaft

Front output shaft

-01 -05 -07 -09 -23

-00 -06 -08 -10 -22

Plain shaft Pinion 10/1 Pinion 12/3, 12/5 Pinion 12/4 Plain shaft 1)

173

Prepared for assembly of lead screws size M2 and M2,5

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

ADM1220 Front face view

Stepper Motors

2,4 mNm

Two phase, 20 steps per revolution microstepping motor (low residual torque), PRECIstep® Technology

ADM1220S-ww-ee ww =

V2

V3

Voltage

2 –

1 Nominal voltage 2 Nominal current per phase (both phases ON)

Current

Voltage

Current

Voltage

Current

– 0,3

3 –

– 0,2

6 –

– 0,09

12 –

– 0,055

13 3,8 2,2

48 7,2 4,2

Drive mode

V DC A

164 13 7,4

Ω mH V/k step/s

2,4 4,1

mNm mNm

8 9 10 11 12 13

Step angle (full step) Angular accuracy 2) Residual torque Rotor inertia Resonance frequency (at no load) Electrical time constant

18 ±3 ~0,0 18,5 128 0,3

degree

14 15 16 17

Ambient temperature range Winding temperature tolerated, max. Thermal resistance winding-ambient air Thermal time constant

–35 ... +70 130 62 205

°C °C °C/W s

% of full step

mNm .10-9 kgm2 Hz ms

sintered bronze sleeves (standard)

ball bearings, preloaded (optional)

19 Shaft load, max.: – radial (3 mm from bearing) – axial

0,5 0,5

6,0 3,0

N N

20 Shaft play, max.: – radial (0,2N) – axial (0,2N)

15 ~0

12 ~0

μm μm

21 Isolation test voltage

200

V DC

22 Motor dimensions: – diameter – length – shaft diameter

12 17,2 1,5

mm mm mm

23 Weight

9

g

18 Shaft bearings

1) 2) 3) 4)

with bipolar driver 2 phases ON, balanced phase currents Curves measured with a load inertia of 10 ·10-9 kgm2 Testing the motor at lower supply voltages in current mode will result in a decrease in torque at higher speed, even with the same current setting

Torque (mNm) 1,6

Torque (mNm) 2,0 ADM1220S-V3-ee 2-phase ON, 3.3V

CW CCW

ADM1220S-V2-ee 2-phase ON, 0.3A, 18V

1,5

1,2 0,8

1,0

0,4

0,5

0

0

Phase A

1 +

2 –

3 –

4 +

Phase B

+

+





+ 0

750 250

1500 500

2250 750

3000 1000

Speed (rpm) (Steps/s)

0

3000 1000

6000 2000

A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

(rpm) 9000 Speed 3000 (Step/s)

Current mode (A) 3) 4) Driver AD CM M1S

174



CCW

nt f ro

3

ace vi e

Rotor

+

w

Voltage mode (V) 3) Driver AD VL M1S

2

1

F

Stepper Motors

6 Holding torque 1) (at nominal current in both phases) 7 Holding torque 1) (at twice the nominal current)

V12

Voltage

5,4 2,6 1,5

3 Phase resistance (at 20°C) 4 Phase inductance (1kHz) 5 Back-EMF amplitude

V6

Current

B

CW 4



© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Dimensional drawing

ø11,2

0

0

0

-0,007

ø6 -0,022 ø1,5 -0,011

ø12 -0,07

A

ø2,92 -0,015

ø0,05 A

DIN 58400 m=0,2 z=12 x=+0,2

M5,5x0,5

-0,04

0

ø3,65 -0,06

ø2,38 -0,015

DIN 58400 m=0,25 z=12 x=+0,2

DIN 58400 m=0,2 z=9 x=+0,35

A+

B+

B-

A-

5,8

3,3

0,7

0,4

0 -0,05

1,9

±0,05

2,15

+0,2 -0,05

(4x) ø0,75x0,55

4,8

gold plated bores

3,85

17,4 ±0,2

1,8

3,4

5,2

6 ±0,2

2,15

2,1

3

3,9

6,9 ±0,2

4,25 ±0,2

±0,2

Rear shaft

Front shaft

for Gearhead 10/1

for Gearheads 12/3, 12/5

for Gearhead 12/4

Combinations Drive Electronics

Stepper Motors

Encoders

ADM1220S

AD VL M_S AD VM M_S AD CM M_S

Gearheads / Lead screws

10/1 12/3 12/4 12/5* Lead screws M2 Lead screws M2,5

* Zero Backlash Gearheads

Ordering information Example: ADM1220S-2R-V2-51

Motor type

Bearings (rr)

ADM = Motor design 12 = Motor diameter (mm) Special lubricant options available 20 = Steps per revolution ADM1220S - (sleeve bearings) -2R (2 ball bearings)

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Winding (ww)

-V2 -V3 -V6 -V12

1)

Motor execution (ee) Only front output shaft

With double output shaft

-51 -55 -57 -59 -83

-50 -56 -58 -60 -82

175

Prepared for assembly of lead screws size M2 and M2,5

Front output shaft Plain shaft Pinion 10/1 Pinion 12/3, 12/5 Pinion 12/4 Plain shaft 1)

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

ADM1220S Front face view

Stepper Motors

6,0 mNm

Two phase, 24 steps per revolution PRECIstep® Technology

AM1524-ww-ee ww =

V-6-35

A-0,45-3,6

Voltage

Current

Voltage

Current

Voltage

Current

6 –

– 0,15

12 –

– 0,075

3,5 –

– 0,25

2 –

– 0,45

35 15 6

3 Phase resistance (at 20°C) 4 Phase inductance (1kHz) 5 Back-EMF amplitude 6 Holding torque 1) (at nominal current in both phases) 7 Holding torque 1) (at twice the nominal current)

A-0,25-12,5

Current

1 Nominal voltage 2 Nominal current per phase (both phases ON)

138 65 12

12,5 5,5 3,5

Drive mode

V DC A

3,6 1,7 2,0

Ω mH V/k step/s

6,0 10

mNm mNm

8 9 10 11 12 13

Step angle (full step) Angular accuracy 2) Residual torque Rotor inertia Resonance frequency (at no load) Electrical time constant

15 ± 10 0,9 45 120 0,4

mNm .10-9 kgm2 Hz ms

14 15 16 17

Ambient temperature range Winding temperature tolerated, max. Thermal resistance winding-ambient air Thermal time constant

–35 ... +70 130 37 220

°C °C °C/W s

degree % of full step

sintered bronze sleeves (standard)

ball bearings, preloaded (optional)

19 Shaft load, max.: – radial (3 mm from bearing) – axial

0,5 0,5

6,0 3,0

N N

20 Shaft play, max.: – radial (0,2N) – axial (0,2N)

15 150

12 ~0

μm μm

21 Isolation test voltage

200

V DC

22 Motor dimensions: – diameter – length – shaft diameter

15 16,5 1,5

mm mm mm

23 Weight

12

g

18 Shaft bearings

1) 2) 3) 4)

with bipolar driver 2 phases ON, balanced phase currents Curves measured with a load inertia of 10 ·10-9 kgm2 Testing the motor at lower supply voltages in current mode will result in a decrease in torque at higher speed, even with the same current setting

Torque (mNm)

Torque (mNm)

Power (W) AM1524-V-6-35-ee 2-phase ON, 6V

3

Power (W)

1,5

3

0,3 Torque Start/Stop (mNm)

2

0,2

1

0,1

Torque Slew rate (mNm)

CW CCW

AM1524-A-0,25-12,5-ee 2-phase ON, 0.25A, 12V

Mechanical Power (W)

2

1

1

0,5

Phase A

1 +

2 –

3 –

4 +

Phase B

+

+





+ 0 0

1000 400

2000 800

3000 1200

4000 1600

Speed (rpm) (Step/s)

0 0

5000 2000

10000 15000 20000 4000 6000 8000

A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Current mode (A) 3) 4) Driver AD CM M1S

176



Speed (rpm) (Step/s)

CCW

nt f ro

3

ace vi e

Rotor

+

w

Voltage mode (V) 3) Driver AD VM M1S

2

1

F

Stepper Motors

V-12-150

Voltage

B

CW 4



© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Dimensional drawing

ø2,38 -0,015 0

0

60

ø6 -0,018

°

ø6 -0,02

Z=9 m=0,2 x=+0,35 DIN 58400

A

0

ø1,5 -0,011

1

°

60

-0,007

0

ø15 -0,07

2,54

ø14,5

B

4

Round PCB

4x Ø 0.85x0.6mm

ø10 ±0,05

gold plated bores

Solder tag PCB º

80 2,1

B

2,54

AM1524 Front face view

Front shaft

Rear shaft

for Gearheads 15/5, 15/8

8,5 10

Combinations Drive Electronics

AD VL M_S AD VM M_S AD CM M_S

Stepper Motors

Encoders

AE 23B8

Gearheads / Lead screws

AM1524

15A 15/5 15/8* 16/7 Lead screws M2 Lead screws M2,5 Lead screws M3 * Zero Backlash Gearheads

Ordering information Example: AM1524-2R-V-24-590-57

Motor type AM 15 24

Bearings (rr)

Winding (ww)

= Motor design = Motor diameter (mm) Special lubricant = Steps per revolution options available

AM1524

(sleeve bearings) -V-3-10 1)

-2R (2 ball bearings) -V-6-35 -V-12-150 -V-24-590 1) -A-0,25-12,5 -A-0,45-3,6

Motor execution (ee) Only front output shaft

With double output shaft

Front output shaft

-55 (-05) -57 (-07) -70 (-72)

-54 (-04) -56 (-06) -71 (-73) -04-0904 4) -06-0904 4) -73-0904 4) -82 (-22)

Plain shaft, L=7,5 mm2) Pinion 15/5, 15/8 Plain shaft, L=4,3 mm3) Idem -04 Idem -06 Idem -73 Plain shaft 5)

-83 (-23)

1)

Non-standard windings, for data please inquire with your point of sales

2)

Designations for assembly with gearhead 16/7

3)

Designations for assembly with gearhead 15A

4)

Designations for assembly of encoder AE 23B8

5)

Prepared for assembly of lead screws size M2, M2,5 and M3

( ) Designation for motors with solder tag PCB

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

177

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

4,3 ±0,2

1

16,5

1 7,5±0,2

±0,2

A

7

1,2 ±0,2

4

4x M1,6 x 1,5 max.

4x ø0,7

10

0 1 -0,05

Stepper Motors

26 mNm

Two phase, 24 steps per revolution PRECIstep® Technology

AM2224-ww-ee ww =

AV-0,9

V-12-75

Voltage

Current

Voltage

Current

Voltage

Current

1,4 –

– 1,0

3 –

– 0,5

6 –

– 0,25

12 –

– 0,125

0,9 1,2 4,1

3 Phase resistance (at 20°C) 4 Phase inductance (1kHz) 5 Back-EMF amplitude 6 Holding torque 1) (at nominal current in both phases) 7 Holding torque 1) (at twice the nominal current)

AV-18

Current

1 Nominal voltage 2 Nominal current per phase (both phases ON)

4,8 5,2 8,3

18 16 16,7

Drive mode

V DC A

75 61 33

Ω mH V/k step/s

26 45

mNm mNm

8 9 10 11 12 13

Step angle (full step) Angular accuracy 2) Residual torque Rotor inertia Resonance frequency (at no load) Electrical time constant

15 ± 10 2 253 100 1,7

degree

14 15 16 17

Ambient temperature range Winding temperature tolerated, max. Thermal resistance winding-ambient air Thermal time constant

–35 ... +70 130 28 600

°C °C °C/W s

% of full step

mNm .10-9 kgm2 Hz ms

sintered bronze sleeves (standard with 2 mm shaft)

ball bearings, preloaded (optional)

19 Shaft load, max.: – radial (3 mm from bearing) – axial

1,5 0,5

8,0 3,0

N N

20 Shaft play, max.: – radial (0,2N) – axial (0,2N)

30 200

15 ~0

μm μm

21 Isolation test voltage

200

V DC

22 Motor dimensions: – diameter – length – shaft diameter

22 27,5 2

mm mm mm

23 Weight

43

g

18 Shaft bearings

1) 2) 3) 4)

with bipolar driver 2 phases ON, balanced phase currents Curves measured with a load inertia of 8 ·10-9 kgm2 Testing the motor at lower supply voltages in current mode will result in a decrease in torque at higher speed, even with the same current setting

Torque

Torque

(mNm)

(mNm) 20

20

AM2224-V-12-75-ee 2-phase ON, 12V

16

CW CCW

AM2224-AV-4,8-ee 2-phase ON, 0.5A, 30V

16

12

12

Phase A

1 +

2 –

3 –

4 +

8

8

Phase B

+

+





4

4

0

0

500 200

1000 400

1500 600

Speed (rpm) (Step/s)

0

+ 0

5000 2000

10000 4000

15000 6000

Speed (rpm) (Step/s)

A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Current mode (A) 3) 4) Driver AD CM M1S

178

CCW

nt f ro



3

ace vi e

Rotor

+

w

Voltage mode (V) 3) Driver AD VM M1S

2

1

F

Stepper Motors

AV-4,8

Voltage

B

CW 4



© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Dimensional drawing -0,02

-0,007

0

ø7 -0,022

ø22 -0,08

120°

-0,04

ø4,35 -0,06

ø2 -0,011

A

z=12 m=0,3 x=+0,25 DIN 867

ø0,07 A

B

A

60° 4

60°

M2 x 2,5 (4x) max.

1 ±0,05 1,5 ±0,2

2,54

6,4

2,1

7 ±0,2

ø12

1

8,1 ±0,2

7,62

8,1 ±0,2

27,5 ±0,2

Front face view

Front shaft

Stepper Motors

AM2224 Rear shaft

for Gearheads 22/2, 22/5

Combinations Drive Electronics

Stepper Motors

Encoders

PE 22-120

AD VM M_S AD CM M_S

Gearheads / Lead screws

AM2224

22E 22/2 22/5* 23/1

* Zero Backlash Gearheads

Ordering information Example: AM2224-2R-AV-18-10

Motor type AM 22 24

Bearings (rr)

Winding (ww)

= Motor design = Motor diameter (mm) Special lubricant options available = Steps per revolution

AM2224

- (sleeve bearings) -AV-0,9 -2R (2 ball bearings) -AV-4,8 -AV-18 -V-12-75 -V-24-290 1)

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Motor execution (ee) Only front output shaft

With double output shaft

Front output shaft

-10 -12 -14

-11 -13 -15 -16 -17 -18

Plain shaft, L=8,1 mm2) Plain shaft, L=6,6 mm3) Pinion 22/2, 22/5 Plain shaft 2) 4) Plain shaft 3) 4) Pinion 22/2, 22/5 4)

179

1)

Non-standard windings, for data please inquire with your point of sales

2)

Designations for assembly with gearhead 23/1

3)

Designations for assembly with gearhead 22E (shaft 1,5 mm)

4)

Designation for assembly with encoder PE22-120

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

26 mNm

Two phase, 24 steps per revolution PRECIstep® Technology

AM2224-R3-ww-ee ww =

AV-0,9

V-12-75

Voltage

Current

Voltage

Current

Voltage

Current

1,4 –

– 1,0

3 –

– 0,5

6 –

– 0,25

12 –

– 0,125

0,9 1,2 4,1

3 Phase resistance (at 20°C) 4 Phase inductance (1kHz) 5 Back-EMF amplitude 6 Holding torque 1) (at nominal current in both phases) 7 Holding torque 1) (at twice the nominal current)

AV-18

Current

1 Nominal voltage 2 Nominal current per phase (both phases ON)

4,8 5,2 8,3

18 16 16,7

Drive mode

V DC A

75 61 33

Ω mH V/k step/s

26 45

mNm mNm

8 9 10 11 12 13

Step angle (full step) Angular accuracy 2) Residual torque Rotor inertia Resonance frequency (at no load) Electrical time constant

15 ± 10 2 253 100 1,7

degree

14 15 16 17

Ambient temperature range Winding temperature tolerated, max. Thermal resistance winding-ambient air Thermal time constant

–35 ... +70 130 28 600

°C °C °C/W s

% of full step

mNm .10-9 kgm2 Hz ms

ball bearings, preloaded (standard with 3 mm shaft)

18 Shaft bearings 19 Shaft load, max.: – radial (3 mm from bearing) – axial

20,0 3,0

N N

20 Shaft play, max.: – radial (0,2N) – axial (0,2N)

15 ~0

μm μm

21 Isolation test voltage

200

V DC

22 Motor dimensions: – diameter – length – shaft diameter

22 30,7 3

mm mm mm

23 Weight

50,5

g

1)

with bipolar driver 2 phases ON, balanced phase currents 3) Curves measured with a load inertia of 8 ·10 -9 kgm2 4) Testing the motor at lower supply voltages in current mode will result in a decrease in torque at higher speed, even with the same current setting

2)

Torque

Torque

(mNm)

(mNm) 20

20

AM2224-V-12-75-ee 2-phase ON, 12V

16

CW CCW

AM2224-AV-4,8-ee 2-phase ON, 0.5A, 30V

16

12

12

Phase A

1 +

2 –

3 –

4 +

8

8

Phase B

+

+





4

4

0

0

500 200

1000 400

1500 600

Speed (rpm) (Step/s)

0

+ 0

5000 2000

10000 4000

15000 6000

Speed (rpm) (Step/s)

A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Current mode (A) 3) 4) Driver AD CM M1S

180

CCW

nt f ro



3

ace vi e

Rotor

+

w

Voltage mode (V) 3) Driver AD VM M1S

2

1

F

Stepper Motors

AV-4,8

Voltage

B

CW 4



© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Dimensional drawing -0,02

0

-0,007

ø10-0,0007 ø3 -0,011

ø22 -0,08

A

120°

ø0,07 A

B

4

60° M2 x 3 (4x) max.

A

1

2,4 1

60°

1,9 ±0,2 7 ±0,2

ø17

2,54

2,5

7,62 12,5 ±0,2

30,7 ±0,2

Stepper Motors

AM2224-R3 Front face view

Front shaft

Rear shaft

Combinations Drive Electronics

Stepper Motors

Encoders

PE22-120

AD VM M_S AD CM M_S

AM2224-R3

Gearheads / Lead screws

Lead screws M3

Ordering information Example: AM2224-R3-AV-18-31

Motor type

Bearings (rr)

= Motor design = Motor diameter (mm) Special lubricant options available = Steps per revolution -R3 (2 ball bearings) AM2224

Winding (ww)

AM 22 24

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

-AV-0,9 -AV-4,8 -AV-18 -V-12-75 -V-24-290 1)

Motor execution (ee) Only front output shaft

With double output shaft

Front output shaft

-30 -85

-31 -84 -36 -86

Plain shaft Plain shaft 2) Plain shaft 3) Plain shaft 2) 3)

181

1)

Non-standard windings, for data please inquire with your point of sales

2)

Prepared for assembly of lead screws size M3

3)

Designation for assembly with encoder PE22-120

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors Single phase, 6 steps per revolution PRECIstep® Technology

For combination with: Drive Electronics: AMAR 138

Series ASP 006-xx-01 xx =

Number of steps per revolution 1) Step angle Nominal voltage 2) Voltage range Pulse width Coil resistance Average current consumption Torque at nominal voltage (20°C) Detent torque Ambient temperature range Max. load inertia Direction of rotation 3) Axial play Max. radial play Weight

Stepper Motors

1) 2) 3)

022 6 60 1,3 1,0 to 1,6 7,81 22 160

20 50 –40 ... +85 2 CW 25 to 150 50 6,8

102 6 60 2,7 2,1 to 3,3 7,81 102 70

380 6 60 4,5 3,5 to 5,1 7,81 380 30

degrees V DC V DC ms Ω μA/step/s μNm μNm °C .10-9 kgm2 μm μm g

Driven by successive pulses of constant polarity Positive pole on outside wire Viewing the motor from the shaft or pinion end (CW = clockwise)

Jewel bearings are standard

Driver Schematic The driver can be built using the schemes below depending on the motor supply voltage rating. Pulse length is identical for each motor. +

+ M



+

100 Ω

270 Ω

M

VCE Sat < 0.1V

M

VCE Sat < 0.1V



ASP 006-022-01

For rapid evaluation, the Drive Electronic AMAR138 is available for each voltage.

ASP 006-380-01

15,36

°

1,8

2.2 kΩ

VCE Sat < 0.2V



ASP 006-102-01

Si

0,5x45

6,4 6

1,3 3,1 ø0,5 -0,02 -0,03

6,4

1,35 21 max.

-0 ø8 -0,036

10,45 Loose winding wire, length min. 15 mm, tips are tinned 8 max. 9

15 23

ASP 006-xx-01

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

182

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors Single phase, 24 steps per revolution PRECIstep® Technology

For combination with: Drive Electronics: AMAR 138

Series ASP 124-xx-06 xx =

1) 2) 3)

022 24 15 1,3 1,0 to 1,6 7,81 22 160

102 24 15 2,7 2,1 to 3,3 7,81 102 70

380 24 15 4,5 3,5 to 5,1 7,81 380 30

75 200 –40 ... +85 30 CW 200 22 13

degrees V DC V DC ms Ω μA/step/s μNm μNm °C .10-9 kgm2 μm μm g

Driven by successive pulses of constant polarity Positive pole on red wire Viewing the motor from the shaft or pinion end. Motors are delivered, on request, either CW (clockwise) or CCW (counter clockwise).

Jewel bearings are standard

Driver Schematic The driver can be built using the schemes below depending on the motor supply voltage rating. Pulse length is identical for each motor. +

+ M



270 Ω

+ 100 Ω

M

VCE Sat < 0.1V



ASP 124-022-06

For rapid evaluation, the Drive Electronic AMAR138 is available for each voltage.

M

VCE Sat < 0.1V

2.2 kΩ

VCE Sat < 0.2V



ASP 124-102-06

Si

ASP 124-380-06

16

1,25

7

2,75 1

1 4,5 -0,02

1

View for determing sense of rotation CW for ASP 124, CCW for ASP 024

ø6 -0,03

6,75

Output drive pinion m=0,3; z=8

30,8 17,75

Loose winding wire, length approx. 150 mm, tips are tinned 24

11

ASP 124-xx-06

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

183

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

Number of steps per revolution 1) Step angle Nominal voltage 2) Voltage range Pulse width Coil resistance Average current consumption Torque at nominal voltage (20°C) Detent torque Ambient temperature range Max. load inertia Direction of rotation 3) Axial play Max. radial play Weight

Lead Screw Linear actuation for positioning tasks PRECIstep® Technology

For combination with Stepper Motors: ADM0620, AM0820, AM1020

Series M1,2 x 0,25 x L1 1,2 0,998 / 1,018 0,25 < 0,5 316L

Nominal diameter Diameter over the flanks (min./max.) Pitch Precision (per pitch) Material

mm mm mm μm

Force (N) 0,25

Force (N) 1,0

In combination with ADM0620

0,20

Voltage Mode (Pull) Voltage Mode (Push)

0,15

Current Mode (Pull)

0,10

Voltage Mode (Push)

0,05

Stepper Motors

0

0

10 800

20 1600

30 2400

40 3200

50 4000

60 4800

Speed (mm/s) Speed (Step/s)

60 4800

Speed (mm/s) Speed (Step/s)

In combination with AM0820

0,8 0,6 0,4 0,2 0

10 800

0

20 1600

30 2400

40 3200

50 4000

60 4800

Speed (mm/s) Speed (Step/s)

Force (N) 2,50

In combination with AM1020

2,00 1,50 1,00 0,50 0

0

10 800

20 1600

30 2400

40 3200

50 4000

Note: the thrust curves include already a safety factor for the use of the stepper motor. Ordering information Order code (no bearing tip) Order code (with bearing tip)

L1 (mm) =

7,5 M1,2x0,25x7,5 –

15 M1,2x0,25x15 –

Custom M1,2x0,25xL1* –

* Indicate directly the custom length (mm) on the order

ADM0620 AM0820 AM1020

Optional: nut 2.8000.08.351 M 1,2 x 0,25 A

0,15 A

L1 L2 ±0,2 (L2 = L1 + 2,3)

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

184

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Lead Screw Linear actuation for positioning tasks PRECIstep® Technology

For combination with Stepper Motors: ADM0620, AM0820, AM1020

Series M1,6 x 0,35 x L1 1,6 1,310 / 1,353 0,35 < 0,5 316L

Nominal diameter Diameter over the flanks (min./max.) Pitch Precision (per pitch) Material

mm mm mm μm

Force (N)

Force (N)

0,20

0,80

In combination with ADM0620

0,15

Voltage Mode Current Mode

0,10

0

0,60

0,40 0,20

0

14 800

28 1600

42 2400

56 3200

70 4000

84 4800

Speed (mm/s) Speed (Step/s)

84 4800

Speed (mm/s) Speed (Step/s)

0

0

14 800

28 1600

42 2400

56 3200

70 4000

84 4800

Speed (mm/s) Speed (Step/s)

Force (N) 2,00 In combination with AM1020

1,50

1,00 0,50 0

0

14 800

28 1600

42 2400

56 3200

70 4000

Note: the thrust curves include already a safety factor for the use of the stepper motor. Ordering information Order code (no bearing tip) Order code (with bearing tip)

L1 (mm) =

7,5 M1,6x0,35x7,5 –

15 M1,6x0,35x15 M1,6x0,35x15T

Custom M1,6x0,35xL1* M1,6x0,35xL1*T

* Indicate directly the custom length (mm) on the order

ADM0620 AM0820 AM1020

ADM0620 AM0820 AM1020

Optional: nut 2.8000.90.510

Optional: ball bearing 2.8000.08.401

M 1,6 x 0,35 A

-0,008

ø1 -0,015

0,15 A

0,00

1 -0,05 L1

L1

L2 ±0,2 (L2 = L1 + 2,3)

L2 ±0,2 (L2 = L1 + 2,3) Version with bearing tip

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

185

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

0,05

In combination with AM0820

Lead Screw Linear actuation for positioning tasks PRECIstep® Technology

For combination with Stepper Motors: AM0820, AM1020, ADM1220, ADM1220S, AM1524

Series M2 x 0,2 x L1 2,0 1,83 / 1,85 0,2 < 0,5 316L

Nominal diameter Diameter over the flanks (min./max.) Pitch Precision (per pitch) Material

mm mm mm μm

Force (N)

Force (N) 2,00

0,8

In combination with AM0820

In combination with AM1020

Voltage Mode (Pull) 1,50

0,6 Voltage Mode (Push) 0,4

Current Mode (Pull)

1,00

0,2

Voltage Mode (Push)

0,50

Stepper Motors

0

0

10 1000

20 2000

30 3000

40 4000

50 5000

60 6000

0

Speed (mm/s) Speed (Step/s)

0

10 1000

20 2000

30 3000

4,0

2,00

60 6000

Speed (mm/s) Speed (Step/s)

40 4800

Speed (mm/s) Speed (Step/s)

In combination with AM1524

In combination with ADM1220, ADM1220S

1,50

3,0

1,00

2,0

0,50

1,0 0 0

50 5000

Force (N)

Force (N)

0

40 4000

10 20 1000 2000

30 3000

40 4000

50 5000

60 6000

Speed (mm/s) Speed (Step/s)

0

10 1200

20 2400

30 3600

Note: the thrust curves include already a safety factor for the use of the stepper motor. Ordering information Order code (no bearing tip) Order code (with bearing tip)

L1 (mm) =

7,5 M2x0,2x7,5 –

15 M2x0,2x15 M2x0,2x15T

25 M2x0,2x25 M2x0,2x25T

Custom M2x0,2xL1* M2x0,2xL1*T

* Indicate directly the custom length (mm) on the order

AM0820 AM1020 ADM1220 AM1524

AM0820 AM1020 ADM1220 AM1524

Optional: nut 2.8000.08.353

Optional: ball bearing 2.8000.10.401

M 2,0 x 0,2 A

-0,008

0,15 A

ø1,2 -0,015

0,00

1,8 -0,05 L1

L1

L2 ±0,2 (L2 = L1 + 2,3)

L2 ±0,2 (L2 = L1 + 2,3) Version with bearing tip

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

186

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Lead Screw Linear actuation for positioning tasks PRECIstep® Technology

For combination with Stepper Motors: AM1020, ADM1220, ADM1220S, AM1524

Series M2,5 x 0,25 x L1 2,5 2,298 / 2,318 0,25 < 0,5 316L

Nominal diameter Diameter over the flanks (min./max.) Pitch Precision (per pitch) Material

mm mm mm μm

Force (N)

2,00

2,00

In combination with AM1020

1,50 Voltage Mode (Push)

1,50

1,00

Current Mode (Pull)

1,00

0,50

Voltage Mode (Push)

0,50

0

0

10 1000

20 2000

30 3000

40 4000

50 5000

In combination with ADM1220, ADM1220S

Voltage Mode (Pull)

60 6000

Speed (mm/s) Speed (Step/s)

40 4800

Speed (mm/s) Speed (Step/s)

0

0

10 20 1000 2000

30 3000

40 4000

50 5000

60 6000

Speed (mm/s) Speed (Step/s)

Force (N) 4,0 In combination with AM1524

3,0

2,0 1,0 0

0

10 1200

20 2400

30 3600

Note: the thrust curves include already a safety factor for the use of the stepper motor. Ordering information Order code (no bearing tip) Order code (with bearing tip)

L1 (mm) =

7,5 M2,5x0,25x7,5 –

15 M2,5x0,25x15 M2,5x0,25x15T

25 M2,5x0,25x25 M2,5x0,25x25T

Custom M2,5x0,25xL1* M2,5x0,25xL1*T

* Indicate directly the custom length (mm) on the order

AM1020 ADM1220 AM1524

AM1020 ADM1220 AM1524

Optional: nut 2.8000.90.511

Optional: ball bearing 2.8000.10.401

M 2,5 x 0,25 A

-0,008

0,15 A

ø1,2 -0,015

0,00

1,8 -0,05 L1 L2 ±0,2 (L2 = L1 + 2,3)

L1 L2 ±0,2 (L2 = L1 + 2,3) Version with bearing tip

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

187

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Stepper Motors

Force (N)

Lead Screw Linear actuation for positioning tasks PRECIstep® Technology

For combination with Stepper Motors: AM1524, AM2224-R3

Series M3 x 0,5 x L1 3,0 2,600 / 2,675 0,5 < 0,5 316L

Nominal diameter Diameter over the flanks (min./max.) Pitch Precision (per pitch) Material

mm mm mm μm

Force (N)

Force (N)

4,0

4,0

In combination with AM1524

In combination with AM2224-R3

Voltage Mode (Pull)

3,0

3,0 Voltage Mode (Push)

2,0

Current Mode (Pull)

2,0

1,0

Voltage Mode (Push)

1,0

Stepper Motors

0

0

25 1200

50 2400

75 3600

100 4800

0

Speed (mm/s) Speed (Step/s)

0

25 1200

50 2400

75 3600

100 4800

Speed (mm/s) Speed (Step/s)

Note: the thrust curves include already a safety factor for the use of the stepper motor.

Ordering information Order code (no bearing tip) Order code (with bearing tip)

L1 (mm) =

15 M3x0,5x15 M3x0,5x15T

25 M3x0,5x25 M3x0,5x25T

Custom M3x0,5xL1* M3x0,5xL1*T

* Indicate directly the custom length (mm) on the order

Optional: nut 2.8000.15.340

AM1524 AM2224-R3

Optional: ball bearing 2.8000.22.450

AM1524 AM2224-R3

M 3 x 0,5 A

-0,008

0,15 A

ø2,0 -0,015

0,00

2,5 -0,05 L1 L2 ±0,2 (L2 = L1 + 2,3)

L1 L2 ±0,2 (L2 = L1 + 2,3) Version with bearing tip

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

188

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Lead Screw Optional nuts and bearings PRECIstep® Technology

Options For M1,2 x 0,25 Lead screws Scale 2:1

5,2 3,0

1,1

M1,20 x 0,25

ø4,50

ø2,8

1,7 ±0,1 ==

1,40

Nut Part No. 2.8000.08.351 For M1,6 x 0,35 Lead screws Scale 2:1

6,2 3,6 ø5,00

1,3

0,000

ø3,2

2,0 ±0,1 ==

1,0 - 0,007

Stepper Motors

M1,60 x 0,35 0,000

3,0 - 0,007 0,00

1,0 - 0,04

1,50

Nut Part No. 2.8000.90.510

Bearing for leadscrew tip Part No. 2.8000.08.401

For M2,0 x 0,2 Lead screws Scale 2:1

7,0 4,0 ø6,00

1,5

M2,00 x 0,2

0,000

1,2 - 0,007

ø3,6

2,2 ±0,1

==

0,000

4,0 - 0,007 0,00

1,8 - 0,04

1,60

Nut Part No. 2.8000.08.353

Bearing for leadscrew tip Part No. 2.8000.10.401

For M2,5 x 0,25 Lead screws Scale 2:1

7,5 4,5 ø6,50

1,5

M2,50 x 0,25 0,000

ø4,00

2,2 ±0,1 ==

1,2 - 0,007

0,000

4,0 - 0,007 0,00

1,60

1,8 - 0,04

Bearing for leadscrew tip Part No. 2.8000.10.401

Nut Part No. 2.8000.90.511 For M3,0 x 0,5 Lead screws

7,5 4,5 ø7,00

M3,00 x 0,5

Scale 2:1

1,5

0,000

2,0 - 0,007

ø4,5

2,5 ±0,1 ==

0,00

2,5 - 0,04

1,75

Nut Part No. 2.8000.15.340

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

0,000

6,0 - 0,007

Bearing for leadscrew tip Part No. 2.8000.22.450

189

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotors

Linear DC-Servomotors

WE CREATE MOTION For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

190

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotors – QUICKSHAFT® Technology with analog Hall Sensors for sin/cos control with analog Hall Sensors for sin/cos control

Page 3,6 N 3,6 N 9,2 N 9,2 N

198 – 199 200 – 201 202 – 203 204 – 205

Linear DC-Servomotors

LM 1247 ... 01 LM 1247 ... 02 LM 2070 ... 01 LM 2070 ... 02

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

191

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

WE CREATE MOTION 192

Linear DC-Servomotors Technical Information

Force constant kF [N/A] The constant corresponding to the relationship between the motor force delivered and current consumption.

Linear DC-Servomotors with Analog Hall Sensors QUICKSHAFT® Technology

Terminal resistance, phase-phase R [ ] ±12% The resistance measured between two motor phases. This value is directly influenced by the coil temperature (temperature coefficient: α 22 = 0,004 K-1).

Series LM 1247 ... 01 Continuous force 1) Peak force 1) 2) Continuous current 1) Peak current 1) 2)

5 Back-EMF constant 6 Force constant 3)

LM 1247– Fe max. Fp max. Ie max. Ip max.

020–01 3,6 10,7 0,55 1,66

kE kF

5,25 6,43

0

Terminal inductance, phase-phase L [μH] The inductance measured between two phases at 1 kHz. Stroke length smax. [mm] The maximum stroke length of the moving cylinder rod. Repeatability [μm] The maximum measured difference when repeating several times the same movement under the same conditions.

Notes N t on ttechnical h i ld data t All values at 22 °C.

Precision [μm] The maximum positioning error. This value corresponds to the maximum difference between the set position and the exact measured position of the system.

Continuous force Fe max. [N] The maximum force delivered by the motor at the thermal limit in continuous duty operation.

Acceleration ae max. [m/s2] The maximum no-load acceleration from standstill.

Fe max. = kF · Ie max. Peak force Fp max. [N] The maximum force delivered by the motor at the thermal limit in intermittent duty operation (max. 1 s, 20% duty cycle).

Fe max. ae max. = ––––– mm Speed ve max. [m/s] The maximum no-load speed from standstill, considering a triangular speed profile and maximum stroke length.

Fp max. = kF · Ip max.

ve max. = ae max. · s max.

Continuous current Ie max. [A] The maximum motor current consumption at the thermal limit in continuous duty operation. Ie max. =

Thermal resistance Rth 1 / Rth 2 [K/W] Rth1 corresponds to the value between coil and housing. Rth2 corresponds to the value between housing and ambient air. The listed values refer to a motor totally surrounded by air. Rth2 can be reduced with a heat sink and/or forced air cooling.

T125 – T22 2 ––––––––––––––––––––––––––––––––––––– · ––– R · (1 + 22 · (T125 – T22 )) · (Rth 1 + 0,45·R th 2 ) 3

Peak current Ip max. [A] The maximum motor current consumption at the thermal limit in intermittent duty operation (max. 1 s, 20% duty cycle).

Thermal time constant τ w1 / τ w2 [s] The thermal time constant of the coil and housing, respectively.

Back-EMF constant kE [V/m/s] The constant corresponding to the relationship between the induced voltage in the motor phases and the linear motion speed.

Operating temperature range [°C] The minimum and maximum permissible operating temperature values of the motors. Rod weight mm [g] The weight of the rod (cylinder with magnets).

2 · kF kE = ——–– 6

Total weight mt [g] The total weight of the linear DC-Servomotor.

LM1247-01_front.indd 1

08.09.09 15:40

193

Linear DC-Servomotors

1 2 3 4

Linear DC-Servomotors Technical Information

Magnetic pitch τ m [mm] The distance between two equal poles.

where:

Rod bearings The material and type of bearings. Housing material The material of the motor housing. Direction of movement The direction of movement is reversible, determined by the control electronics.

Force calculation To move a mass on a slope, the motor needs to deliver a force to accelerate the load and overcome all forces opposing the movement.

Linear DC-Servomotors

[N]

Fext :

External force

[N]

Ff :

Friction force Ff = m · g ·

Fx :

Parallel force Fx = m · g · sin ( )

[N]

m:

Total mass

[kg]

g:

Gravity acceleration

[m/s2]

a:

Acceleration

[m/s2]

⋅ cos ( )

[N]

Shifting any load from point A to point B is subject to the laws of kinematics. Equations of a uniform straight-line movement and uniformly accelerated movement allow definition of the various speed vs. time profiles. Prior to calculating the continuous duty force delivered by the motor, a speed profile representing the various load movements needs to be defined.

m Ff Fg

Continuous force delivered by motor

Speed profiles

Fext

Fe

Fe :

Triangular speed profile The triangular speed profile simply consists of an acceleration and a deceleration time.

Fy Fx

Speed (m/s)

The sum of forces shown in above figure has to be equal to:

ΣF=m·a

t

The shaded area equals the movement length during time t.

[N]

Entering the various forces in this equation it follows that: Fe - Fext - Ff - Fx = m · a

t/2

[N]

194

t/2

Time (s)

v2 1 · v · t = ___ · a · t 2 = ____ 2 4 a

1

Displacement:

s =

Speed:

v= 2·

Acceleration:

a=4·

___

s

a·t = ________ = t 2

___

s

v v2 = 2 · ____ = ____ t2 t s

____

a·s

[m]

[m/s]

[m/s2]

Trapezoidal speed profile The trapezoidal speed profile, acceleration, speed and deceleration, allow simple calculation and represent typical real application cases.

Speed (m/s)

2 3

1

Speed (m/s)

t1 = td /3

The shaded area equals the movement length during time t.

t2 = td /3 t3 = td /3

Unit

t/3

Displacement:

Speed:

s =

t/3

t/3

Time (s)

v2 1 · v · t = ______ · a · t 2 = 2 · ____ 3 4,5 a

2

___

v = 1,5 ·

s

___

t

=

a·t

________

3

=

a·s

_________

2

a = 4,5 ·

s

___

t2

v v = 3 · ___ = 2 · ____ t s

2

3

4

0

m

0,005

0,01

0,005

v (speed)

m/s

0 ... 0,3

0,3

0,3 ... 0

0

a (acceleration)

m/s2

9,0

0

–9,0

0

t (time)

s

0,033

0,033

0,033

0,100

Calculation example Speed and acceleration of part

[m]

1

s (displacement)

vmax. = 1,5 · [m/s] a = 4,5 ·

Acceleration:

4

t4 = 100 ms

td = 100 ms

2

s

___

t2

s

___

t

20 · 10-3

= 1,5 ·

= 4,5 ·

1

_________________

100 · 10-3 20 · 10-3

____________________

(100 · 10-3) 2

= 0,3 m/s Linear DC-Servomotors

t

Time (s)

= 9 m/s2

[m/s2] Force definition Assuming a load of 500 g and a friction coefficient of 0,2, the following forces result: Forward

How to select a linear DC-Servomotor This section describes a step-by-step procedure to select a linear DC-Servomotor.

Symbol

N

Ff

0,94 0,94 0,94 -0,94 0,94 0,94 0,94 0,94

Parallel

N

Fx

1,71 1,71 1,71 1,71 -1,71 -1,71 -1,71 -1,71

Acceleration

N

Fa

4,5

Total

N

Ft

7,15 2,65 -1,85 0,77 3,73 -0,77 -5,27 -0,77

Friction

Speed profile definition To start, it is necessary to define the speed profile of the load movements.

1

2

0

3

-4,5

Calculation example Friction and acceleration forces of part

Movement characteristics are the first issues to be considered. Which is the maximum speed? How fast should the mass be accelerated? Which is the length of movement the mass needs to achieve? How long is the rest time?

Backward

Unit

Force

4

0

1

2

4,5

0

3

-4,5

4

0

1

Ff = m · g · μ · cos (∝) = 0,5 · 10 · 0,2 · cos (20º) = 0,94 N Fa = m · a = 0,5 · 9 = 4,5 N

Should the movement parameters not be clearly defined, it is recommended to use a triangular or trapezoidal profile.

= 4,5 N

Motor selection Now that the forces of the three parts of the profile are known, requested peak and continuous forces can be calculated in function of the time of each part.

Lets assume a load of 500 g that needs to be moved 20 mm in 100 ms on a slope having a rising angle of 20° considering a trapezoidal speed profile.

The peak force is the highest one achieved during the motion cycle. Fp = max. ( | 7,15 | , | 2,65 | , | -1,85 | , | 0,77 | , | 3,73 | , | -0,77 | , | -5,27 | , | -0,77 | ) = 7,15 N

195

Linear DC-Servomotors Technical Information

The continuous force is represented by the expression:

Σ (t · Ft2 )

Fe =

_______________

2 · Σt

2

Motion profile: Trapezoidal (t1 = t2 = t3), back and forth

= ...

Motor characteristic curves of the linear DC-Servomotor with the following parameters: 2

2

0,033 · 7,15 + 0,033 · 2,65 + 0,033 · (–1,85) + 0,1 · 0,77 2

Fe =

Motor characteristic curves

2

2

2

2

+ 0,033 · 3,73 + 0,033 · ( –0,77) + 0,033 · (–5,27) + 0,1 · (–0,77) ________________________________________________________________________________________

= 2,98 N

2 · (0,033 + 0,033 + 0,033 + 0,1) With these two values it is now possible to select the suitable motor for the application.

Displacement distance:

20 mm

Friction coefficient:

0,2

Slope angle:

20°

Rest time:

0,1 s

Load [kg]

External force [N]

Linearer DC-Servomotor LM 1247–020–01

Linear DC-Servomotors

smax. = 20 mm ; Fe max = 3,09 N ; Fp max. = 9,26 N

Coil winding temperature calculation To obtain the coil winding temperature, the continuous motor current needs to be calculated. For this example, considering a force constant kF equal to 6,43 N/A, gives the result:

Ie =

F 2,98 = _________ = 0,46 A kf 6,43

e _____

2,5

2,5

2,0

2,0

1,5

1,5

1,0

1,0

0,5

0,5

0 0

With an electrical resistance of 13,17 , a total thermal resistance of 26,2 °C / W (Rth1 + Rth2) and a reduced thermal resistance Rth2 by 55% (0,45 · Rth2), the resulting coil temperature is:

0,10

0,15

0,20

0,25

LM 1247–020–01

0,30

Speed [m/s]

Load curve Allows knowing the maximum applicable load for a given speed with 0 N external force.

3 ) 2· ( 1 – α22 · T22) + T22 R · (Rth1 + 0,45 · Rth2) · (Ie · _____ 2 = ... Tc (I) = 2 3 _____ 1 – α22 · R · ( Rth1 + 0,45 · Rth2) · (Ie · ) 2

The graph shows that a maximum load ( ) of 0,87 kg can be applied at a speed of 0,11 m/s.

______________________________________________________________________________

External force curve Allows knowing the maximum applicable external force for a given speed with a load of 0,5 kg.

3 ) · ( 1 - 0,0038 · 22) + 22 13,17 · (8,1 + 0,45 · 18,1) · (0,46 · _____ 2 = 113,5 °C 2 3 _____ 1 – 0,0038 · 13,17 ( 8,1 + 0,45 · 18,1) · (0,46 · ) 2 2

Tc (I) =

0,05

The graph shows that the max. achievable speed ( ) without external forces, but with a load of 0,5 kg is 0,31 m/s.

_____________________________________________________________________________________________

Therefore, the maximum applicable external force ( ) at a speed of 0,3 m/s is 0,5 N. The external peak force ( ) is achieved at a speed of 0,17 m/s, corresponding to a maximum applicable external force of 2,27 N.

196

Linear DC-Servomotors QUICKSHAFT© Technology

7

1 2

8

3

Linear DC-Servomotor Sleeve bearings

2

Bearing support

3

Coil

4

Housing

5

PCB

6

Hall sensors

7

Lead wires and connector

8

Cover

9

Forcer rod

4 5 6 9

Linear DC-Servomotors

1

Features

Benefits

QUICKSHAFT® combines the speed and robustness of

■ High dynamics

a pneumatic system with the flexibility and reliability

■ Excellent force to volume ratio

features of an electro-mechanical linear motor.

■ No residual force present

The innovative design with a 3-phase self-supporting

■ Non-magnetic steel housing

coil and non-magnetic steel housing offers outstand-

■ Compact and robust construction

ing performance.

■ No lubrication required ■ Simple installation and configuration

The absence of residual static force and the excellent relationship between the linear force and current make these motors ideal for use in micro-positioning applications. Position control of the QUICKSHAFT® Linear DC-Servomotor is made possible by the built-in

Product Code

Hall sensors. Performance lifetime of the QUICKSHAFT® Linear DCServomotors is mainly influenced by the wear of the sleeve bearings, which depends on operating speed and applied load of the cylinder rod.

LM 12 47 020 01

197

Linear Motor Motor width [mm] Motor length [mm] Stroke length [mm] Sensors type: linear

L M 12 4 7 – 0 2 0 – 0 1

Linear DC-Servomotors

3,6 N

with Analog Hall Sensors QUICKSHAFT® Technology

For combination with Motion Controllers: MCLM 3003/06 S, MCLM 3003/06 C

Series LM 1247 ... 01 LM 1247– Fe max. Fp max. Ie max. Ip max.

020–01 3,6 10,7 0,55 1,66

5 Back-EMF constant 6 Force constant 3)

kE kF

5,25 6,43

V/m/s N/A

7 Terminal resistance, phase-phase 8 Terminal inductance, phase-phase

R L

13,17 820

Ω μH

9 Stroke length 10 Repeatability 4) 11 Precision 4)

smax.

20 40 120

40 40 140

60 40 160

80 40 180

100 40 200

120 40 220

mm μm μm

12 Acceleration 5) 13 Speed 5) 6)

ae max. ve max.

198,0 2,0

148,5 2,4

127,3 2,8

101,8 2,9

91,4 3,0

82,9 3,2

m/s2 m/s

14 Thermal resistance 15 Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

3,2 / 20,0 11 / 624

K/W s

– 20 ... +125

°C

1 2 3 4

Continuous force 1) Peak force 1) 2) Continuous current 1) Peak current 1) 2)

Linear DC-Servomotors

16 Operating temperature range 17 Rod weight 7) 18 Total weight 7)

mm mt

18 57

19 Magnetic pitch

om

18

040–01

060–01

080–01

100–01

120–01 N N A A

24 63

28 67

35 74

39 78

g g

43 82

mm

polymer sleeves metal, non-magnetic electronically reversible

20 Rod bearings 21 Housing material 22 Direction of movement 1)

thermal resistance Rth 2 by 55% reduced for max. 1 second with a duty cycle of 20% 3) with sine wave commutation 4) typical values with integrated linear Hall sensors and Motion Controller MCLM 3003/06 S/C. The values depend on conditions of use 5) theorical value, referring only to the motor 6) with a triangular speed profile and the max. stroke 7) rounded value, for reference only 2)

Notes: These motors are for operation with DC-voltage < 75 V DC. The given values are for free standing motors. The mounting with magnetic conductive metal can influence the characteristics of the motor. Caution: Presence of strong magnetic fields. Static sensitive device.

Load [kg]

External force [N]

2,00

4,0

1,75

3,5

1,50

3,0

1,25

2,5

1,00

2,0

0,75

1,5

0,50

1,0

0,25

0,5

Displacement distance: Friction coefficient: Slope angle: Rest time:

Load:

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0 Speed [m/s]

LM 1247–020–01

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

20 mm 0,2 0° 0,1 s

The max. permissible load at a given speed with an external force of 0 N

External force: The max. permissible external force at a given speed with a load of:

0 0

Trapezoidal motion profile (t1 = t2 = t3)

198

- 0,1 Kg - 0,2 Kg - 0,5 Kg

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotor LM 1247

123456

Insert the rod with ref. number as indicated - by the side of the connector.

+0

9,2 -0,1

+0

4x

43,5 -0,1

M1,6 2 deep, non-magnetic screws recommended

(ø6,31)

ø12,4 7,4

0

123456

19,9

M2 3 deep

M2 3 deep

12,5 -0,05

0 46,8 -0,05

1,3

1,3

L1 ±0,5

Linear DC-Servomotors Series

Stroke mm

Rod length L1 ±0,5 mm

0

LM 1247–020–01 LM 1247–040–01

– 20

LM 1247–060–01

109

+20

172

+50

– 50

LM 1247–120–01

154

+40

– 40

LM 1247–100–01

127

+30

– 30

LM 1247–080–01

82

+10

– 10

190

+60

– 60

Note: Single rod available on request.

Cable and connection information Cable

7

Single wires, material PVC Length 200 mm ± 10 mm 8 conductors, AWG 28 1 3 5 7

Recommended connector

2 4 6 8

Molex - Nr. 51110-0860

Connection +5V

+5V

N

+5V

S Three-phase coil winding with delta connection

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

199

+5V

PIN Function 6 Hall sensor C 1 Phase C 5 Hall sensor B 7 Phase B 2 Hall sensor A 8 Phase A 3 Logic supply +5V 4 Logic GND

Colour grey yellow blue orange green brown red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotors

Ordering information

Linear DC-Servomotors

3,6 N

for sin/cos control QUICKSHAFT® Technology

Series LM 1247 ... 02 LM 1247– Fe max. Fp max. Ie max. Ip max.

020–02 3,6 10,7 0,55 1,66

5 Back-EMF constant 6 Force constant 3)

kE kF

5,25 6,43

V/m/s N/A

7 Terminal resistance, phase-phase 8 Terminal inductance, phase-phase

R L

13,17 820

Ω μH

9 Stroke length 10 Repeatability 4) 11 Precision 4)

smax.

20 80 200

40 80 220

60 80 240

80 80 260

100 80 280

120 80 300

mm μm μm

12 Acceleration 5) 13 Speed 5) 6)

ae max. ve max.

198,0 2,0

148,5 2,4

127,3 2,8

101,8 2,9

91,4 3,0

82,9 3,2

m/s2 m/s

14 Thermal resistance 15 Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

3,2 / 20,0 11 / 624

K/W s

– 20 ... +125

°C

1 2 3 4

Continuous force 1) Peak force 1) 2) Continuous current 1) Peak current 1) 2)

Linear DC-Servomotors

16 Operating temperature range 17 Rod weight 7) 18 Total weight 7)

mm mt

18 57

19 Magnetic pitch

om

18

040–02

060–02

080–02

100–02

120–02 N N A A

24 63

28 67

35 74

39 78

g g

43 82

mm

polymer sleeves metal, non-magnetic electronically reversible

20 Rod bearings 21 Housing material 22 Direction of movement 1)

thermal resistance Rth 2 by 55% reduced for max. 1 second with a duty cycle of 20% 3) with sine wave commutation 4) typical values with integrated linear Hall sensors (sin/cos) and Motion Controller Elmo "Whistle" SOL-WHI2.5/60I01. The values depend on conditions of use 5) theorical value, referring only to the motor 6) with a triangular speed profile and the max. stroke 7) rounded value, for reference only 2)

Notes: These motors are for operation with DC-voltage < 75 V DC. The given values are for free standing motors. The mounting with magnetic conductive metal can influence the characteristics of the motor. For more information about drive electronics, please contact your local sales representative. Caution: Presence of strong magnetic fields. Static sensitive device.

Load [kg]

External force [N]

2,00

4,0

1,75

3,5

1,50

3,0

1,25

2,5

1,00

2,0

0,75

1,5

0,50

1,0

0,25

0,5

Displacement distance: Friction coefficient: Slope angle: Rest time:

Load:

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0 Speed [m/s]

LM 1247–020–02

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

20 mm 0,2 0° 0,1 s

The max. permissible load at a given speed with an external force of 0 N

External force: The max. permissible external force at a given speed with a load of:

0 0

Trapezoidal motion profile (t1 = t2 = t3)

200

- 0,1 Kg - 0,2 Kg - 0,5 Kg

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotor LM 1247

123456

Insert the rod with ref. number as indicated - by the side of the connector.

+0

9,2 -0,1

+0

4x

43,5 -0,1

M1,6 2 deep, non-magnetic screws recommended

(ø6,31)

ø12,4 7,4

0

123456

19,9

M2 3 deep

M2 3 deep

12,5 -0,05

0 46,8 -0,05

1,3

1,3

L1 ±0,5

Linear DC-Servomotors Series

Stroke mm

Rod length L1 ±0,5 mm

0

LM 1247–020–02 LM 1247–040–02

– 20

LM 1247–060–02

109

+20

172

+50

– 50

LM 1247–120–02

154

+40

– 40

LM 1247–100–02

127

+30

– 30

LM 1247–080–02

82

+10

– 10

190

+60

– 60

Note: Single rod available on request.

Cable and connection information Cable

7

Single wires, material PVC Length 200 mm ± 10 mm 10 conductors, AWG 28 1 3 5 7 9

Recommended connector

2 4 6 8 10

Molex - Nr. 51110-1060

Connection

+5V

N

+5V

S Three-phase coil winding with delta connection

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

201

+5V

PIN 10 2 5 8 6 9 7 1 3 4

Function N.C. Sin + Sin Phase A Cos + Cos Phase B Phase C Logic supply +5V Logic GND

Colour purple green blue brown grey white orange yellow red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotors

Ordering information

Linear DC-Servomotors

9,2 N

with Analog Hall Sensors QUICKSHAFT® Technology

For combination with Motion Controllers: MCLM 3003/06 S, MCLM 3003/06 C

Series LM 2070 ... 01 LM 2070– Fe max. Fp max. Ie max. Ip max.

9,2 27,6 0,79 2,37

N N A A

5 Back-EMF constant 6 Force constant 3)

kE kF

9,5 11,64

V/m/s N/A

7 Terminal resistance, phase-phase 8 Terminal inductance, phase-phase

R L

10,83 1 125

Ω μH

1 2 3 4

Continuous force 1) Peak force 1) 2) Continuous current 1) Peak current 1) 2)

120–01

9 Stroke length 10 Repeatability 4) 11 Precision 4)

smax.

40 60 200

120 60 400

mm μm μm

12 Acceleration 5) 13 Speed 5) 6)

ae max. ve max.

93,9 1,9

54,8 2,6

m/s2 m/s

14 Thermal resistance 15 Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

16 Operating temperature range

Linear DC-Servomotors

040–01

3,1 / 9,3 30 / 1 200

K/W s

– 20 ... +125

°C

17 Rod weight 7) 18 Total weight 7)

mm mt

98 236

168 306

g g

19 Magnetic pitch

om

24

24

mm

polymer sleeves metal, non-magnetic electronically reversible

20 Rod bearings 21 Housing material 22 Direction of movement 1)

thermal resistance Rth 2 by 55% reduced for max. 1 second with a duty cycle of 20% 3) with sine wave commutation 4) typical values with integrated linear Hall sensors and Motion Controller MCLM 3003/06 S/C. The values depend on conditions of use 5) theorical value, referring only to the motor 6) with a triangular speed profile and the max. stroke 7) rounded value, for reference only 2)

Notes: These motors are for operation with DC-voltage < 75 V DC. The given values are for free standing motors. The mounting with magnetic conductive metal can influence the characteristics of the motor. Caution: Presence of strong magnetic fields. Static sensitive device.

Load [kg]

External force [N]

5,0 4,5 4,0 3,5

10,00 9,00 8,00 7,00

3,0 2,5

6,00 5,00

2,0 1,5 1,0 0,5 0

4,00 3,00 2,00 1,00 0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Displacement distance: Friction coefficient: Slope angle: Rest time:

Load:

40 mm 0,2 0° 0,1 s

The max. permissible load at a given speed with an external force of 0 N

External force: The max. permissible external force at a given speed with a load of:

Speed [m/s]

LM 2070–040–01

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Trapezoidal motion profile (t1 = t2 = t3)

202

- 0,5 Kg - 1,0 Kg - 2,0 Kg

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotor LM 2070 Scale reduced 123456

Insert the rod with ref. number as indicated - by the side of the connector.

15

65

+0 -0,1

4x

M2,5 3

ø19,9

+0 -0,1

deep, non-magnetic screws recommended

(ø12)

8,1 1 23 4 5 6

28,1 M4 8

0

deep

M4 8 deep

0

2

20 -0,05

2

70 -0,05 L1 ±0,5

Linear DC-Servomotors Series

Stroke mm

Rod length L1 ±0,5 mm

0 LM 2070–040–01

– 20

LM 2070–120–01

134

+20

218

+60

– 60

Note: Single rod available on request.

Cable and connection information Cable

7

Single wires, material PVC Length 200 mm ± 10 mm 10 conductors, AWG 28 1 3 5 7 9

Recommended connector

2 4 6 8 10

Molex - Nr. 51110-1060

Connection

+5V

+5V

N

+5V

S Three-phase coil winding with delta connection

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

203

+5V

PIN 10 9 6 1 5 7 2 8 3 4

Function N.C. N.C. Hall sensor C Phase C Hall sensor B Phase B Hall sensor A Phase A Logic supply +5V Logic GND

Colour purple white grey yellow blue orange green brown red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotors

Ordering information

Linear DC-Servomotors

9,2 N

for sin/cos control QUICKSHAFT® Technology

Series LM 2070 ... 02 LM 2070– Fe max. Fp max. Ie max. Ip max.

9,2 27,6 0,79 2,37

N N A A

5 Back-EMF constant 6 Force constant 3)

kE kF

9,5 11,64

V/m/s N/A

7 Terminal resistance, phase-phase 8 Terminal inductance, phase-phase

R L

10,83 1 125

Ω μH

1 2 3 4

Continuous force 1) Peak force 1) 2) Continuous current 1) Peak current 1) 2)

120–02

9 Stroke length 10 Repeatability 4) 11 Precision 4)

smax.

40 100 500

120 100 700

mm μm μm

12 Acceleration 5) 13 Speed 5) 6)

ae max. ve max.

93,9 1,9

54,8 2,6

m/s2 m/s

14 Thermal resistance 15 Thermal time constant

Rth 1 / Rth 2 o w1 / o w2

16 Operating temperature range

Linear DC-Servomotors

040–02

3,1 / 9,3 30 / 1 200

K/W s

– 20 ... +125

°C

17 Rod weight 7) 18 Total weight 7)

mm mt

98 236

168 306

g g

19 Magnetic pitch

om

24

24

mm

polymer sleeves metal, non-magnetic electronically reversible

20 Rod bearings 21 Housing material 22 Direction of movement 1)

thermal resistance Rth 2 by 55% reduced for max. 1 second with a duty cycle of 20% 3) with sine wave commutation 4) typical values with integrated linear Hall sensors (sin/cos) and Motion Controller Elmo "Whistle" SOL-WHI2.5/60I01. The values depend on conditions of use 5) theorical value, referring only to the motor 6) with a triangular speed profile and the max. stroke 7) rounded value, for reference only 2)

Notes: These motors are for operation with DC-voltage < 75 V DC. The given values are for free standing motors. The mounting with magnetic conductive metal can influence the characteristics of the motor. For more information about drive electronics, please contact your local sales representative. Caution: Presence of strong magnetic fields. Static sensitive device.

Load [kg]

External force [N]

5,0 4,5 4,0 3,5

10,00 9,00 8,00 7,00

3,0 2,5

6,00 5,00

2,0 1,5 1,0 0,5 0

4,00 3,00 2,00 1,00 0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Displacement distance: Friction coefficient: Slope angle: Rest time:

Load:

40 mm 0,2 0° 0,1 s

The max. permissible load at a given speed with an external force of 0 N

External force: The max. permissible external force at a given speed with a load of:

Speed [m/s]

LM 2070–040–02

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Trapezoidal motion profile (t1 = t2 = t3)

204

- 0,5 Kg - 1,0 Kg - 2,0 Kg

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotor LM 2070

123456

Insert the rod with ref. number as indicated - by the side of the connector.

15

65

+0 -0,1

4x

M2,5 3

ø19,9

+0 -0,1

deep, non-magnetic screws recommended

(ø12)

8,1 1 23 4 5 6

28,1 M4 8

0

deep

M4 8

0

2

20 -0,05

deep

2

70 -0,05 L1 ±0,5

Linear DC-Servomotors Series

Stroke mm

Rod length L1 ±0,5 mm

0 LM 2070–040–02

– 20

LM 2070–120–02

134

+20

218

+60

– 60

Note: Single rod available on request.

Cable and connection information Cable

7

Single wires, material PVC Length 200 mm ± 10 mm 10 conductors, AWG 28 1 3 5 7 9

Recommended connector

2 4 6 8 10

Molex - Nr. 51110-1060

Connection

+5V

N

+5V

S Three-phase coil winding with delta connection

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

205

+5V

PIN 10 2 5 8 6 9 7 1 3 4

Function N.C. Sin + Sin Phase A Cos + Cos Phase B Phase C Logic supply +5V Logic GND

Colour purple green blue brown grey white orange yellow red black

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Linear DC-Servomotors

Ordering information

Precision Gearheads

Precision Gearheads

WE CREATE MOTION

Präzisionsgetriebe Precision Gearheads Planetary Gearheads Planetary Gearheads Spur Gearheads Spur Gearheads, zero backlash Planetary Gearheads Spur Gearheads Planetary Gearheads Spur Gearheads, zero backlash Planetary Gearheads Planetary Gearheads Planetary Gearheads Spur Gearheads Hybrid Gearheads Spur Gearheads Spur Gearheads, zero backlash Spur Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Spur Gearheads Spur Gearheads, zero backlash Hybrid Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Planetary Gearheads Spur Gearheads Planetary Gearheads

25 mNm 60 mNm 15 mNm 15 mNm 0,1 Nm 0,03 Nm 0,3 Nm 0,03 Nm 0,18 Nm 0,3 Nm 0,25 Nm 0,03 Nm 0,2 Nm 0,1 Nm 0,1 Nm 0,03 Nm 0,3 Nm 0,5 Nm 0,6 Nm 1,0 Nm 0,1 Nm 0,1 Nm 0,4 Nm 0,7 Nm 0,7 Nm 1,0 Nm 3,5 Nm 4,5 Nm 4,5 Nm 7,0 Nm 20 Nm 10 Nm 1,2 Nm 16 Nm

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

Precision Gearheads

Seitte Seite Page 06/1 08/1 08/2 08/3 10/1 12/3 12/4 12/5 13A 14/1 15A 15/3, 16/3 15/4 15/5, 16/5 15/8, 16/8 16A 16/7 20/1 22E 22F 22/2 22/5 22/6 22/7 23/1 26A 26/1 30/1 32A 32/3 38A 38/1, 38/2 38/3 44/1

Precision Gearheads Technical Information

General information

Input speed The recommended maximum input speed for continuous operation serves as a guideline. It is possible to operate the gearhead at higher speeds. However, to obtain optimum life performance in applications that require continuous operation and long life, the recommended speed should be considered.

Life performance The operational lifetime of a reduction gearhead and motor combination is determined by: ■ Input speed ■ Output torque ■ Operating conditions

Ball bearings Ratings on load and lifetime, if not stated, are according to the information from the ball bearing manufacturers.

■ Environment and Integration into other systems Since a multitude of parameters prevail in any application, it is nearly impossible to state the actual lifetime that can be expected from a specific type of gearhead or motorgearhead combination. A number of options to the standard reduction gearheads are available to increase life performance: ball bearings, all metal gears, reinforced lubrication etc.

Operating temperature range Standard range as listed on the data sheets. Special executions for extended temperature range available on request. Reduction ratio The listed ratios are nominal values only, the exact ratio for each reduction gearhead can be calculated by means of the stage ratio applicable for each type.

Precision Gearheads

Bearings – Lubrication Gearheads are available with a range of bearings to meet various shaft loading requirements: sintered sleeve bearings, ball bearings and ceramic bearings. Where indicated, ball bearings are preloaded with spring washers of limited force to avoid excessive current consumption.

Output torque Continuous operation. The continuous torque provides the maximum load possible applied to the output shaft; exceeding this value will reduce the service life.

A higher axial shaft load or shaft pressfit force than specified in the data sheets will neutralise the preload on the ball bearings.

Intermittent operation. The intermittent torque value may be applied for a short period. It should be for short intervals only and not exceed 5% of the continuous duty cycle.

The satellite gears in the 38/1-2 Series Planetary Gearheads are individually supported on sintered sleeve bearings. In the 44/1 Series, the satellite gears are individually supported on needle or ball bearings.

Direction of rotation, reversible All gearheads are designed for clockwise and counterclockwise rotation. The indication refers to the direction of rotation as seen from the shaft end, with the motor running in a clockwise direction.

All bearings are lubricated for life. Relubrication is not necessary and not recommended. The use of non-approved lubricants on or around the gearheads or motors can negatively influence the function and life expectancy.

Backlash Backlash is defined by the amount by which the width of a tooth space exceeds the width of the engaging tooth on the pitch circle. Backlash is not to be confused with elasticity or torsional stiffness of the system. The general purpose of backlash is to prevent gears from jamming when making contact on both sides of their teeth simultaneously. A small amount of backlash is desirable to provide for lubricant space and differential expansion between gear components. The backlash is measured on the output shaft, at the last geartrain stage.

The standard lubrication of the reduction gears is such as to provide optimum life performance at minimum current consumption at no-load conditions. For extended life performance, all metal gears and heavy duty lubrication are available. Specially lubricated gearheads are available for operation at extended temperature environments and under vacuum.

Notes on technical data Unspecified tolerances Tolerances in accordance with ISO 2768 medium. ≤

6

=

± 0,1 mm

≤ 30

=

± 0,2 mm

≤ 120

=

± 0,3 mm

208

Zero Backlash Gearheads The spur gearheads, series 08/3, 12/5, 15/8, 16/8 and 22/5, with dual pass geartrains feature zero backlash when preloaded with a FAULHABER DC-Micromotor.

How to select a reduction gearhead This section gives an example of a step-by-step procedure on how to select a reduction gearhead.

Preloaded gearheads result in a slight reduction in overall efficiency and load capability.

Application data The basic data required for any given application are:

Due to manufacturing tolerances, the preloaded gearheads could present higher and irregular internal friction torque resulting in higher and variable current consumption in the motor.

Required torque Required speed Duty cycle Available space, max. Shaft load

However, the unusual design of the FAULHABER zero backlash gearheads offers, with some compromise, an excellent and unique product for many low torque, high precision postioning applications.

M n δ diameter/length radial/axial

[mNm] [rpm] [%] [mm] [N]

The assumed application data for the selected example are: Output torque Speed Duty cycle Space dimensions, max.

The preloading, especially with a small reduction ratios, is very sensitive. This operation is achieved after a defined burn-in in both directions of rotation. For this reason, gearheads with pre-loaded zero backlash are only available when factory assembled to the motor.

Shaft load

M n δ diameter length radial axial

= = = = = = =

120 mNm 30 rpm 100% 18 mm 60 mm 20 N 4N

The true zero backlash properties are maintained with new gearheads only. Depending on the application, a slight backlash could appear with usage when the gears start wearing. If the wearing is not excessive, a new preload could be considered to return to the original zero backlash properties.

Preselection A reduction gearhead which has a continuous output torque larger than the one required in the application is selected from the catalogue. If the required torque load is for intermittent use, the selection is based on the output torque for intermittent operation. The shaft load, frame size and overall length with the motor must also meet the minimum requirements. The product selected for this application is the planetary gearhead, type 16/7.

Assembly instructions It is strongly recommended to have the motors and gearheads factory assembled and tested. This will assure perfect matching and lowest current consumption. The assembly of spur and hybrid gearheads with motors requires running the motor at very low speed to ensure the correct engagement of the gears without damage.

Output torque, continuous operation Recommended max. input speed for – Continuous operation – Shaft load, max.

The planetary gearheads must not be assembled with the motor running. The motor pinion must be matched with the planetary input-stage gears to avoid misalignment before the motor is secured to the gearhead.

Mmax.

= 300 mNm

n radial axial

≤ 5 000 rpm ≤ 30 N ≤5N

Calculation of the reduction ratio To calculate the theoretical reduction ratio, the recommended input speed for continuous operation is divided by the required output speed.

When face mounting any gearhead, care must be taken not to exceed the specified screw depth. Driving screws beyond this point will damage the gearhead. Gearheads with metal housing can be mounted using a radial set screw.

iN =

Recommended max. input speed required output speed

From the gearhead data sheet, a reduction ratio is selected which is equal to or less than the calculated one. For this example, the reduction ratio selected is 159 : 1.

209

Precision Gearheads

To simplify the calculation in this example, the duty cycle is assumed to be continuous operation.

Precision Gearheads Technical Information

Calculation of the input speed ninput ninput = n · i ninput = 30 · 159

[rpm] = 4 770

rpm

Calculation of the input torque Minput M · 100 Minput = ––––––– i·

[mNm]

The efficiency of this gearhead is 60%, consequently: · 100 Minput = 120 –––––––– 159 · 60

= 1,26

mNm

The values of Input speed and Input torque

ninput

= 4 770

rpm

Minput

= 1,26

mNm

are related to the motor calculation. The motor suitable for the gearhead selected must be capable of producing at least two times the input torque needed.

Precision Gearheads

For this example, the DC-Micromotor type 1624 E 024 S supplied with 14 V DC will produce the required speed and torque. For practical applications, the calculation of the ideal motor-gearhead drive is not always possible. Detailed values on torque and speed are usually not clearly defined. It is recommended to select suitable components based on a first estimation, and then test the units in the application by varying the supply voltage until the required speed and torque are obtained. Recording the applied voltage and current at the point of operation, along with the type numbers of the test assembly, we can help you to select the ideal motor-gearhead. The success of your product will depend on the best possible selection being made! For confirmation of your selection and peace of mind, please contact our sales engineers.

210

Precision Gearheads Planetary Gearheads

1

2

3 4

5

6 4

Planetary Gearhead 1

Motor flange

2

Screws

3

Washer

4

Satellite gears

5

Planet carrier

6

Sun gear

7

Satellite gear shafts

8

Output shaft

9

Washer

10

Sintered bearing

11

Housing / ring gear

12

Retaining ring

7

8

9 10

11

10 9 12

Benefits

Their robust construction make the planetary gearheads,

■ Available in all plastic or metal versions

in combination with FAULHABER DC-Micromotors, ideal

■ Use of high performance materials

for high torque, high performance applications.

■ Available with a variety of shaft bearings including sintered, ceramic, and ball bearings

In most cases, the geartrain of the input stage is made of

Precision Gearheads

Features

■ Modified versions for extended temperature and special environmental conditions are available

plastic to keep noise levels as low as possible at higher RPM‘s. All steel input gears as well as a modified lubri-

■ Custom modifications available

cation are available for applications requiring very high torque, vacuum, or higher temperature compatability. For applications requiring medium to high torque FAULHABER offers planetary gearheads constructed of high performance plastics. They are ideal solutions for

Product Code

applications where low weight and high torque density play a decisive role. The gearhead is mounted to the motor with a threaded flange to ensure a solid fit.

All metal planetary gearhead series 12/4

26 Outer diameter [mm] A Version 64:1 Reduction ratio

211

2 6 A 6 4 :1

Precision Gearheads Spur Gearheads 1

3 4 5 6

Precision Gearheads

Spur Gearhead 8

1

Housing

2

Screws

3

End plate

4

Intermediate plate

5

Gear wheel

6

Sleeve

7

Dowel pin

8

Output shaft

9

Front cover

10

Spacer ring

11

Ball bearing

12

Spring washer

13

Washer

14

Retaining ring

2

9

7 10 11 12 13 14

Features

gear passes to each other and locking them in place on

A wide range of high quality spur gearheads are avail-

the motor pinion gear. They are ideal for positioning

able to compliment FAULHABER DC-Micromotors.

applications with a very high resolution and moderate

The all metal or plastic input-stage geartrain assures

torque. Zero backlash gearheads can only be delivered

extremely quiet running. The precise construction of the

preloaded from the factory.

gearhead causes very low current consumption in the motor, giving greater efficiency. The gearhead is sleeve

Benefits

mounted on the motor, providing a seamless in-line fit. The FAULHABER Spur Gearheads are ideal for high

■ Available in a wide variety of reduction ratios including very high ratios

precision, low torque and low noise applications.

■ Zero backlash versions are available ■ Available with a variety of shaft bearings including sintered, ceramic, and ball bearings

Zero Backlash Spur Gearhead

1

1

Motor pinion

2

Dual-pass geartrain

Product Code

input stage 3

Zero backlash preloaded engagement

2

3

3

2

FAULHABER offers a special version of a spur gearhead with zero backlash. These gearheads consist of a dual pass spur geartrain with all metal gears. The backlash is reduc-

22 Outer diameter [mm] /5 Version 377:1 Reduction ratio

ed to a minimum by counter-rotating the two individual 212

2 2 /5 3 7 7 :1

Precision Gearheads Hybrid Gearheads 2 3

4

5

6

1

7

Hybrid Gearhead 1

Screw

2

End plate

10

Intermediate plate Blind 4 Gear wheel 3

Sun Blindgear

6 2

Satellite carrier Blind

7 3

Satellite gear Blind

8 4

Dowel Blind pin

9 5

Pin Blind

10 6

Support Blind

11 7

Ball Blindbearing

12

Ring gear

13

Housing

14

Spring washer

15

Output shaft

11

8

9

12 13 14 11

15

Features

Benefits

Hybrid gearhead combine the smooth running input

■ Unique construction

stages of a spur gearhead with the power of a planetary

■ Combines the advantages of spur and planetary gearhead technology in one unit

output stage. For added power, the output shaft and

Precision Gearheads

5 1

planet carrier are one single piece. The geartrain is metal but the casing is plastic thereby reducing the overall weight of the gearhead without compromising its performance. The motor is assembled with a slip fit in the gearhead housing for a seamless concentric fit.

Product Code

22 Outer diameter [mm] /6 Version 34:1 Reduction ratio

213

2 2 /6 3 4 :1

Planetary Gearheads

25 mNm For combination with DC-Micromotors: 0615 Brushless DC-Servomotors: 0620 Stepper Motors: ADM0620

Series 06/1 Housing material Geartrain material Recommended max. input speed for: – for continuous operation Backlash, typical, at no-load Bearings on output shaft Shaft load, max.: – radial (3,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (3,5 mm from mounting face) – axial Operating temperature range

06/1 steel steel

06/1 K steel steel

8 000 rpm ≤ 3° sintered sleeve bearings

8 000 rpm ≤ 3° ball bearings

≤ 0,5 N ≤ 0,5 N ≤ 3,5 N

≤5N ≤3N ≤5N

≤ 0,04 mm ≤ 0,1 mm – 30° … + 100° C

≤ 0,05 mm ≤ 0,05 mm – 30° … + 100° C

Specifications weight length without without motor motor L2 g mm 2,0 9,2 2,8 11,9 3,4 14,6 4,0 17,3 4,4 20,0 5,0 22,7

reduction ratio

:1 :1 :1 :1 :1 :1

0615 C L1 mm 24,2 26,9 29,6 32,3 35,0 37,7

Precision Gearheads

4 16 64 256 1 024 4 096

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) 0620 C ADM 0620 L1 L1 M max. M max. mm mm mNm mNm % 29,2 18,5 25 35 = 90 31,9 21,2 25 35 = 80 34,6 23,9 25 35 = 70 37,3 26,6 25 35 = 60 40,0 29,3 25 35 = 55 42,7 32,0 25 35 = 48

length with motor

(ADM0620) (0620) 0 ø6 (0615) ø6 -0,05

M 1:1 +0,02

0

ø3 +0,01 0,8 -0,03 -0,002

0,5 L2 ±0,25

0

ø4 -0,008

0

1,3 -0,03 -0,002

ø1 -0,008

ø1,5 -0,008

2

3

2,8 ±0,2

4,1 ±0,2

4

4,9

4,5 ±0,2

5,4 ±0,2

L1 ±0,5 06/1 K L1, L2 = + 1

06/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

214

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

60 mNm For combination with DC-Micromotors: 0816 Stepper Motors: AM0820

Series 08/1 Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (4,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (4,5 mm from mounting face) – axial Operating temperature range

08/1 metal all steel

08/1 K metal all steel

8 000 rpm ≤ 3° sintered sleeve bearings

8 000 rpm ≤ 3° ball bearings

≤ 0,8 N ≤ 1N ≤ 5N

≤ 5N ≤ 3N ≤ 5N

≤ 0,04 mm ≤ 0,10 mm – 30 … + 100 °C

≤ 0,06 mm ≤ 0,05 mm – 30 … + 100 °C

Specifications output torque weight length length with motor continuous intermittent direction efficiency without without operation operation of rotation 0816 P AM0820 motor motor (reversible) L2 L1 L1 M max. M max. g mm mm mm mNm mNm % 2,9 9,6 25,6 23,4 60 120 = 90 3,8 12,3 28,3 26,1 60 120 = 80 4,6 15,0 31,0 28,8 60 120 = 70 5,4 17,7 33,7 31,5 60 120 = 60 6,3 20,4 36,4 34,2 60 120 = 55 7,1 23,1 39,1 36,9 60 120 = 48

reduction ratio

Precision Gearheads

4 :1 16 :1 64 :1 256 :1 1 024 :1 4 096 :1

M 1:1

(AM0820)

0

ø8 -0,05

ø8 (0816)

+0,012

-0,002

ø4 +0,004 ø1,5 -0,008

0

ø4 -0,008

0

1,3 -0,03

3 3,93 ±0,2 L2 L1

±0,25

±0,5

5,90 ±0,2

08/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

4,15 ±0,2

1

08/1 K

215

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Spur Gearheads

15 mNm For combination with DC-Micromotors: 0816 Stepper Motors: AM0820

Series 08/2 Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (4,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (4,5 mm from mounting face) – axial Operating temperature range

08/2 metal metal

08/2 K metal metal

8 000 rpm ≤ 5° sintered sleeve bearings

8 000 rpm ≤ 5° ball bearings

≤ 0,8 N ≤ 1N ≤ 5N

≤5N ≤3N ≤5N

≤ 0,04 mm ≤ 0,10 mm – 30 … + 100 °C

≤ 0,06 mm ≤ 0,05 mm – 30 … + 100 °C

Specifications output torque weight length length with motor continuous intermittent direction efficiency without without operation operation of rotation motor motor 0816 D AM0820 (reversible) L2 L1 L1 M max. M max. g mm mm mm mNm mNm % 3,2 12,0 28,0 25,8 15 25 = 94 3,4 13,4 29,4 27,2 15 25 ≠ 90 3,6 15,2 31,2 29,0 15 25 = 86 3,8 17,0 33,0 30,8 15 25 ≠ 81 4,0 18,8 34,8 32,6 15 25 = 77 4,2 20,6 36,6 34,4 15 25 ≠ 74 4,4 22,4 38,4 36,2 15 25 = 70 4,6 24,2 40,2 38,0 15 25 ≠ 66

reduction ratio (nominal)

:1 :1 :1 :1 :1 :1 :1 :1

Precision Gearheads

4 9 ,4 21 ,9 51 ,2 120 279 650 1 518

Note: The reduction ratios are rounded, the exact values are available on request. M 1:1 Orientation with respect to motor terminals not defined

2x

(AM0820)

M1,2

x1,7 deep

ø8 (0816)

+0,012

-0,002

ø4 +0,004 ø1,5 -0,008

ø8 ±0,05

0

ø4 -0,008

0

1,3 -0,03 5,8 3 3,9 ±0,2 L2 ±0,2 L1

5,9 ±0,2

±0,5

08/2

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

4,1 ±0,2

1

08/2 K

216

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Spur Gearheads Zero

15 mNm

Backlash 1)

For combination with DC-Micromotors: 0816 Stepper Motors: AM0820

Series 08/3 08/3 metal metal

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, when preloaded with the motor 1) Bearings on output shaft Shaft load, max.: – radial (4,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (4,5 mm from mounting face) – axial Operating temperature range

8 000 rpm 0° ball bearings ≤ 5N ≤ 3N ≤ 5N ≤ 0,06 mm ≤ 0,05 mm – 30 … + 100 °C

Specifications output torque weight length length with motor continuous intermittent direction without without operation operation of rotation motor 0816 D AM0820 motor (reversible) L2 L1 L1 M max. M max. g mm mm mm mNm mNm 4,5 18,8 34,8 32,6 15 25 = 4,9 20,6 36,6 34,4 15 25 ≠ 5,3 22,4 38,4 36,2 15 25 = 5,7 24,2 40,2 38,0 15 25 ≠

reduction ratio (nominal)

:1 :1 :1 :1

Precision Gearheads

120 279 650 1 518

1)

These gearheads are available preloaded to zero backlash only when factory assembled to motors.

Note: The reduction ratios are rounded, the exact values are available on request.

M 1:1 Orientation with respect to motor terminals not defined

(AM0820)

2x

M1,2

x1,7 deep

ø8 ±0,05

ø8 (0816)

0

ø4 -0,008

-0,002

ø1,5 -0,008 0

1,3 -0,03 5,8 3 4,1 ±0,2 L2 ±0,2 L1 ±0,5

1 5,9 ±0,2

08/3

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

217

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

0,1 Nm For combination with DC-Micromotors: 1016, 1024, 1219, 1224 Brushless DC-Servomotors: 1226 Stepper Motors: AM0820, AM1020, ADM1220, ADM1220S

Series 10/1 Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (5 mm from mounting face) – axial Operating temperature range

10/1 metal all steel

10/1 K metal all steel

5 000 rpm ≤ 3° sintered sleeve bearings

5 000 rpm ≤ 3° preloaded ball bearings

≤ 1N ≤ 2N ≤ 10 N

≤ 7N ≤ 5 N 1) ≤ 5 N 1)

≤ 0,04 mm ≤ 0,10 mm – 30 … + 100 °C

≤ 0,02 mm = 0 mm 1) – 30 … + 100 °C

Specifications reduction ratio

1226 M L1 mm 35,7 38,8 41,9 45,0 48,1 51,2

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 5 200 = 90 15 200 = 80 54 200 = 70 100 200 = 60 100 200 = 55 100 200 = 48

Precision Gearheads

4 :1 16 :1 64 :1 256 :1 1 024 :1 4 096 :1

weight length length with motor 2) without without motor 1016 M AM1020 1024 M 1219 M 1224 M motor L2 L1 L1 L1 L1 L1 g mm mm mm mm mm mm 6 9,7 25,4 25,5 33,4 28,4 33,9 7 12,8 28,5 28,6 36,5 31,5 37,0 8 15,9 31,6 31,7 39,6 34,6 40,1 10 19,0 34,7 34,8 42,7 37,7 43,2 11 22,1 37,8 37,9 45,8 40,8 46,3 13 25,2 40,9 41,0 48,9 43,9 49,4

1)

Limited by the preloaded ball bearings. A higher axial load negates the preload.

2)

Length L1 with motor: AM0820 = L2 + 13,8 mm ADM1220 = L2 + 17,4 mm ADM1220S = L2 + 17,4 mm

M 1:1 (1226) (1224) (1024) (ADM1220S) (AM1020) (ADM1220) ø10 (1016) 0 ø10 -0,05 ø8 (AM0820) ø12 (1219)

+0,023

0

ø2 -0,010

ø4 +0,015

0

ø5 -0,008

-0,006

ø2 -0,012

0

1,8 -0,03

4 5 ±0,2

L1

7,3 ±0,2

10/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

±0,2

6,3

L2 ±0,2 ±0,5

5,6

10/1 K L1, L2 = + 1

218

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Spur Gearheads

0,03 Nm For combination with DC-Micromotors: 1016, 1024, 1219, 1224 Brushless DC-Servomotors: 1226 Stepper Motors: ADM1220, ADM1220S

Series 12/3 Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (4,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (4,5 mm from mounting face) – axial Operating temperature range

12/3 metal all metal

12/3 K metal all metal

5 000 rpm ≤ 3° sintered sleeve bearings

5 000 rpm ≤ 3° ball bearings

≤ 3N ≤ 2N ≤ 10 N

≤ 5N ≤ 10 N ≤ 10 N

≤ 0,04 mm ≤ 0,10 mm – 30 … + 100 °C

≤ 0,07 mm ≤ 0,05 mm – 30 … + 100 °C

reduction ratio (nominal)

9 ,17 :1 20 ,6 :1 46 ,4 :1 104 ,4 :1 235 :1 529 :1 1 190 :1 2 677 :1 6 023 :1 13 552 :1 30 492 :1 68 608 :1 154 368 :1

weight length without without motor motor L2 g mm 9 15,4 10 17,5 11 19,6 12 21,7 13 23,8 14 25,9 15 28,0 16 30,1 17 32,2 18 34,3 19 36,4 20 38,5 22 40,6

1016 E

1024 E

L1 mm 31,1 33,2 35,3 37,4 39,5 41,6 43,7 45,8 47,9 50,0 52,1 54,2 56,3

L1 mm 39,1 41,2 43,3 45,4 47,5 49,6 51,7 53,8 55,9 58,0 60,1 62,2 64,3

length with motor 1219 E ADM1220 1224 E ADM1220S L1 L1 L1 mm mm mm 34,1 32,8 39,6 36,2 34,9 41,7 38,3 37,0 43,8 40,4 39,1 45,9 42,5 41,2 48,0 44,6 43,3 50,1 46,7 45,4 52,2 48,8 47,5 54,3 50,9 49,6 56,4 53,0 51,7 58,5 55,1 53,8 60,6 57,2 55,9 62,7 59,3 58,0 64,8

1226 E L1 mm 41,4 43,5 45,6 47,7 49,8 51,9 54,0 56,1 58,2 60,3 62,4 64,5 66,6

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 6 100 ≠ 90 8 100 = 86 10 100 ≠ 81 20 100 = 77 30 100 ≠ 74 30 100 = 70 30 100 ≠ 66 30 100 = 63 30 100 ≠ 60 30 100 = 57 30 100 ≠ 54 30 100 = 51 30 100 ≠ 49

Note: The reduction ratios are rounded, the exact values are available on request.

ø10

(1226) (1224) (ADM1220S) (1024) (ADM1220) (1016) ø12 (1219)

M 1:1

ø12 ±0,05 ø10,88

0

0

1,8 -0,05

ø12 -0,1 0

ø6 -0,012

0

ø2 -0,010

-0,006

ø2 -0,012

4,5 0,9 ±0,05 0,5 L2 L1

5,9 ±0,2

0 -0,05

2,1 ±0,05

±0,2

7,6 ±0,2

±0,5

12/3 K (L1, L2 = + 1,0)

12/3

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

219

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Precision Gearheads

Specifications

Planetary Gearheads

0,3 Nm For combination with DC-Micromotors: 1024, 1224 Brushless DC-Servomotors: 1226 Stepper Motors: ADM1220, ADM1220S

Series 12/4 Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (6 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (6 mm from mounting face) – axial Operating temperature range

12/4 metal metal

12/4 K metal metal

5 000 rpm ≤ 3° sintered sleeve bearings

5 000 rpm ≤ 3° preloaded ball bearings

≤ 4N ≤ 3N ≤ 15 N

≤ 20 N ≤ 5N ≤ 5N

≤ 0,04 mm ≤ 0,1 mm – 30 … + 100 °C

≤ 0,02 mm = 0 mm – 30 … + 100 °C

Specifications weight length without without motor motor L2 g mm 12 15,1 15 19,7 18 24,3 21 28,9 24 33,5

reduction ratio

output torque continuous intermittent direction efficiency 1226 A operation operation of rotation (reversible) L1 M max. M max. mm mNm mNm % 41,1 300 450 = 90 45,7 300 450 = 80 50,3 300 450 = 70 54,9 300 450 = 60 59,5 300 450 = 55

Precision Gearheads

4 :1 16 :1 64 :1 256 :1 1 024 :1

length with motor 1024 A ADM1220 1224 A ADM1220S L1 L1 L1 mm mm mm 38,8 32,5 39,3 43,4 37,1 43,9 48,0 41,7 48,5 52,6 46,3 53,1 57,2 50,9 57,7

Orientation with respect to motor terminals not defined

2x

M2

2 deep

ø12 ø10

M 1:1

(1226) (1224) (ADM1220S) (ADM1220) (1024)

ø12

±0,1

+0,023

-0,006

ø6 +0,015

0

ø6 -0,008

ø3 -0,012 0

2,8 -0,05 9,5 6 ±0,1 7,3 L2 L1

±0,3

9 ±0,3 10 ±0,3

±0,8

12/4

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

8 ±0,3

±0,3

220

12/4 K

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Spur Gearheads Zero

0,03 Nm

Backlash 1)

For combination with DC-Micromotors: 1024, 1224 Brushless DC-Servomotors: 1226 Stepper Motors: AM1020, ADM1220, ADM1220S

Series 12/5

12/5 metal metal

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, when preloaded with the Motor 1) Bearings on output shaft Shaft load, max.: – radial (4,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (4,5 mm from mounting face) – axial Operating temperature range

5 000 rpm 0° preloaded ball bearings ≤ 5N ≤ 5N ≤ 10 N ≤ 0,02 mm = 0 mm – 30 … + 100 °C

Specifications weight length without without AM1020 motor motor L2 L1 g mm mm 11 18,7 34,5 12 20,8 36,6 13 22,9 38,7 14 25,0 40,8 15 27,1 42,9

reduction ratio (nominal)

output torque continuous intermittent direction operation operation of rotation (reversible) M max. M max. mNm mNm 30 100 ≠ 30 100 = 30 100 ≠ 30 100 = 30 100 ≠

1226 E L1 mm 44,7 46,8 48,9 51,0 53,1

Precision Gearheads

69 ,2 :1 161 :1 377 :1 879 :1 2 050 :1

length with motor 1024 E ADM1220 1224 E ADM1220S L1 L1 L1 mm mm mm 42,4 36,1 42,9 44,5 38,2 45,0 46,6 40,3 47,1 48,7 42,4 49,2 50,8 44,5 51,3

1)

These gearheads are available preloaded to zero backlash only when factory assembled to motors.

Note: The reduction ratios are rounded, the exact values are available on request.

(1226) (1224) (ADM1220S) (AM1020) ø10 (1024) ø12 (ADM1220)

M 1:1

Orientation with respect to motor terminals not defined

2x

M1,6

2,7 deep

+0,2

ø12 -0,1

-0,006

0

ø5 -0,008

ø2 -0,012 0

1,8 -0,05 8,5 4,5 0,5 L2 ±0,2

5,5 ±0,3 7,6 ±0,2

L1 ±0,5 12/5

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

221

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

0,18 Nm For combination with DC-Micromotors: 1319, 1331, 1336

Series 13A Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (5 mm from mounting face) – axial Operating temperature range

13A plastic / aluminium plastic

13AC plastic / aluminium plastic

13AK plastic / aluminium plastic

5 000 rpm ≤ 4° sintered sleeve bearings

5 000 rpm ≤ 4° ceramic bearings

5 000 rpm ≤ 4° ball bearings

≤ 3N ≤ 1N ≤ 10 N

≤ 10 N ≤ 2N ≤ 10 N

≤ 15 N ≤ 5N ≤ 10 N

≤ 0,06 mm ≤ 0,25 mm – 30 … + 65 °C

≤ 0,08 mm ≤ 0,25 mm – 20 … + 85 °C

≤ 0,09 mm ≤ 0,25 mm – 30 … + 85 °C

Specifications number weight length of gear without without motor motor stages L2 g mm 2 5 18,8 3 5 22,0 3 5 22,0 4 5 25,2 4 5 25,2 4 5 25,2 5 6 28,4 5 6 28,4 5 6 28,4 5 6 28,4

reduction ratio (nominal)

:1 :1 :1 :1 :1 :1 :1 :1 :1 :1

1319 C L1 mm 38,0 41,2 41,2 44,4 44,4 44,4 47,6 47,6 47,6 47,6

1331 C L1 mm 50,0 53,2 53,2 56,4 56,4 56,4 59,6 59,6 59,6 59,6

1336 C L1 mm 53,8 57,0 57,0 60,2 60,2 60,2 63,4 63,4 63,4 63,4

Precision Gearheads

16 50 64 158 201 256 497 632 805 1 024

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 100 150 = 80 100 150 = 72 100 150 = 72 150 180 = 64 150 180 = 64 150 180 = 64 180 220 = 55 180 220 = 55 180 220 = 55 180 220 = 55

length with motor

Note: The reduction ratios are rounded, the exact values are available on request. These gearheads are available only with motors mounted. Vibrational load of up to 5 g at frequencies up to 500 Hz will not limit the function of the motor-gearhead combinations. M 1:1

Orientation with respect to motor terminals not defined

2x

M2

3,5 deep

ø13

(1336) (1331) (1319)

0

0

ø7 -0,05

ø13 -0,3

-0,006

ø3 -0,012

9,5

0

1 -0,1 L2 L1

±0,15

±0,4

10 ±0,3 12,6 ±0,3

13A, 13AC, 13AK

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

222

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

0,3 Nm For combination with DC-Micromotors: 1319, 1331, 1336

Series 14/1 14/1 metal all steel

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (6,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (6,5 mm from mounting face) – axial Operating temperature range

5 000 rpm ≤ 1° preloaded ball bearings ≤ 20 N ≤ 5N ≤ 5N ≤ 0,02 mm = 0 mm – 30 … + 100 °C

weight length without without motor motor L2 g mm 17 20,9 20 25,0 24 29,2 24 29,2 27 33,3 27 33,3 27 33,3 30 37,4 30 37,4 30 37,4 30 37,4 34 41,5 34 41,5 34 41,5

reduction ratio (nominal)

3 ,71 :1 14 :1 43 :1 66 :1 134 :1 159 :1 246 :1 415 :1 592 :1 989 :1 1 526 :1 2 608 :1 4 365 :1 5 647 :1

length with motor 1319 T L1 mm 34,1 38,2 42,4 42,4 46,5 46,5 46,5 50,6 50,6 50,6 50,6 54,7 54,7 54,7

1331 T L1 mm 45,9 50,0 54,2 54,2 58,3 58,3 58,3 62,4 62,4 62,4 62,4 66,5 66,5 66,5

1336 U L1 mm 50,9 55,0 59,2 59,2 63,3 63,3 63,3 67,4 67,4 67,4 67,4 71,5 71,5 71,5

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 200 300 = 90 300 450 = 80 300 450 = 70 300 450 = 70 300 450 = 60 300 450 = 60 300 450 = 60 300 450 = 55 300 450 = 55 300 450 = 55 300 450 = 55 300 450 = 50 300 450 = 50 300 450 = 50

Note: The reduction ratios are rounded, the exact values are available on request. M 1:1 Orientation with respect to motor terminals not defined

2x

M1,6 2,5

deep

ø13

(1336) (1331) (1319)

ø14

±0,1

0

-0,006

ø6 -0,008

ø3 -0,012 0

2,8 -0,02 9,5 6 8,1 ±0,3 L2 ±0,3 L1

±0,5

9 ±0,3 10 ±0,3

14/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

223

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Precision Gearheads

Specifications

Planetary Gearheads

0,25 Nm For combination with DC-Micromotors: 1516, 1524, 1624, 1717, 1724 Stepper Motors: AM1524

Series 15A Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (5 mm from mounting face) – axial Operating temperature range

15A plastic plastic

15AC plastic plastic

15AK plastic plastic

5 000 rpm ≤ 4° sintered sleeve bearings

5 000 rpm ≤ 4° ceramic bearings

5 000 rpm ≤ 4° ball bearings

≤ 3N ≤ 1N ≤ 10 N

≤ 10 N ≤ 2N ≤ 10 N

≤ 15 N ≤ 5N ≤ 10 N

≤ 0,06 mm ≤ 0,25 mm – 30 … + 65 °C

≤ 0,08 mm ≤ 0,25 mm – 20 … + 85 °C

≤ 0,09 mm ≤ 0,25 mm – 30 … + 85 °C

Specifications reduction ratio (nominal)

Precision Gearheads

5,33 :1 14 :1 19 :1 28 :1 52 :1 69 :1 102 :1 152 :1 249 :1 369 :1 546 :1 809 :1 896 :1 1 327 :1 1 966 :1 2 913 :1 3 225 :1 4 315 :1 4 778 :1 7 078 :1 10 486 :1 15 534 :1 1)

length with motor 2) 1516 1524 1717 1724 1624 L1 L1 L1 L1 mm mm mm mm 29,9 37,9 31,1 38,1 33,5 41,5 34,7 41,7 33,5 41,5 34,7 41,7 33,5 41,5 34,7 41,7 37,1 45,1 38,3 45,3 37,1 45,1 38,3 45,3 37,1 45,1 38,3 45,3 37,1 45,1 38,3 45,3 40,7 48,7 41,9 48,9 40,7 48,7 41,9 48,9 40,7 48,7 41,9 48,9 40,7 48,7 41,9 48,9 44,3 52,3 45,5 52,5 44,3 52,3 45,5 52,5 44,3 52,3 45,5 52,5 44,3 52,3 45,5 52,5 47,9 55,9 49,1 56,1 44,3 52,3 45,5 52,5 47,9 55,9 49,1 56,1 47,9 55,9 49,1 56,1 47,9 55,9 49,1 56,1 47,9 55,9 49,1 56,1

motor number weight length ordering of gear without without motor motor code 1) stages L2 g mm A 1 4 14,8 B 2 5 18,4 B 2 5 18,4 A 2 5 18,4 B 3 5 22,0 B 3 5 22,0 A 3 5 22,0 A 3 5 22,0 B 4 6 25,6 A 4 6 25,6 A 4 6 25,6 A 4 6 25,6 B 5 6 29,2 A 5 6 29,2 A 5 6 29,2 A 5 6 29,2 B 6 7 32,8 A 5 6 29,2 A 6 7 32,8 A 6 7 32,8 A 6 7 32,8 A 6 7 32,8

2) Length

Example of ordering information: 1516 B 012 SR + 15A 19:1

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 50 100 = 87 100 200 = 78 100 200 = 78 100 200 = 77 100 200 = 68 100 200 = 69 100 200 = 68 150 300 = 67 200 400 = 62 200 400 = 61 200 400 = 60 200 400 = 59 200 400 = 55 200 400 = 54 200 400 = 53 250 400 = 52 250 400 = 49 250 400 = 51 250 400 = 48 250 400 = 47 250 400 = 46 250 400 = 46

L1 with Stepper Motors AM1524 = L2 + 16,5 mm.

Note: The reduction ratios are rounded, the exact values are available on request. These gearheads are available only with motors mounted. Orientation with respect to motor terminals not defined

2x

M2 4 deep 2x

ø17 ø16 ø15

(1724) (1717) (1624) (1516)

M 1:1 0

0

ø15 -0,3

ø7 -0,05

-0,005

ø6 ø3 -0,012

ø15

(AM1524) (1524...SR) (1516...SR)

ø1,48

4 deep

0

ø11

1 -0,1 (L2-0,7) ±0,5 L1 ±0,8

10 ±0,3 12,6 ±0,3

15A, 15AC, 15AK

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

L2 ±0,5 L1 ±0,8 15A, 15AC, 15AK

224

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Spur Gearheads

0,03 Nm For combination with DC-Micromotors: 1319, 1331, 1516, 1524, 1624 Brushless DC-Servomotors: 1524 BSL, 1536 BSL

Series 15/3, 16/3 Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (6,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (6,5 mm from mounting face) – axial Operating temperature range

15/3 and 16/3 metal steel 1)

15/3 K and 16/3 K metal steel 1)

5 000 rpm ≤ 3° sintered sleeve bearings

5 000 rpm ≤ 3° preloaded ball bearings

≤ 1,3 N ≤ 2N ≤ 30 N

≤ 20 N ≤ 5 N 2) ≤ 5 N 2)

≤ 0,04 mm ≤ 0,20 mm – 30 … + 100 °C

≤ 0,02 mm = 0 mm 2) – 30 … + 100 °C

weight length without without motor motor L2 g mm 14 23,6 14 23,6 16 25,7 16 25,7 18 27,8 18 27,8 19 29,9 19 29,9 20 32,0 20 32,0 22 34,1 22 34,1 23 36,2 23 36,2 24 38,3 24 38,3 26 40,4 26 40,4

reduction ratio (nominal)

6 ,3 :1 11 ,8 :1 22 :1 41 :1 76 :1 141 :1 262 :1 485 :1 900 :1 1 670 :1 3 101 :1 5 752 :1 10 683 :1 19 813 :1 36 796 :1 68 245 :1 126 741 :1 235 067 :1

1)

length with motor 1319 E

1331 E

1516 E

L1 mm 29,9 29,9 32,0 32,0 34,1 34,1 36,2 36,2 38,3 38,3 40,4 40,4 42,5 42,5 44,6 44,6 46,7 46,7

L1 mm 41,9 41,9 44,0 44,0 46,1 46,1 48,2 48,2 50,3 50,3 52,4 52,4 54,5 54,5 56,6 56,6 58,7 58,7

L1 mm 26,5 26,5 28,6 28,6 30,7 30,7 32,8 32,8 34,9 34,9 37,0 37,0 39,1 39,1 41,2 41,2 43,3 43,3

1524 E 1624 E L1 mm 34,5 34,5 36,6 36,6 38,7 38,7 40,8 40,8 42,9 42,9 45,0 45,0 47,1 47,1 49,2 49,2 51,3 51,3

output torque continuous intermittent direction efficiency 1524 BSL 1536 BSL operation operation of rotation (reversible) L1 L1 M max. M max. mm mm mNm mNm % 34,9 47,3 7 100 = 81 34,9 47,3 10 100 = 81 37,0 49,4 10 100 ≠ 73 37,0 49,4 20 100 ≠ 73 39,1 51,5 20 100 = 66 39,1 51,5 30 100 = 66 41,2 53,6 30 100 ≠ 59 41,2 53,6 30 100 ≠ 59 43,3 74,9 30 100 = 53 43,3 74,9 30 100 = 53 45,4 57,8 30 100 ≠ 48 45,4 57,8 30 100 ≠ 48 47,5 59,9 30 100 = 43 47,5 59,9 30 100 = 43 49,6 62,0 30 100 ≠ 39 49,6 62,0 30 100 ≠ 39 51,7 64,1 30 100 = 35 51,7 64,1 30 100 = 35

Gearheads with ratio ≥ 262:1 have plastic gears in the input stage. For extended life performance, the gearheads are available with all steel gears and heavy duty lubricant: type 15/3 S and 16/3 S.

Limited by the preloaded ball bearings. A higher axial load negates the preload

2)

Note: The reduction ratios are rounded, the exact values are available on request. (1536 BSL) (1524 BSL) (1524) (1331) ø13 (1319) ø15 (1516) ø14,5

M 1:1

Orientation with respect to motor terminals not defined

2x

M2 3

deep

2x

ø16

-0,016

0

ø16 -0,043 ø7 -0,015

±0,1

0

-0,006

1,8 -0,02

2-56UNC

ø16

(1624)

ø17 ±0,1

ø2 -0,012

3 deep

6,7 10,92

2 ±0,3 1,5 L2 ±0,3 L1 ±0,5

10,9 ±0,3 11,5 ±0,3 13 ±0,3

15/3, 15/3 K

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

3,1 ±0,3

16/3, 16/3 K

225

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Precision Gearheads

Specifications

Hybrid Gearheads

0,2 Nm For combination with DC-Micromotors: 1516, 1524 Brushless DC-Servomotors: 1524 BSL, 1536 BSL

Series 15/4 15/4 plastic metal/plastic

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (4,7 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (4,7 mm from mounting face) – axial Operating temperature range

5 000 rpm ≤ 3° preloaded ball bearings ≤ 10 N ≤ 5N ≤ 30 N ≤ 0,02 mm = 0 mm – 30 … + 85 °C

Specifications weight length without without motor motor L2 g mm 10 47,4 10 47,4 11 47,4 11 47,4 12 47,4 12 47,4 13 47,4 13 47,4 14 47,4 14 47,4

reduction ratio (nominal)

1516 E L1 mm 47,4 47,4 47,4 47,4 50,6 50,6 52,7 52,7 54,8 54,8

1524 E L1 mm 50,5 51,8 55,2 55,2 58,6 58,6 60,7 60,7 62,8 62,8

Precision Gearheads

12 ,3 :1 22 ,8 :1 42 ,3 :1 78 ,5 :1 146 :1 270 :1 502 :1 931 :1 1 730 :1 3 208 :1

output torque continuous intermittent direction efficiency operation operation of rotation 1524 BSL 1536 BSL (reversible) L1 L1 M max. M max. mm mm mNm mNm % 55,8 68,2 200 300 ≠ 80 55,8 68,2 200 300 = 75 55,8 68,2 200 300 ≠ 70 55,8 68,2 200 300 ≠ 70 59,0 71,4 200 300 = 65 59,0 71,4 200 300 = 65 61,2 73,5 200 300 ≠ 60 61,2 73,5 200 300 ≠ 60 63,2 75,6 200 300 = 55 63,2 75,6 200 300 = 55

length with motor

Note: The reduction ratios are rounded, the exact values are available on request. M 1:1 Orientation with respect to motor terminals not defined

2x

M2 3 deep

(1536 BSL) (1524 BSL) (1524) ø15 (1516)

ø16 ±0,1

0

ø7 -0,05

ø3

-0,01 -0,018

0

2,7 -0,05

11 5 L2 ±0,3 L1 ±0,8

1,2 8,2 ±0,3

15/4

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

226

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Spur Gearheads

0,1 Nm For combination with DC-Micromotors: 1319, 1331, 1516, 1524, 1624 Brushless DC-Servomotors: 1524 BSL, 1536 BSL Stepper Motors: AM1524

Series 15/5, 16/5

15/5 and 16/5 metal steel 1)

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (6,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (6,5 mm from mounting face) – axial Operating temperature range

5 000 rpm ≤ 3° preloaded ball bearings ≤ 25 N ≤ 5 N 2) ≤ 5 N 2) ≤ 0,02 mm = 0 mm 2) – 30 … + 100 °C

weight length without without motor motor L2 g mm 17 26,2 17 26,2 19 29,9 19 29,9 21 32,0 21 32,0 22 34,1 22 34,1 24 36,2 24 36,2 25 38,3 25 38,3 26 40,4 26 40,4 28 42,5 28 42,5 30 44,6 30 44,6

reduction ratio (nominal)

6 ,3 :1 11 ,8 :1 22 :1 41 :1 76 :1 141 :1 262 :1 485 :1 900 :1 1 670 :1 3 101 :1 5 752 :1 10 683 :1 19 813 :1 36 796 :1 68 245 :1 126 741 :1 235 067 :1 1) 2) 3)

length with motor 3) 1319 E

1331E

1516 E

L1 mm 32,5 32,5 36,2 36,2 38,3 38,3 40,4 40,4 42,5 42,5 44,6 44,6 46,7 46,7 48,8 48,8 50,9 50,9

L1 mm 44,5 44,5 48,2 48,2 50,3 50,3 52,4 52,4 54,5 54,5 56,6 56,6 58,7 58,7 60,8 60,8 62,9 62,9

L1 mm 29,1 29,1 32,8 32,8 34,9 34,9 37,0 37,0 39,1 39,1 41,2 41,2 43,3 43,3 45,4 45,4 47,5 47,5

1524 E 1624 E L1 mm 37,1 37,1 40,8 40,8 42,9 42,9 45,0 45,0 47,1 47,1 49,2 49,2 51,3 51,3 53,4 53,4 55,5 55,5

output torque continuous intermittent direction efficiency 1524 BSL 1536 BSL operation operation of rotation (reversible) L1 L1 M max. M max. mm mm mNm mNm % 37,5 49,9 60 150 = 81 37,5 49,9 60 150 = 81 41,2 53,6 60 150 ≠ 73 41,2 53,6 60 150 ≠ 73 43,3 55,7 100 300 = 66 43,3 55,7 100 150 = 66 45,4 57,8 100 300 ≠ 59 45,4 57,8 100 150 ≠ 59 47,5 59,9 100 300 = 53 47,5 59,9 100 150 = 53 49,6 62,0 100 300 ≠ 48 49,6 62,0 100 150 ≠ 48 51,7 64,1 100 300 = 43 51,7 64,1 100 150 = 43 53,8 66,2 100 300 ≠ 39 53,8 66,2 100 150 ≠ 39 56,9 68,3 100 300 = 35 56,9 68,3 100 150 = 35

Gearheads with ratio ≥ 3101:1 have plastic gears in the input stage. For extended life performance, the gearheads are available with all steel gears and heavy duty lubricant: type 15/5 S and 16/5 S. Limited by the preloaded ball bearings. A higher axial load negates the preload. Length L1 with Stepper Motors AM1524 = L2 + 3,9 mm.

Note: The reduction ratios are rounded, the exact values are available on request.

Orientation with respect to motor terminals not defined

2x

M2

3 deep

(AM1524) (1536 BSL) (1524 BSL) (1524) (1331) ø13 (1319) ø15 (1516)

2x

2-56UNC

ø16

M 1:1

-0,016

±0,1

0

3 deep

10,92

0

2 ±0,3 1,5

-0,006

2,8 -0,02

ø3 -0,012

6,7

4,3 ±0,2

(1624)

ø17

±0,1

11,9 ±0,3

L2 ±0,3

12,7 ±0,3

L1 ±0,5

14,2 ±0,3

15/5

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

ø16

ø14,5 ø16 -0,043 ø7 -0,015

16/5

227

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Precision Gearheads

Specifications

Spur Gearheads Zero

0,1 Nm

Backlash 1)

For combination with DC-Micromotors: 1516, 1524, 1624 Brushless DC-Servomotors: 1524 BSL, 1536 BSL Stepper Motors: AM1524

Series 15/8, 16/8

15/8 and 16/8 metal all steel

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, when preloaded with the Motor 1) Bearings on output shaft Shaft load, max.: – radial (6,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (6,5 mm from mounting face) – axial Operating temperature range

5 000 rpm 0° preloaded ball bearings ≤ 25 N ≤ 5 N 2) ≤ 5 N 2) ≤ 0,02 mm = 0 mm 2) – 30 … + 100 °C

Specifications weight length without without motor motor L2 g mm 24 32,0 24 32,0 26 34,1 26 34,1 28 36,2 28 36,2

reduction ratio (nominal)

:1 :1 :1 :1 :1 :1

1516 E L1 mm 34,9 34,9 37,0 37,0 39,1 39,1

1524 E 1624 E L1 mm 42,9 42,9 45,0 45,0 47,1 47,1

Precision Gearheads

76 141 262 485 900 1 670

output torque continuous intermittent direction AM1524 1524 BSL 1536 BSL operation operation of rotation (reversible) L1 L1 L1 M max. M max. mm mm mm mNm mNm 35,9 43,3 55,7 100 300 = 35,9 43,3 55,7 100 150 = 38,0 45,4 57,8 100 300 ≠ 38,0 45,4 57,8 100 150 ≠ 40,1 47,5 59,9 100 300 = 40,1 47,5 59,9 100 150 =

length with motor

1)

These gearheads are available preloaded to zero backlash only when factory assembled to motors.

2)

Limited by the preloaded ball bearings. A higher axial load negates the preload.

Note: The reduction ratios are rounded, the exact values are available on request.

Orientation with respect to motor terminals not defined

2x

M2 3 deep 2x

2-56UNC

(1536 BSL) (1524 BSL) (AM1524) (1524) ø15 (1516)

ø16

M 1:1

ø14,5 +0,2 -0,1

0

0

3 deep

2 ±0,3

10,92

-0,016

ø16 -0,043 ø7 -0,015

1,5

-0,006

2,8 -0,02

ø3 -0,012

6,7

4,3 ±0,2

ø17

+0,2 -0,1

11,9 ±0,3

L2 ±0,3

12,7 ±0,3

L1 ±0,5

14,2 ±0,3

15/8

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

ø16 (1624)

16/8

228

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Spur Gearheads

0,03 Nm For combination with DC-Micromotors: 1516, 1524, 1624, 1717, 1724

Series 16A Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (5 mm from mounting face) – axial Operating temperature range

16A plastic all metal

16AC plastic all metal

16AK plastic all metal

5 000 rpm ≤ 4° sintered sleeve bearings

5 000 rpm ≤ 4° ceramic bearings

5 000 rpm ≤ 4° ball bearings

≤ 2N ≤ 1N ≤ 10 N

≤ 6N ≤ 2N ≤ 10 N

≤ 10 N ≤ 5N ≤ 10 N

≤ 0,05 mm ≤ 0,25 mm – 30 … + 65 °C

≤ 0,06 mm ≤ 0,25 mm – 20 … + 65 °C

≤ 0,06 mm ≤ 0,25 mm – 30 … + 65 °C

Specifications weight length without without motor motor L2 g mm 3 9,2 4 11,0 4 11,0 4 12,8 4 12,8 5 14,5 5 14,5 5 16,3 5 16,3 5 18,0 6 18,0

reduction ratio (nominal)

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 10 100 = 81 10 100 ≠ 73 20 100 ≠ 73 20 100 = 66 30 100 = 66 30 100 ≠ 59 30 100 ≠ 59 30 100 = 53 30 100 = 53 30 50 ≠ 48 30 50 ≠ 48 Precision Gearheads

11,9 :1 22 :1 41 :1 76 :1 141 :1 262 :1 485 :1 900 :1 1 670 :1 3 101 :1 5 752 :1

length with motor 1516 E 1717 E 1524 E 1624 E 1724 E L1 L1 L1 mm mm mm 25,0 26,2 33,0 26,8 28,0 34,8 26,8 28,0 34,8 28,6 29,8 36,6 28,6 29,8 36,6 30,3 31,5 38,3 30,3 31,5 38,3 32,1 33,3 40,1 32,1 33,3 40,1 33,8 35,0 41,8 33,8 35,0 41,8

Note: The reduction ratios are rounded, the exact values are available on request. M 1:1 Orientation with respect to motor terminals not defined

M2

ø16 (1624)

(1524)

2x

4 deep

(1724)

0

ø15 (1516) ø17 (1717) ø16 -0,3

-0,006

0

ø7 -0,05

ø2 -0,012 ø3,5

11

1,1

6 ±0,3

L2 ±0,5

3 -0,1

0,1

10

L1 ±0,8

0

10,1 ±0,3

16A, 16AC, 16AK

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

229

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

0,3 Nm For combination with DC-Micromotors: 1516, 1524, 1624, 1717, 1724, 1727 Brushless DC-Servomotors: 1524 BSL, 1536 BSL, 1628 Stepper Motors: AM1524

Series 16/7

16/7 metal all steel

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (6,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (6,5 mm from mounting face) – axial Operating temperature range

5 000 rpm ≤ 1° preloaded ball bearings ≤ 30 N ≤ 5N ≤ 5N ≤ 0,02 mm = 0 mm – 30 … + 100 °C

Specifications output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 200 300 = 90 300 450 = 80 300 450 = 70 300 450 = 70 300 450 = 60 300 450 = 60 300 450 = 60 300 450 = 55 300 450 = 55 300 450 = 55 300 450 = 55 300 450 = 50 300 450 = 50 300 450 = 50

length with motor 1) reduction ratio (nominal)

Precision Gearheads

3 ,71 :1 14 :1 43 :1 66 :1 134 :1 159 :1 246 :1 415 :1 592 :1 989 :1 1 526 :1 2 608 :1 4 365 :1 5 647 :1

1)

weight length without without motor motor L2 g mm 18 17,0 23 21,2 28 25,3 28 25,3 33 29,4 33 29,4 33 29,4 38 33,5 38 33,5 38 33,5 38 33,5 43 37,6 43 37,6 43 37,6

1516 T L1 mm 32,8 36,9 41,1 41,1 45,2 45,2 45,2 49,3 49,3 49,3 49,3 53,4 53,4 53,4

1524 T 1624 T L1 mm 40,8 44,9 49,1 49,1 53,2 53,2 53,2 57,3 57,3 57,3 57,3 61,4 61,4 61,4

1628 T

1717 T

1724 T

1727 U

L1 mm 45,0 49,1 53,3 53,3 57,4 57,4 57,4 61,5 61,5 61,5 61,5 65,6 65,6 65,6

L1 mm 34,0 38,1 42,3 42,3 46,4 46,4 46,4 50,5 50,5 50,5 50,5 54,6 54,6 54,6

L1 mm 41,0 45,1 49,3 49,3 53,4 53,4 53,4 57,5 57,5 57,5 57,5 61,6 61,6 61,6

L1 mm 44,2 48,3 52,5 52,5 56,6 56,6 56,6 60,7 60,7 60,7 60,7 64,8 64,8 64,8

Length L1 with Motor: AM1524 = L2 + 16,5 mm 1524 U ... BSL = L2 + 24,2 mm 1536 U ... BSL = L2 + 36,6 mm

Note: The reduction ratios are rounded, the exact values are available on request. (1536 BSL) (1524 BSL) (AM1524) (1524) ø15 (1516)

Orientation with respect to motor terminals not defined

2x

M2

3 deep

(1727) (1724) ø17 (1717) (1628) ø16 (1624)

M 1:1

ø16

±0,1

0

-0,006

ø7 -0,015

ø3 -0,012 0

2,8 -0,02

10,92 6,7

4,3

±0,2

12,2 ±0,3 L2 ±0,3 L1 ±0,5

13,2 ±0,3 14,2 ±0,3

16/7

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

230

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

0,5 Nm For combination with DC-Micromotors: 1727, 2224, 2230, 2232, 2233 Brushless DC-Servomotors: 2036, 2057, 2232 BSL, 2248 BSL

Series 20/1 20/1 all steel metal

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (8,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (8,5 mm from mounting face) – axial Operating temperature range

5 000 rpm ≤ 1° preloaded ball bearings ≤ 75 N ≤ 20 N ≤ 35 N ≤ 0,04 mm = 0 mm – 30 … + 100 °C

weight length without without motor motor L2 g mm 28 18,4 38 23,5 38 23,5 38 23,5 48 28,6 48 28,6 48 28,6 58 33,7 58 33,7 58 33,7 68 38,8 68 38,8 68 38,8 68 38,8

reduction ratio (nominal)

3 ,71 :1 9 ,7 :1 14 :1 23 :1 43 :1 66 :1 86 :1 134 :1 159 :1 246 :1 415 :1 592 :1 989 :1 1 526 :1

1)

length with Motor 1) 1727 U L1 mm 45,6 50,7 50,7 50,7 55,8 55,8 55,8 60,9 60,9 60,9 66,0 66,0 66,0 66,0

2224 U L1 mm 42,6 47,7 47,7 47,7 52,8 52,8 52,8 57,9 57,9 57,9 63,0 63,0 63,0 63,0

2230 U L1 mm 48,4 53,5 53,5 53,5 58,6 58,6 58,6 63,7 63,7 63,7 68,8 68,8 68,8 68,8

2232 U L1 mm 50,6 55,7 55,7 55,7 60,8 60,8 60,8 65,9 65,9 65,9 71,0 71,0 71,0 71,0

2233 U L1 mm 51,0 56,1 56,1 56,1 61,2 61,2 61,2 66,3 66,3 66,3 71,4 71,4 71,4 71,4

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 500 700 = 88 500 700 = 80 500 700 = 80 500 700 = 80 500 700 = 70 500 700 = 70 500 700 = 70 500 700 = 60 500 700 = 60 500 700 = 60 500 700 = 55 500 700 = 55 500 700 = 55 500 700 = 55

Length L1 with Motor: 2036 U = L2 + 36 mm 2057 S = L2 + 58,9 mm 2232 U ... BSL = L2 + 36,1 mm 2248 U ... BSL = L2 + 51,7 mm

Note: The reduction ratios are rounded, the exact values are available on request. Orientation with respect to motor terminals not defined

3x

M2,5

3 deep

ø20 ø17

(2057) (2036) (1727)

ø22

(2233) (2232) (2230) (2248 BSL) (2224) (2232 BSL)

M 1:1

ø20 ±0,1

0

-0,01

ø9 -0,01

ø4 -0,018 0

ø6

3x 120

3,5 -0,05

8

+0,2 0

10,75 ø14

L2

±0,3

L1 ±0,8

±0,3

1,2 14,3 ±0,3

20/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

231

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Precision Gearheads

Specifications

Planetary Gearheads

0,6 Nm For combination with DC-Micromotors: 2224 SR, 2230, 2232 SR, 2233 Stepper Motors: AM2224

Series 22E Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (5 mm from mounting face) – axial Operating temperature range

22E plastic plastic

22EC plastic plastic

22EK plastic plastic

5 000 rpm ≤ 3° sintered sleeve bearings

5 000 rpm ≤ 3° ceramic bearings

5 000 rpm ≤ 3° ball bearings

≤ 3N ≤ 3N ≤ 15 N

≤ 15 N ≤ 2N ≤ 15 N

≤ 50 N ≤ 5N ≤ 15 N

≤ 0,05 mm ≤ 0,25 mm – 30 … + 65 °C

≤ 0,06 mm ≤ 0,25 mm – 20 … + 85 °C

≤ 0,07 mm ≤ 0,25 mm – 30 … + 85 °C

Specifications motor number weight length ordering of gear without without 2224 SR 1) motor motor code 1) stage L2 L1 g mm mm B 2 17 27,8 51,3 A 2 17 27,8 51,3 B 3 19 32,8 56,3 A 3 19 32,8 56,3 A 3 19 32,8 56,3 B 4 20 37,8 61,3 A 4 20 37,8 61,3 A 4 20 37,8 61,3 A 4 20 37,8 61,3 B 5 22 42,8 66,3 A 5 22 42,8 66,3 A 5 22 42,8 66,3 A 5 22 42,8 66,3 B 6 24 47,8 71,3 A 5 22 42,8 66,3 A 6 24 47,8 71,3 A 6 24 47,8 71,3 A 6 24 47,8 71,3 A 6 24 47,8 71,3 A 6 24 47,8 71,3

reduction ratio (nominal)

Precision Gearheads

19 28 69 102 152 249 369 546 809 896 1 327 1 966 2 913 3 225 4 315 4 778 7 078 10 486 15 534 23 014 1)

:1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1

length with motor 2) 2230

2232 SR

2233

L1 mm 57,1 57,1 62,1 62,1 62,1 67,1 67,1 67,1 67,1 72,1 72,1 72,1 72,1 77,1 72,1 77,1 77,1 77,1 77,1 77,1

L1 mm 59,3 59,3 64,3 64,3 64,3 69,3 69,3 69,3 69,3 74,3 74,3 74,3 74,3 79,3 74,3 79,3 79,3 79,3 79,3 79,3

L1 mm 59,7 59,7 64,7 64,7 64,7 69,7 69,7 69,7 69,7 74,7 74,7 74,7 74,7 79,7 74,7 79,7 79,7 79,7 79,7 79,7

1)

Example of ordering information: 2224 B 012 SR + 22E 19:1 These gearheads are available only with motors mounted.

1)

2)

1)

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 200 400 = 78 200 400 = 77 300 600 = 69 300 600 = 68 400 800 = 67 400 800 = 62 500 1 000 = 61 600 1 000 = 60 600 1 000 = 59 600 1 000 = 55 600 1 000 = 54 600 1 000 = 53 600 1 000 = 52 600 1 000 = 49 600 1 000 = 51 600 1 000 = 48 600 1 000 = 47 600 1 000 = 46 600 1 000 = 46 600 1 000 = 46

Length L1 with motor: AM2224 = L2 + 27,5 mm.

Note: The reduction ratios are rounded, the exact values are available on request. Orientation with respect to motor terminals not defined

3x

M3 4 deep

M 1:1 (2233)

0

0

-0,005

ø22 -0,3 ø12 -0,05 ø4 -0,012

ø22 (2230)

3x120

(2232 SR) (AM2224) ø22 (2224 SR)

ø7

ø17 10 ±0,3 0

1 -0,1

3x

ø2,05 7 deep

(L2-0,7) L1

L1

22E, 22EC, 22EK

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

L2 ±0,5

12,6 ±0,3

±0,5

±0,8

232

±0,8

22E, 22EC, 22EK

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

1 Nm For combination with DC-Micromotors: 2237, 2342 Brushless DC-Servomotors: 2232 BX4, 2250 BX4

Series 22F 22F steel metal

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (10 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (10 mm from mounting face) – axial Operating temperature range

6 000 rpm ” 3,5° ball bearings ” 70 N ” 100 N ” 100 N ” 0,06 mm ” 0,2 mm – 30 … + 100 °C

weight length length with motor without without motor 2232 BX4 2237 S 2250 BX4 2342 S motor L2 L1 L1 L1 L1 g mm mm mm mm mNm 41 26,6 60,4 63,6 78,4 68,6 57 34,8 68,6 71,8 86,6 76,8 57 34,8 68,6 71,8 86,6 76,8 57 34,8 68,6 71,8 86,6 76,8 57 34,8 68,6 71,8 86,6 76,8 75 42,9 76,7 79,9 94,7 84,9 75 42,9 76,7 79,9 94,7 84,9 75 42,9 76,7 79,9 94,7 84,9 75 42,9 76,7 79,9 94,7 84,9 75 42,9 76,7 79,9 94,7 84,9 75 42,9 76,7 79,9 94,7 84,9 75 42,9 76,7 79,9 94,7 84,9 75 42,9 76,7 79,9 94,7 84,9 75 42,9 76,7 79,9 94,7 84,9 90 51,1 84,9 88,1 102,9 93,0 90 51,1 84,9 88,1 102,9 93,0 90 51,1 84,9 88,1 102,9 93,0 90 51,1 84,9 88,1 102,9 93,0 90 51,1 84,9 88,1 102,9 93,0 90 51,1 84,9 88,1 102,9 93,0 90 51,1 84,9 88,1 102,9 93,0

reduction ratio (nominal)

4 14 16 19 25 51 59 68 71 93 100 107 130 169 189 218 252 264 292 305 344

:1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 400 600 = 80 600 900 = 75 600 900 = 75 600 900 = 75 600 900 = 75 900 1 350 = 70 900 1 350 = 70 900 1 350 = 70 900 1 350 = 70 900 1 350 = 70 900 1 350 = 70 900 1 350 = 70 900 1 350 = 70 900 1 350 = 70 1 000 1 500 = 60 1 000 1 500 = 60 1 000 1 500 = 60 1 000 1 500 = 60 1 000 1 500 = 60 1 000 1 500 = 60 1 000 1 500 = 60

Note: The reduction ratios are rounded, the exact values are available on request. Orientation with respect to motor terminals not defined

3x

M3 4 deep

M 1:1

ø23 (2342) (2250 BX4) (2237) ø22 (2232 BX4)

0

ø22 -0,15

0

0

ø12 -0,015 ø4 -0,012 0

3,5 -0,1 6x 60°

ø17 ø19 8 10 L2 ±0,5

3x

M2 4

L1 ±0,8

deep

1,1 13 ±0,5

22F

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

233

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Precision Gearheads

Specifications

Spur Gearheads

0,1 Nm For combination with DC-Micromotors: 2224, 2230, 2232, 2233 Brushless DC-Servomotors: 2232 BSL, 2248 BSL Stepper Motors: AM2224

Series 22/2 Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (6 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (6 mm from mounting face) – axial Operating temperature range

22/2 metal all metal

22/2 K metal all metal

4 000 rpm ≤ 3° sintered sleeve bearings

4 000 rpm ≤ 3° preloaded ball bearings

≤ 3N ≤ 5N ≤ 50 N

≤ 100 N ≤ 5 N 1) ≤ 5 N 1)

≤ 0,04 mm ≤ 0,20 mm – 30 … + 100 °C

≤ 0,03 mm = 0 mm 1) – 30 … + 100 °C

Specifications output torque weight length length with motor 2) continuous intermittent direction efficiency without without operation operation of rotation motor motor 2224 R AM2224 2232 R 2232 U BSL 2233 F 2248 U BSL (reversible) L2 L1 L1 L1 L1 L1 L1 M max. M max. g mm mm mm mm mm mm mm mNm mNm % 3 ,1 :1 57 40,8 45,4 48,8 53,4 57,3 54,0 72,9 100 400 = 90 5 ,4 :1 59 40,8 45,4 48,8 53,4 57,3 54,0 72,9 100 400 = 90 9 ,7 :1 68 46,6 50,0 53,4 58,0 61,9 58,6 77,5 100 400 ≠ 86 17 ,2 :1 72 49,5 53,6 57,0 61,6 65,5 62,2 81,1 100 400 = 81 30 ,7 :1 72 49,5 53,6 57,0 61,6 65,5 62,2 81,1 100 400 = 81 54 ,6 :1 77 52,4 56,5 59,9 64,5 68,4 65,1 84,0 100 400 ≠ 73 97 ,3 :1 77 52,4 56,5 59,9 64,5 68,4 65,1 84,0 100 400 ≠ 73 173 :1 82 55,3 59,4 62,8 67,4 71,3 68,0 86,9 100 400 = 66 308 :1 82 55,3 59,4 62,8 67,4 71,3 68,0 86,9 100 400 = 66 548 :1 88 58,2 62,3 65,7 70,3 74,2 70,9 89,8 100 400 ≠ 59 975 :1 88 58,2 62,3 65,7 70,3 74,2 70,9 89,8 100 400 ≠ 59 1 734 :1 93 61,1 65,2 68,6 73,2 77,1 73,8 92,7 100 400 = 53 3 088 :1 93 61,1 65,2 68,6 73,2 77,1 73,8 92,7 100 400 = 53 5 490 :1 98 64,0 68,1 71,5 76,1 80,0 76,7 95,6 100 400 ≠ 48 9 780 :1 98 64,0 68,1 71,5 76,1 80,0 76,7 95,6 100 400 ≠ 48 17 386 :1 103 66,9 71,0 74,4 79,0 82,9 79,6 98,5 100 400 = 43 30 969 :1 103 66,9 71,0 74,4 79,0 82,9 79,6 98,5 100 400 = 43 55 057 :1 108 69,8 73,9 77,3 81,9 85,8 82,5 101,4 100 400 ≠ 39 98 070 :1 108 69,8 73,9 77,3 81,9 85,8 82,5 101,4 100 400 ≠ 39 174 350 :1 113 72,7 76,8 80,2 84,8 88,7 85,4 104,3 100 400 = 35 310 560 :1 113 72,7 76,8 80,2 84,8 88,7 85,4 104,3 100 400 = 35 552 113 :1 118 75,6 79,7 83,1 87,7 91,6 88,3 107,2 100 400 ≠ 31 983 447 :1 118 75,6 79,7 83,1 87,7 91,6 88,3 107,2 100 400 ≠ 31 1) Limited by the preloaded ball bearings. A higher axial load negates the preload. 2) More information about “length with motor” are available on request. Note: The reduction ratios are rounded, the exact values are available on request.

Precision Gearheads

reduction ratio (nominal)

3x

Orientation with respect to motor terminals not defined

M2

4 deep

ø22

(2233) (2232) (2248 BSL) (2230) (2232 BSL) (2224) (AM2224)

M 1:1

ø23,8

ø20,63

±0,1

±0,1

ø23,8 ±0,1

ø20,63 0

0 -0,013

ø12,7 -0,011

3x 120

10,2 ±0,3

3x 120

1,4 0 1,6 -0,05

3x

4-40UNC

16

4 deep

10,9 ±0,3 0

1,6 -0,05

L2 ±0,3 L1

±0,5

22/2 ø A = 4,0 – 0,008

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

øA

234

12,5 ±0,3 22/2K ø A = 4,0 – 0,010 / – 0,018 (L1, L2 = + 2,1)

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Spur Gearheads Zero Backlash

0,1 Nm

1)

For combination with DC-Micromotors: 2224, 2230, 2232, 2233 Brushless DC-Servomotors: 2232 BSL, 2248 BSL Stepper Motors: AM2224

Series 22/5

22/5 metal all metal

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, when preloaded with the motor 1) Bearings on output shaft Shaft load, max.: – radial (6 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (6 mm from mounting face) – axial Operating temperature range

4 000 rpm 0° preloaded ball bearings ≤ 100 N ≤ 5 N 2) ≤ 5 N 2) ≤ 0,02 mm = 0 mm 2) – 30 … + 100 °C

Specifications reduction ratio (nominal)

output torque continuous intermittent direction operation operation of rotation 2232 U BSL 2233 F 2248 U BSL (reversible) L1 L1 L1 M max. M max. mm mm mm mNm mNm 69,7 66,2 85,3 100 400 ≠ 73,5 70,0 89,1 100 400 = 78,4 74,9 94,0 100 400 ≠ 82,2 78,7 97,8 100 400 = 87,1 83,6 102,7 100 400 ≠

length with motor 2224 R AM2224 L1 L1 mm mm 57,8 61,2 61,6 65,0 66,5 69,9 70,3 73,7 75,2 78,6

2230 F L1 mm 63,6 67,4 72,3 76,1 81,0

2232 R L1 mm 65,8 69,6 74,5 78,3 83,2

Precision Gearheads

69 ,2 :1 161 :1 377 :1 879 :1 2 050 :1

weight length without without motor motor L2 g mm 80 50,9 85 54,6 90 59,5 95 63,2 105 68,1

1)

These gearheads are available preloaded to zero backlash only when factory assembled to motors.

2)

Limited by the preloaded ball bearings. A higher axial load negates the preload.

Note: The reduction ratios are rounded, the exact values are available on request.

3x

M2

Orientation with respect to motor terminals not defined

4 deep

(2233) (2232) (2248 BSL) (2230) (2232 BSL) ø22 (2224) (AM2224)

M 1:1

ø23,8

0,1

0

ø12 -0,011 -0,006

ø4 -0,014

3x 120

10,2 ±0,3 22,5

16

L2 ±0,3 L1 ±0,5

2 13,2 ±0,3

22/5

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

235

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Hybrid Gearheads

0,4 Nm For combination with DC-Micromotors: 2224, 2230, 2232, 2233 Brushless DC-Servomotors: 2232 BSL, 2248 BSL

Series 22/6 22/6 Plastic metal/plastic

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (7 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (7 mm from mounting face) – axial Operating temperature range

4 000 rpm ≤ 3° preloaded ball bearings ≤ 20 N ≤ 5N ≤ 50 N ≤ 0,03 mm = 0 mm – 30 … + 85 °C

Specifications

Precision Gearheads

reduction ratio (nominal)

14 ,6 20 ,4 34 47 ,6 79 ,4 111 185 259 432 605 1 009 1 412 2 354 3 295

:1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1

weight length without without motor motor L2 g mm 32 59,4 32 59,4 32 59,4 32 59,4 34 59,4 34 59,4 36 59,4 36 59,4 38 59,4 38 59,4 40 59,4 40 59,4 42 59,4 42 59,4

length with motor 2224 R L1 mm 59,9 59,9 59,9 59,9 63,1 63,1 66,3 66,3 69,5 69,5 72,7 72,7 75,9 75,9

2230 F L1 mm 65,7 65,7 65,7 65,7 68,9 68,9 72,1 72,1 75,3 75,3 78,5 78,5 81,7 81,7

2232 R 2232 U BSL L1 L1 mm mm 67,9 71,8 67,9 71,8 67,9 71,8 67,9 71,8 71,1 75,0 71,1 75,0 74,3 78,2 74,3 78,2 77,5 81,4 77,5 81,4 80,7 84,6 80,7 84,6 83,9 87,8 83,9 87,8

output torque continuous intermittent direction efficiency operation operation of rotation 2233 F 2248 U BSL (reversible) L1 L1 M max. M max. mm mm mNm mNm % 68,3 87,4 400 600 ≠ 80 68,3 87,4 400 600 ≠ 80 68,3 87,4 400 600 = 75 68,3 87,4 400 600 = 75 71,5 90,6 400 600 ≠ 70 71,5 90,6 400 600 ≠ 70 74,7 93,8 400 600 = 65 74,7 93,8 400 600 = 65 77,9 97,0 400 600 ≠ 60 77,9 97,0 400 600 ≠ 60 81,1 100,2 400 600 = 55 81,1 100,2 400 600 = 55 84,3 103,4 400 600 ≠ 50 84,3 103,4 400 600 ≠ 50

Note: The reduction ratios are rounded, the exact values are available on request.

3x

M2

Orientation with respect to motor terminals not defined

3 deep

M 1:1

(2233) (2232) (2230) (2248 BSL) ø22 (2224) (2232 BSL)

ø24 ±0,1

0

-0,01

ø14 -0,05

ø4 -0,018 0

3,5 -0,1 3x 120

8 L2 ±0,3

19

L1 ±0,8

2 14 ±0,3

22/6

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

236

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

0,7 Nm For combination with DC-Micromotors: 2224, 2230, 2232, 2233, 2237, 2342 Brushless DC-Servomotors: 2232 BSL, 2248 BSL, 2444

Series 22/7 22/7 metal all steel

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (10 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (10 mm from mounting face) – axial Operating temperature range

4 000 rpm ≤ 1° preloaded ball bearings ≤ 170 N ≤ 150 N ≤ 150 N ≤ 0,03 mm ≤ 0,10 mm – 30 … + 100 °C

Specifications weight length without without motor motor L2 g mm 68 24,0 68 27,9 63 34,1 76 40,3 76 40,3 88 46,4 88 46,4 88 46,4 102 52,6 102 52,6 102 52,6 102 52,6

3 ,71 :1 1) 3 ,71 :1 14 :1 43 :1 66 :1 134 :1 159 :1 246 :1 415 :1 592 :1 989 :1 1 526 :1

length with motor 3) 2224 U L1 mm 48,2 — 54,4 60,6 60,6 66,7 66,7 66,7 72,9 72,9 72,9 72,9

2230 U L1 mm 54,0 — 60,2 66,4 66,4 72,5 72,5 72,5 78,7 78,7 78,7 78,7

2232 U L1 mm 56,2 — 62,4 68,6 68,6 74,7 74,7 74,7 80,9 80,9 80,9 80,9

2233 U L1 mm 56,6 — 62,8 69,0 69,0 75,1 75,1 75,1 81,3 81,3 81,3 81,3

1)

Gearheads with ratio 3,71:1 available for motor types 2224, 2230, 2232 and 2233 are to be order as 22/7 - 3,71:1 - K288

2)

Only for reduction ratio ≥ 14:1

3)

Length L1 with motor: 2232 S ... BSL = L2 + 32,4 mm 2248 S ... BSL = L2 + 48 mm 2444 S ... B = L2 + 44 mm

2237 S L1 mm — 64,9 71,1 77,3 77,3 83,4 83,4 83,4 89,6 89,6 89,6 89,6

2342 S L1 mm — 69,9 76,1 82,3 82,3 88,4 88,4 88,4 94,6 94,6 94,6 94,6

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 200 400 = 88 200 400 = 88 300 600 = 80 700 1 000 = 70 700 1 000 = 70 700 1 000 = 60 700 1 000 = 60 700 1 000 = 60 700 1 000 = 55 700 1 000 = 55 700 1 000 = 55 700 1 000 = 55 Precision Gearheads

reduction ratio (nominal)

Note: The reduction ratios are rounded, the exact values are available on request.

(2233) (2232 SR) (2230) ø22 (2224 SR)

3x

M2

4 deep

scale reduced

ø24 (2444) ø23 (2342)

Orientation with respect to motor terminals not defined

ø22

0 ±0,1 ø15 -0,018

ø6

-0,010 -0,018

(2248 BSL) (2237) ø22 (2232 BSL)

0

3x120

5,4 -0,05

10 19

L2 ±0,3 (-3,9) L1 ±0,8

2)

16 ±0,3 22/7

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

L2 ±0,3

1 L1 ±0,8

22/7

237

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

0,7 Nm For combination with DC-Micromotors: 2224, 2230, 2232, 2233, 2237, 2342 Brushless DC-Servomotors: 2057, 2232 BSL, 2232 BX4, 2248 BSL, 2444 Stepper Motors: AM2224

Series 23/1

23/1 metal all steel

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (10 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (10 mm from mounting face) – axial Operating temperature range

4 000 rpm ≤ 1° preloaded ball bearings ≤ 170 N ≤ 150 N ≤ 150 N ≤ 0,03 mm ≤ 0,10 mm – 30 … + 100 °C

Specifications weight length without without motor motor L2 g mm 60 24,0 60 27,9 70 34,1 90 40,3 90 40,3 100 46,4 100 46,4 100 46,4 110 52,6 110 52,6 110 52,6 110 52,6

reduction ratio (nominal)

Precision Gearheads

3 ,71 :1 1) 3 ,71 :1 14 :1 43 :1 66 :1 134 :1 159 :1 246 :1 415 :1 592 :1 989 :1 1 526 :1

length with motor 3) 2224 U L1 mm 48,2 — 54,4 60,6 60,6 66,7 66,7 66,7 72,9 72,9 72,9 72,9

2230 U L1 mm 54,0 — 60,2 66,4 66,4 72,5 72,5 72,5 78,7 78,7 78,7 78,7

2232 U L1 mm 56,2 — 62,4 68,6 68,6 74,7 74,7 74,7 80,9 80,9 80,9 80,9

2233 U L1 mm 56,6 — 62,8 69,0 69,0 75,1 75,1 75,1 81,3 81,3 81,3 81,3

2237 S L1 mm — 64,9 71,1 77,3 77,3 83,4 83,4 83,4 89,6 89,6 89,6 89,6

2342 S L1 mm — 69,9 76,1 82,3 82,3 88,4 88,4 88,4 94,6 94,6 94,6 94,6

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 200 400 = 88 200 400 = 88 300 600 = 80 700 1 000 = 70 700 1 000 = 70 700 1 000 = 60 700 1 000 = 60 700 1 000 = 60 700 1 000 = 55 700 1 000 = 55 700 1 000 = 55 700 1 000 = 55

1)

Gearheads with ratio 3,71:1 available for motor types 2224, 2230, 2232 and 2233 are to be order as 23/1 - 3,71:1 - K288

2)

Only for reduction ratio ≥ 14:1

3)

Length L1 with motor: 2057 S ... B = L2 + 57 mm AM2224 = L2 + 27,5 mm 2232 S ... BX4 = L2 + 33,8 mm 2232 S ... BSL = L2 + 32,4 mm 2248 S ... BSL = L2 + 48 mm 2444 S ... B = L2 + 44 mm

Note: The reduction ratios are rounded, the exact values are available on request.

Orientation with respect to motor terminals not defined

3x

M2

4 deep

ø22

(2233) (2232 SR) (2230) (2224 SR)

-0,010

0

ø23 ±0,1 ø15 -0,018 ø6 -0,018

(AM2224) (2248 BSL) (2232 BX4) (2237) ø22 (2232 BSL) ø20 (2057)

scale reduced

ø24 (2444) ø23 (2342)

0

3x120

5,4 -0,05

10 19

L2 ±0,3 (-3,9) L1 ±0,8

2)

16 ±0,3 23/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

L2 ±0,3

1 L1 ±0,8

23/1

238

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

1 Nm For combination with DC-Micromotors: 2232, 2237, 2342, 2642, 2657 Brushless DC-Servomotors: 2232 BX4

Series 26A Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (10 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (10 mm from mounting face) – axial Operating temperature range

26A plastic plastic

26AK plastic plastic

5 000 rpm ≤ 3° sintered sleeve bearings

5 000 rpm ≤ 3° ball bearings

≤ 4N ≤ 4N ≤ 20 N

≤ 60 N ≤ 15 N ≤ 20 N

≤ 0,08 mm ≤ 0,25 mm – 30 … + 65 °C

≤ 0,10 mm ≤ 0,25 mm – 30 … + 85 °C

Specifications reduction ratio (nominal)

:1 :1 :1 :1 :1 :1 :1 :1 :1

2232 U L1 mm 67,4 67,4 73,2 73,2 73,2 79,0 79,0 79,0 79,0

length with motor 2232 BX4 2237 S 2342 S 2657 W 2642 W L1 L1 L1 L1 mm mm mm mNm 66,5 69,7 74,7 89,7 66,5 69,7 74,7 89,7 72,3 75,5 80,5 95,5 72,3 75,5 80,5 95,5 72,3 75,5 80,5 95,5 78,1 81,3 86,3 101,3 78,1 81,3 86,3 101,3 78,1 81,3 86,3 101,3 78,1 81,3 86,3 101,3

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm % 300 500 = 81 300 600 = 81 750 1 100 = 73 800 1 200 = 73 800 1 200 = 73 900 1 400 = 64 1 000 1 500 = 64 1 000 1 500 = 60 1 000 1 500 = 60

Precision Gearheads

13 16 40 50 64 124 158 201 256

number weight length of gear without without motor motor stages L2 g mm 2 21 32,7 2 21 32,7 3 23 38,5 3 23 38,5 3 23 38,5 4 25 44,3 4 25 44,3 4 25 44,3 4 25 44,3

Note: The reduction ratios are rounded, the exact values are available on request. These gearheads are available only with motors mounted. M 1:1

Orientation with respect to motor terminals not defined

4x

M3

5 deep

ø22

(2237) (2232 SR) (2232 BX4)

ø26 ø23

(2657) (2642) (2342)

+0,03

0

ø13 -0,005

ø26 -0,5

-0,006

ø6 -0,012

ø20

1 ±0,15 4x

ø2,46

L2

7 deep

L1

14,1 ±0,3

±0,3

17 ±0,3

±0,8

26A, 26AK

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

239

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

3,5 Nm For combination with DC-Micromotors: 2342, 2642, 2657 Brushless DC-Servomotors: 2232 BSL, 2248 BSL, 2444

Series 26/1 26/1 inox steel steel 1)

Housing material Geartrain material Recommended max. input speed for: – for continuous operation Backlash, typical, at no-load Bearings on output shaft Shaft load, max. – radial (10 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (10 mm from mounting face) – axial Operating temperature range

4 000 rpm ≤ 1° preloaded ball bearings ≤ 150 N ≤ 100 N ≤ 150 N ≤ 0,03 mm ≤ 0,10 mm – 30 … + 100° C

Specifications length with motor weight length 2342 S without without motor motor 2232 S BSL 2248 S BSL 2444 S 2642 W L2 L1 L1 L1 L1 g mm mm mm mm mm 93 28,4 60,8 76,4 72,4 70,4 116 36,4 68,8 84,4 80,4 78,4 116 36,4 68,8 84,4 80,4 78,4 116 36,4 68,8 84,4 80,4 78,4 139 44,4 76,8 92,4 88,4 86,4 139 44,4 76,8 92,4 88,4 86,4 139 44,4 76,8 92,4 88,4 86,4 162 52,4 84,8 100,4 96,4 94,5 162 52,4 84,8 100,4 96,4 94,5 162 52,4 84,8 100,4 96,4 94,5 185 60,5 92,9 108,5 104,5 102,5 185 60,5 92,9 108,5 104,5 102,5 185 60,5 92,9 108,5 104,5 102,5 185 60,5 92,9 108,5 104,5 102,5

Precision Gearheads

reduction ratio (nominal)

3 ,71 9 ,7 14 23 43 66 86 134 159 246 415 592 989 1 526

:1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1

2) 2)

2)

1)

Gearheads with ratio ≥ 14:1 have plastic gears in the input stage. For extended life performance, the gearheads are available with all steel gears and heavy duty lubricant as type 26/1 S.

2)

Gearheads with ratio 9,7:1 - 23:1 - 86:1 are available only as type 26/1 S.

output torque continuous intermittent direction efficiency operation operation of rotation 2657 W (reversible) L1 M max. M max. mm Nm Nm % 85,4 1,1 2,3 = 88 93,4 3,5 4,5 = 80 93,4 0,3 (3,5) 0,4 (4,5) = 80 93,4 3,5 4,5 = 80 101,4 1,0 (3,5) 1,2 (4,5) = 70 101,4 1,5 (3,5) 1,8 (4,5) = 70 101,4 3,5 4,5 = 70 109,5 2,5 (3,5) 3,5 (4,5) = 60 109,5 3,5 (3,5) 4,5 (4,5) = 60 109,5 3,5 (3,5) 4,5 (4,5) = 60 117,5 3,5 (3,5) 4,5 (4,5) = 55 117,5 3,5 (3,5) 4,5 (4,5) = 55 117,5 3,5 (3,5) 4,5 (4,5) = 55 117,5 3,5 (3,5) 4,5 (4,5) = 55

The values for the torque rating indicated in parenthesis, are for gearheads, type 26/1 S with all steel gears.

Note: The reduction ratios are rounded, the exact values are available on request. M 1:1 Orientation with respect to motor terminals not defined

4x

M3 4 deep

(2248BSL) ø24 (2444) ø22 (2232BSL) (2642) ø26 (2657) ø23 (2342)

ø26 ±0,1

0

ø13 -0,008

ø5

0 -0,008

0

4,5 -0,1

12 L2 ±0,3 L1 ±0,8

20

2 17 ±0,3

26/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

240

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

4,5 Nm For combination with DC-Micromotors: 2342, 2642, 2657, 3557 Brushless DC-Servomotors: 2232 BSL, 2248 BSL, 2444, 3056, 3564

Series 30/1 30/1 metal steel 1)

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (15 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (15 mm from mounting face) – axial Operating temperature range

4 000 rpm ≤ 1° ball bearings ≤ 150 N ≤ 150 N ≤ 200 N ≤ 0,03 mm ≤ 0,15 mm – 30 … + 100 °C

weight length without without motor motor L2 g mm 107 27,1 139 35,1 139 35,1 139 35,1 171 43,1 171 43,1 171 43,1 203 51,2 203 51,2 203 51,2 235 59,2 235 59,2 235 59,2 235 59,2

reduction ratio (nominal)

3 ,71 :1 9 ,7 :1 14 :1 23 :1 43 :1 66 :1 86 :1 134 :1 159 :1 246 :1 415 :1 592 :1 989 :1 1 526 :1 1)

2)

2)

2)

length with motor 3) 2444 S L1 mm 71,1 79,1 79,1 79,1 87,1 87,1 87,1 95,2 95,2 95,2 103,2 103,2 103,2 103,2

2342 S 2642 W L1 mm 69,1 77,1 77,1 77,1 85,1 85,1 85,1 93,2 93,2 93,2 101,2 101,2 101,2 101,2

3056 K

2657 W 3557 K L1 mm 85,5 93,5 93,5 93,5 101,6 101,6 101,6 109,6 109,6 109,6 117,6 117,6 117,6 117,6

L1 mm 84,5 92,5 92,5 92,5 100,6 100,6 100,6 108,6 108,6 108,6 116,6 116,6 116,6 116,6

3564 K L1 mm 92,5 100,5 100,5 100,5 108,6 108,6 108,6 116,6 116,6 116,6 124,6 124,6 124,6 124,6

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. Nm Nm % 1,5 3,0 = 88 4,5 6,0 = 80 0,35 (4,5) 0,5 (6,0) = 80 4,5 6,0 = 80 1,2 (4,5) 1,6 (6,0) = 70 1,8 (4,5) 2,4 (6,0) = 70 4,5 6,0 = 70 3,5 (4,5) 4,5 (6,0) = 60 4,5 (4,5) 6,0 (6,0) = 60 4,5 (4,5) 6,0 (6,0) = 60 4,5 (4,5) 6,0 (6,0) = 55 4,5 (4,5) 6,0 (6,0) = 55 4,5 (4,5) 6,0 (6,0) = 55 4,5 (4,5) 6,0 (6,0) = 55

Gearheads with ratio ≥ 14:1 have plastic gears in the input stage. For extended life performance, the gearheads are available with all steel gears and heavy duty lubricant as type 30/1 S. The values for the torque rating indicated in parenthesis, are for gearheads, type 30/1 S with all steel gears.

2)

Gearheads with ratio 9,7:1 - 23:1 - 86:1 are available only as type 30/1 S.

3)

Length L1 with motor: 2232 S ... BSL = L2 + 32,4 mm 2248 S ... BSL = L2 + 48 mm

Note: The reduction ratios are rounded, the exact values are available on request. scale reduced Orientation with respect to motor terminals not defined

M3

4 deep

ø23 (2342)

(2248 BSL) ø22 (2232 BSL)

(3564)

(2657)

ø26 (2642) ø24 (2444)

ø30 ±0,1 ø18

0 -0,018

ø8

-0,008 -0,017

ø35 (3557) ø30 (3056)

0

7 -0,1

10 L2 ±0,3

26 L1 ±0,8

4 20,6 ±0,3

L1 ±0,8 30/1

30/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

L2 ±0,3 (+1,4)

241

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Precision Gearheads

Specifications

Planetary Gearheads

4,5 Nm For combination with DC-Micromotors: 2642, 2657, 3242, 3257

Series 32A 32A metal steel

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (10 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (10 mm from mounting face) – axial Operating temperature range

3000 rpm ≤ 2° ball bearings ≤ 100 N ≤ 30 N ≤ 120 N ≤ 0,10 mm ≤ 0,30 mm – 25 … + 80 °C

Specifications output torque length with motor weight length continuous intermittent direction efficiency without without 2642 W 2657 W operation operation of rotation motor 3242 G 3257 G motor (reversible) L2 L1 L1 M max. M max. g mm mm mm Nm Nm % 150 37,8 79,8 94,8 0,75 1,0 = 88 150 37,8 79,8 94,8 0,75 1,0 = 88 195 47,3 89,3 104,3 2,25 3,0 = 85 195 47,3 89,3 104,3 2,25 3,0 = 85 195 47,3 89,3 104,3 2,25 3,0 = 85 195 47,3 89,3 104,3 2,25 3,0 = 80 195 47,3 89,3 104,3 2,25 3,0 = 80 240 56,8 98,8 113,8 4,50 6,0 = 75 240 56,8 98,8 113,8 4,50 6,0 = 75 240 56,8 98,8 113,8 4,50 6,0 = 75 240 56,8 98,8 113,8 4,50 6,0 = 70 240 56,8 98,8 113,8 4,50 6,0 = 70 240 56,8 98,8 113,8 4,50 6,0 = 70 290 66,4 108,4 123,4 4,50 6,0 = 65 290 66,4 108,4 123,4 4,50 6,0 = 65 290 66,4 108,4 123,4 4,50 6,0 = 60 290 66,4 108,4 123,4 4,50 6,0 = 60

Precision Gearheads

reduction ratio (nominal)

4 7 14 19 25 29 46 68 93 124 169 236 308 344 626 1 140 2 076

:1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1

Note: The reduction ratios are rounded, the exact values are available on request. M 1:1

Orientation with respect to motor terminals not defined 4x M3 4 deep

ø26

(2657) (2642)

(3257)

ø32 (3242)

ø32 ±0,2

0

ø20 -0,033

ø6

-0,004 -0,012

5

15 L2 ø26

±0,8

L1 ±1,5

3 20 ±0,8

32A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

242

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

7 Nm For combination with DC-Micromotors: 3242, 3257, 3557 Brushless DC-Servomotors: 3564

Series 32/3 32/3 metal steel 1)

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (10 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (10 mm from mounting face) – axial Operating temperature range

4 000 rpm ≤ 1° ball bearings, preloaded ≤ 200 N ≤ 200 N ≤ 250 N ≤ 0,03 mm ≤ 0,15 mm – 20 … + 125 °C

Specifications

3 ,71 :1 14 :1 23 :1 43 :1 66 :1 86 :1 134 :1 159 :1 246 :1 415 :1 592 :1 989 :1 1 526 :1

2)

2)

output torque continuous intermittent direction efficiency 3564 K operation operation of rotation (reversible) L1 M max. M max. mm Nm Nm % 97,9 4,2 5,3 = 88 105,6 0,4 (7) 0,6 (10) = 80 105,6 7 10 = 80 113,4 1,4 (7) 1,9 (10) = 70 113,4 2,0 (7) 2,6 (10) = 70 113,4 7 10 = 70 121,2 4,0 (7) 5,2 (10) = 60 121,2 4,9 (7) 6,5 (10) = 60 121,2 5,8 (7) 8,0 (10) = 60 129,0 7,0 (7) 10 (10) = 55 129,0 7,0 (7) 10 (10) = 55 129,0 7,0 (7) 10 (10) = 55 129,0 7,0 (7) 10 (10) = 55

length with motor 3242 G L1 mm 75,9 83,6 83,6 91,4 91,4 91,4 99,2 99,2 99,2 107,0 107,0 107,0 107,0

3257 G 3557 K L1 mm 90,9 98,6 98,6 106,4 106,4 106,4 114,2 114,2 114,2 122,0 122,0 122,0 122,0

1)

Gearheads with ratio ≥ 14:1 have plastic gears in the input stage. For extended life performance, the gearheads are available with all steel gears and heavy duty lubricant as type 32/3 S. The values for the torque rating indicated in parenthesis are for gearheads type 32/3 S with all steel gears.

2)

Gearheads with ratio 23:1 - 86:1 are available only as type 32/3 S.

Note: The reduction ratios are rounded, the exact values are available on request. Orientation with respect to motor terminals not defined

4x

M3 4

deep

M 1:1 (3257) ø32 (3242)

(3564) ø35 (3557)

ø32 ±0,1

0

0

ø8 -0,015

ø17 -0,008

7,4

15 L2 L1

26

±0,3

±0,2

0 2 -0,3

20,5

±0,8

+0,1 0

±0,3

32/3

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

243

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Precision Gearheads

weight length without without motor motor L2 g mm 160 33,9 190 41,6 190 41,6 230 49,4 230 49,4 230 49,4 260 57,2 260 57,2 260 57,2 290 65,0 290 65,0 290 65,0 300 65,0

reduction ratio (nominal)

Planetary Gearheads

20 Nm For combination with DC-Micromotors: 3242, 3257, 3557, 3863 Brushless DC-Servomotors: 3564, 4490

Series 38A 38A steel steel

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load max.: – radial (14,5 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (14,5 mm from mounting face) – axial Operating temperature range

4 500 rpm ≤ 0,60° ball bearings ≤ 200 N ≤ 200 N ≤ 490 N ≤ 0,02 mm ≤ 0,3 mm – 25°C … + 90°C

Specifications reduction ratio (absolute)

Precision Gearheads

4:1 5:1 12:1 16:1 20:1 25:1 36:1 45:1 60:1 80:1 100:1 120:1 160:1 200:1 240:1 360:1 480:1 800:1 1 600:1

1)

backlash weight length ≤ without without motor motor L2 ° g mm 0,45 190 42,2 0,45 190 42,2 0,50 260 55,0 0,50 260 55,0 0,50 260 55,0 0,50 260 55,0 0,55 330 67,6 0,55 330 67,6 0,55 330 67,6 0,55 330 67,6 0,55 330 67,6 0,55 330 67,6 0,55 330 67,6 0,55 330 67,6 0,60 410 80,2 0,60 410 80,2 0,60 410 80,2 0,60 410 80,2 0,60 410 80,2

length with motor 1) 3257 G L1 mm 93,8 93,8 106,6 106,6 106,6 106,6 119,2 119,2 119,2 119,2 119,2 119,2 119,2 119,2 131,8 131,8 131,8 131,8 131,8

3557 K L1 mm 99,2 99,2 112,0 112,0 112,0 112,0 124,6 124,6 124,6 124,6 124,6 124,6 124,6 124,6 137,2 137,2 137,2 137,2 137,2

3564 K L1 mm 106,2 106,2 119,0 119,0 119,0 119,0 131,6 131,6 131,6 131,6 131,6 131,6 131,6 131,6 144,2 144,2 144,2 144,2 144,2

3863 H L1 mm 113,6 113,6 126,4 126,4 126,4 126,4 139,0 139,0 139,0 139,0 139,0 139,0 139,0 139,0 151,6 151,6 151,6 151,6 151,6

output torque continuous operation Mmax. Nm 6 6 20 20 20 18 20 20 20 20 20 20 20 18 20 20 20 20 18

4490 H L1 mm 139,6 139,6 152,4 152,4 152,4 152,4 165,0 165,0 165,0 165,0 165,0 165,0 165,0 165,0 177,6 177,6 177,6 177,6 177,6

direction of rotation (reversible)

efficiency

% 96 96 94 94 94 94 90 90 90 90 90 90 90 90 80 80 80 80 80

= = = = = = = = = = = = = = = = = = =

Length L1 with motor: 3242 W = L2 + 36,6 mm Scale reduced

(3242)

ø32 (3257) Orientation with respect to motor terminals not defined

4x

M3 5 deep

ø0,3 A

(3557)

ø35 (3564) ø38 (3863) ø44 (4490)

ø38 -0,2

0

ø26 -0,021 A

0

ø10 -0,015 Flat key DIN 6885 A3x3x18

DIN 332-DS M3 9 deep

23 ±0,2 2,5 ±0,2

2 ±0,2 L2

ø31

L1 ±1

26 ±0,3 38A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

244

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

10 Nm For combination with DC-Micromotors: 3242, 3257, 3557, 3863 Brushless DC-Servomotors: 3056, 3564

Series 38/1, 38/2 38/1 and 38/2 metal steel 1)

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (10 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (10 mm from mounting face) – axial Operating temperature range

4 000 rpm ≤ 1° ball bearings, preloaded ≤ 300 N ≤ 300 N ≤ 350 N ≤ 0,03 mm ≤ 0,15 mm – 20 … + 125 °C

Specifications reduction ratio (nominal)

length with motor 3242 G

3056 K

L1 mm 74,3 82,1 89,9 89,9 97,7 97,7 97,7 105,5 105,5 105,5 105,5

L1 mm 88,3 86,1 103,9 103,9 111,7 111,7 111,7 119,5 119,5 119,5 119,5

3257 G 3557 K L1 mm 89,3 97,1 104,9 104,9 112,7 112,7 112,7 120,5 120,5 120,5 120,5

3564 K

3863 A

L1 mm 96,3 104,1 111,9 111,9 119,7 119,7 119,7 127,5 127,5 127,5 127,5

L1 mm 91,3 99,1 106,9 106,9 114,7 114,7 114,7 122,5 122,5 122,5 122,5

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. Nm Nm % 6,0 8,0 = 88 0,4 (10) 0,6 (15) = 80 1,4 (10) 1,9 (15) = 70 2,2 (10) 2,9 (15) = 70 4,5 (10) 6,0 (15) = 60 5,3 (10) 7,0 (15) = 60 8,2 (10) 11 (15) = 60 10 (10) 15 (15) = 55 10 (10) 15 (15) = 55 10 (10) 15 (15) = 55 10 (10) 15 (15) = 55 Precision Gearheads

3 ,71 :1 14 :1 43 :1 66 :1 134 :1 159 :1 246 :1 415 :1 592 :1 989 :1 1 526 :1

length weight length without without without motor 3863 motor 2) motor L2 L2 g mm mm 166 32,3 27,3 215 40,1 35,1 268 47,9 42,9 268 47,9 42,9 318 55,7 50,7 320 55,7 50,7 320 55,7 50,7 372 63,5 58,5 372 63,5 58,5 374 63,5 58,5 378 63,5 58,5

1)

Gearheads with ratio ≥ 14:1 have plastic gears in the input stage. For extended life performance, the gearheads are available with all steel gears and heavy duty lubricant as type 38/1 S and 38/2 S. The values for the torque rating indicated in parenthesis, are for gearheads, type 38/1 S and 38/2 S with all steel gears.

2)

Planetary Gearhead, series 38/1

Note: The reduction ratios are rounded, the exact values are available on request. Orientation with respect to motor terminals not defined

(3257)

4x ø4,5

scale reduced

Orientation with respect to motor terminals not defined

ø38 (3863)

(3564)

4x

0

(3257)

ø38 (3863)

(3564)

M3 5 deep ø32 (3242) ø35 (3557)

ø32 (3242) ø35 (3557) ø38 ±0,05 ø25 -0,021 0

ø8 -0,015 0

7,5 -0,1

15 ±0,2 5 L2 ±0,5

50 57

L1

31

3 21,5 ±0,3

±0,8

38/2

38/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

245

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Spur Gearheads

1,2 Nm For combination with DC-Micromotors: 2224, 2230, 2232, 2233, 2342 Brushless DC-Servomotors: 2232 BSL, 2248 BSL, 2444

Series 38/3 38/3 plastic/metal steel 1)

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (15 mm from mounting face) – axial Shaft press fit force, max. (with rear plate supported) Shaft play: – radial (15 mm from mounting face) – axial Operating temperature range

5 000 rpm ≤ 2° sintered sleeve bearings ≤ 50 N ≤ 30 N ≤ 500 N ≤ 0,07 mm ≤ 0,5 mm – 15 … + 65 °C

Specifications weight length without without motor 2) motor 3) L2 g mm 66 23,8 71 23,8 71 23,8 79 29,8 79 29,8 85 29,8 85 29,8 92 32,9 92 32,9

reduction ratio (nominal)

5 ,42 :1 10 ,3 :1 18 ,2 :1 34 ,7 :1 61 ,1 :1 116 :1 205 :1 391 :1 689 :1 :1 4) :1 4)

94 94

2224 U L1 mm 43,5 43,5 43,5 49,5 49,5 49,5 49,5 52,6 52,6

2230 U L1 mm 49,3 49,3 49,3 55,3 55,3 55,3 55,3 58,4 58,4

2232 U L1 mm 56,0 56,0 56,0 62,0 62,0 62,0 62,0 65,1 65,1

2233 U L1 mm 51,9 51,9 51,9 57,9 57,9 57,9 57,9 61,0 61,0

32,9 32,9

2342 S L1 mm 65,8 65,8 65,8 71,8 71,8 71,8 71,8 74,9 74,9

2444 S L1 mm 67,8 67,8 67,8 73,8 73,8 73,8 73,8 76,9 76,9

76,9 76,9

74,9 74,9

output torque continuous intermittent direction efficiency operation operation of rotation (reversible) M max. M max. mNm mNm % 75 2 000 = 81 150 2 000 ≠ 73 225 2 000 ≠ 73 325 2 000 = 66 450 2 000 = 66 600 2 000 ≠ 59 800 2 000 ≠ 59 1 000 2 000 = 53 1 200 2 000 = 53 1 000 1 200

2 000 2 000

≠ ≠

48 48

Precision Gearheads

586 1 034

length with motor 5)

1) 2) 3) 4) 5)

Gearheads with ratios ≥ 34,7:1 have a plastic input gearwheel. Gearheads with ratios ≤ 18,2:1 have a steel input gearwheel. Type 38/3… - K700 with square flange has an additional weight of 17 g. Gearheads available for motor types 2224, 2230, 2232 and 2233 are 4,5 mm tight . These ratios are available only with motor types 2232 BSL, 2248 BSL, 2342 and 2444. Length L1 with motors: 2232 S ... BSL = L2 + 32,4 mm 2248 S ... BSL = L2 + 48 mm

Note: The reduction ratios are rounded, the exact values are available on request. scale reduced

ø38,1 3x

M4

38,1 4x

8 deep

ø2,6

(2224) (2233) (2232) ø22 (2230)

22 ±0,5 6,5 12

L2 ±0,3

7

L1 ±0,5 +0,02

+0

ø12 –0,02 ø6 –0,02 5,5

3x120

ø29,7

30,5

ø24 (2444) ø23 (2342)

2,0

L2 ±0,3

(2248 BSL) ø22 (2232 BSL)

38/3

L1 ±0,5

38/3... -K 700 with flange

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

38/3

246

38/3... -K 700 with flange

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Planetary Gearheads

16 Nm For combination with DC-Micromotors: 3863 Brushless DC-Servomotors: 4490

Series 44/1 44/1 steel steel

Housing material Geartrain material Recommended max. input speed for: – continuous operation Backlash, at no-load Bearings on output shaft Shaft load, max.: – radial (12 mm from mounting face) – axial Shaft press fit force, max. Shaft play: – radial (12 mm from mounting face) – axial Operating temperature range

3 500 rpm ≤ 1° preloaded ball bearings ≤ 400 N ≤ 350 N ≤ 500 N ≤ 0,03 mm = 0 mm – 30 … + 125 °C

Specifications output torque weight length length with motor continuous intermittent direction efficiency without without operation operation of rotation (reversible) motor 4490 H 3863 H motor L2 L1 L1 M max. M max. g mm mm mm Nm Nm % 480 62,2 152,2 126,1 16 20 = 90 600 77,8 167,8 141,8 16 20 = 80 720 93,2 183,2 157,2 16 20 = 70 840 108,6 198,6 172,6 16 20 = 65 960 124,0 214,0 188,0 16 20 = 60

reduction ratio (nominal)

:1 :1 :1 :1 :1

Precision Gearheads

4,8 23 111 531 2 548

Note: The reduction ratios are rounded, the exact values are available on request. Orientation with respect to motor lead wires not defined

4x M4 8/10,8

deep

scale reduced

ø38 (3863) ø44 (4490)

ø44 ±0,1

0

ø28 -0,021

0

ø10 -0,022

M4

Flat key DIN 6885-A 4x4x18

ø5 3,3 ±0,3 L2 ±0,5

35 L1 ±0,8

26 ±0,3 44/1

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

2

247

8

2,8 ±0,15

10,8 Mounting holes scale 1:1

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

Encoders

WE CREATE MOTION

Encoders – 2 Channel

Page PA2-50 PA2-100 IE2-16 IE2-400 IE2-512 30B 20B, 21B AE 30B19 AE 23B8 PE22-120

optical optical magnetic magnetic magnetic magnetic magnetic magnetic magnetic optical

Encoders – 3 Channel

255 – 257 258 – 260 261 262 263 – 271 272 – 273 274 – 275 276 277 278 Page

magnetic magnetic magnetic magnetic, Line Driver optical optical, Line Driver optical, Line Driver

279 – 280 281 – 283 284 – 285 286 – 287 288 289 – 291 292 – 293

Encoders

HXM3-64 HEM3-256-W IE3-256 IE3-256L HEDS, HEDM 55x0 HEDL 5540 40B

Encoders Technical Information

Output current, max. (l OUT) Indicates the maximum allowable load current at the signal outputs.

Encoders

Puls width (P) Width of the output signal in electrical degrees (°e) of the channels A and B. The value corresponds to one full period, or 360°e at channel A or B.

Optical Encoders with Line Driver

Series 40B Lines per revolution Signal output, square wave Supply voltage Current consumption, max. (VCC = 5 V DC) Pulse width

Index pulse width (P0) Indicates the width of the index pulse signal in electrical degrees.

40B 1 000 2 + 1 index an 4,5 ... 5,5 100 180 ± 18

N V CC I CC P

Tolerance ΔP0:

Notes on technical data

ΔP0 = 90° –

Lines per revolution (N) The number of incremental encoder pulses per revolution per channel.

Phase shift, channel A to B (⌽) The phase shift in electrical degrees between the following edge of output channel A and the leading edge of output channel B.

The output signal is a quadrature signal which means that both the leading and following edge, or flank, can be evaluated. For example, an encoder with two channels and 256 lines per revolution has 1024 edges, or flanks per revolution.

Phase shift tolerance (Δ⌽) Indicates the allowable position error, in electrical degrees, between the following edge of channel A to the leading edge of channel B.

Output signal The number of output channels. For example, the IE3 encoders offer 2 channels, A and B, plus an 1 additional index channel.

ΔΦ = 90° –

Amplitude

Φ 180° P *

Signal period (C) The total period, measured in electrical degrees of one pulse on channel A or B.

P Encoders

P0 180° P *

A

Typically one period is 360 °e.

Φ

C B

P

Amplitude

Po

I

A

Φ

Direction of Rotation S tr

Supply Voltage (UDD) Defines the range of supply voltage necessary for the encoder to function properly.

S

S tf

B

Current consumption, typical (IDD) Indicates the typical current consumption of the encoder at the given supply voltage.

40B front.indd 1

S

Direction of Rotation

250

10.09.09 07:41

Logic state width (S) The distance measured in electrical degrees (°e) between two neighbouring signal edges, for example the leading edge of signal A to the leading edge of signal B. Typically this has a value of 90 °e. Signal rise/fall time, typical (tr/tf) Corresponds to the slope of the rising and falling signal edges. Frequency range (f) Indicates the maximum encoder frequency. The maximum achievable motor speed can be derived using the following formula. n=

60 . f N

Inertia of the code disc (J) Indicates the additional inertial load due on the motor due to the code wheel. Operating temperature range Indicates the minimum and maximum allowable temperature range for encoder operation. Test speed The speed at which the encoder specifications were measured.

Encoders

Line Driver This is an integrated signal amplifier in the encoder that makes it possible to send the encoder signals through much longer connection cables. It is a differential signal with complementary signals to all channels which eliminates sensitivity to ambient electrical noise.

251

Optical Encoders Technical Information

2

1

3

4

5

6

Encoders

Optical Encoder 1

Output shaft

2

Motor

3

Code wheel

4

Adapter flange

5

Encoder PCB

6

End cap

7

Flex cable

7

Features

Benefits

Optical encoders use a continuous infrared light source transmitting through a low-inertia multi-section rotor disk

■ Very low current consumption

which is fitted directly on the motor rear end shaft.

■ Precise signal resolution

The unit thus generates two output signals with a 90°

■ Ideal for low voltage battery operation

phase shift.

■ Insensitive to magnetic interference

In optoreflective encoders, the light source is sent

■ Extremely light and compact

and reflected back or alternately absorbed to create the necessary phase shifted pulse.

Product Code

PA 2 50

252

Encoder series Number of Channels Resolution

PA 2 - 5 0

Integrated Encoders Technical Information 1

2

3

6 7

4

DC-Micromotor with integrated Encoder 1

Shaft

2

Coil

3

Commutator

4

DC-Micromotor

5

Magnet wheel

6

Brush cover

7

Brushes

8

Flat cable

9

Encoder PCB

10

End cap

5

8

9

Features

Benefits

Series IE2 encoders consist of a rotormounted magnetic

■ Highly compact design

toothed ring and a special hybrid circuit.

■ High resolution up to 2 048 steps per revolution (corresponding to an angular resolution of 0,18°)

The magnetic field differences between the tip and base

■ No pull-up resistors across outputs because no open-collector outputs

of each tooth are converted into electrical signals by a sensor integrated into the circuit.

■ Symmetrical pulse edges, CMOS- and TTL -compatible

This signal is then processed by a proprietary circuit.

■ Low power consumption

The output consists of two 90°-offset square-wave signals

■ Available in many combinations

with up to 512 pulses. The encoder is integrated into the SR-Series motors, increasing its length by a mere 1,4 mm and as built-on option for DC-Micromotors and brushless DC-Servomotors.

Product Code

IE 2 512

253

Incremental Encoder Number of Channels Resolution

IE 2 – 5 1 2

Encoders

10

Magnetic Encoders Single Chip 1

2

3

4

5

6

Encoders

Magnetic Encoder Single Chip 1

Screws

2

Rear cover

3

Encoder PCB

4

Encoder flange

5

Screws

6

Motor flange

7

Sensor magnet

8

Motor Serie CR/CXR

7

8

Features

Benefits

FAULHABER IE3 encoders are designed with a diametri-

■ Compact modular system

cally magnetized code wheel which is pressed onto the

■ A wide range of resolutions are available

motor shaft and provides the axial magnetic field to the

■ Index channel

encoder electronics. The electronics contain all the

■ Line Drivers are available

necessary functions of an encoder including Hall sensors,

■ Standardized encoder outuputs

interpolation, and driver. The Hall sensors sensed the

■ Ideal for combination with FAULHABER Motion Controllers and Speed Controllers

rotational position of the sensor magnet and the signal is

■ Custom modifications including custom resolution, index position and index pulse width are possible

interpolated to provide a high resolution position signal. The encoder signal is a two channel quadrature output with a 90 °e phase shift between channels. A third channel provides a single index pulse per revolu-

Product Code

tion. These encoders are available as attachable kits or preassembled to FAULHABER DC-Motors with graphite commutation, or as integrated assemblies for many FAULHABER Brushless DC-Servomotors.

IE 3 256 L

254

Incremental Encoder Number of Channels Resolution with integrated Line Driver

IE 3 – 2 5 6 L

Encoders Optical Encoders

Features: 50 Lines per revolution 2 Channels Digital output

Series PA2 – 50 Signal output, square wave Supply voltage (ripple < 100 mVp-p) Current consumption, typical (VCC = 3 V DC) Current output, per channel Pulse width Phase shift, channel A to B Logic state width Cycle Signal rise/fall time, typical (CLOAD = 25 pF) Frequency range 1) Inertia of code disc Operating temperature range 1)

PA2 – 50 2 2,7 ... 3,3 8,5 – 1 ... 8 180 ± 50 90 ± 45 90 ± 50 360 ± 36 0,3 / 0,1 up to 35 0,02 – 30 ... + 85

VCC I CC I out P \ S C tr/tf f J

channels V DC mA mA °e °e °e °e +s kHz gcm2 °C

Velocity (rpm) = f (Hz) x 60/N

Ordering information Encoder PA2-50

number of channels

lines per revolution

2

50

for combination with:

¬ « ­ « ®

DC-Micromotors serie 0615 ... S 2) , 0816 ... S Brushless DC-Servomotor serie 0620 ... B 2)

Note: Lines per revolution refers to pre-quadrature resolution and equals the cycles per revolution 2) Channel B Leads channel A Features These incremental shaft encoders in combination with the DC-Micromotors and Brushless DC-Servomotors are designed for both indication and control of both shaft velocity and direction of rotation as well as for positioning.

The supply voltage for the encoder and the Micromotor as well as the output signals are interfaced with a flexible printed circuit (FPC).

An all-in-one emitter and detector chip transmits and receives LED light reflected off a low inertia reflective disc providing two channels with 90° phase shift.

An optional interface board with suitable connector is also available on request.

Output signals / Circuit diagram / Connector information Output signals with clockwise rotation as seen from the shaft end C

C S

S

1 2 3 4 5 6

2

V CC

3,4

Channel A/B

5

GND

P

S tf

Channel A

Amplitude

Amplitude

S tr

Pin Function

Output circuit

Channel A Φ S

P

Channel B

S

S

tr

4,50

S

6

Channel B Φ

0,3 ±0,03

0615 ... S / 0620 ... B

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

* Note: Brushless motors have separate motor leads.

0,20

tf

Rotation

Rotation

Motor + * Vcc Channel A Channel B GND Motor - *

4

6

1

3,50 Connector Molex 52745 grid 0,5 mm FPC / FFC, 6-conductors

0816 ... S

255

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

Details for the DC-Micromotors and Brushless DC-Servomotors and suitable reduction gearheads are on separate catalog pages.

DC-Micromotor 0615 N ... S - K1655 with encoder PA2-50 0

0

ø1,5 -0,03

ø5 -0,018

ø6 ±0,03 ø6

M4,5x0,5

A

A

ø0,07 0,04

6 2,1 1,9

4,2 4,5

0,4

3,5

6

24,75 ±1,5

2,15

2,1

15

5,15 ±0,3

4

0,3 ±0,03

6

1

19,2 ±0,35 PA2-50 + 0615 N Brushless DC-Servomotor 0620 K ... S - K1719 with encoder PA2-50 -0,009

0

ø1,0 -0,012

ø5 -0,018

ø6 ±0,03

A

ø6

ø0,05 A 0,02

M4,5x0,5

6 2,1 4,2

1,9

4,5

0,4

24,75 ±1,5 5,15 ±0,3

16,8 6

3,5

Encoders

Encoder connector

Encoder connector

4

24 ±0,35

6

1

1

8

2x0,3 ±0,03 Motor connector

4,5

Motor connector

PA2-50 + 0620 K DC-Micromotor 0816 N ... S - K1752 with encoder PA2-50

0

0

ø6 -0,018

ø8 ±0,03

A

ø1,5 -0,03 M5,5x0,5

ø0,07

A

0,04 1

6

1,9 0,4

24,75 ±1,5

2,15

2,10

16

5,15 ±0,3

23,8 ±0,35 PA2-50 + 0816 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

256

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

Optional interface board

11,2 J1

1

3,6

J2

9,1

4,3 9,1

J2

1 2 3 4 5 6

1 2 3 4 5 6

Pin Function 1 2 3 4 5 6

Motor + VCC Channel A Channel B GND Motor –

2

Connector J1 – Solder Pads J2 – Molex 52475-0690

Interface board PA2–50 Part No.: D100315100

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

J1

257

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders Optical Encoders

Features: 100 Lines per revolution 2 Channels Digital output

Series PA2 – 100 Signal output, square wave Supply voltage Current consumption, typical (V CC = 3 V DC) Pulse width Phase shift, channel A to B Logic state width Cycle Signal rise/fall time, typical (CLOAD = 50 pF) Frequency range 1) Inertia of code disc Operating temperature range 1)

PA2 – 100 2 2,7 ... 3,3 8 180 ± 45 90 ± 45 90 ± 45 360 ± 30 0,1 / 0,1 up to 35 0,02 -25 ... +85

VCC I CC P \ S C tr/tf f J

channels V DC mA °e °e °e °e +s kHz gcm2 °C

Velocity (rpm) = f (Hz) x 60/N

Ordering information Encoder PA2-100

number of channels

lines per revolution

2

100

for combination with: DC-Micromotors series ¬ 1016 ... G « ­ 1024 ... S « ® 1224 ... SR

Note: Lines per revolution refers to pre-quadrature resolution and equals the cycles per revolution Features These incremental shaft encoders in combination with the DC-Micromotors are designed for both indication and control of both shaft velocity and direction of rotation as well as for positioning.

The supply voltage for the encoder and the Micromotor as well as the output signals are interfaced with a flexible printed circuit (FPC). Details for the DC-Micromotors and suitable reduction gearheads are on separate catalog pages.

An all-in-one emitter and detector chip transmits and receives LED light reflected off a low inertia reflective disc providing two channels with 90° phase shift. Encoders

An optional interface board with suitable connector is also available on request.

Output signals / Circuit diagram / Connector information Output signals with clockwise rotation as seen from the shaft end

Pin Function

Output circuit

1 2 3 4 5 6 7 8

C

Amplitude

P

2

V CC

3,4

Channel A/B

5

GND

Motor + Motor + VCC Channel A Channel B GND Motor Motor -

Channel A Φ S tr

S

S

0,20

S tf

6

Channel B

8

0,3 ±0,03 Rotation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

4 1

4,50

Connector Molex 52745 grid 0,5 mm FPC / FFC, 8-conductors

258

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotor 1016 N ... G - K1752 with encoder PA2-100

0

0

ø10 ±0,03 ø6 -0,018 A

ø1,5 -0,03 ø0,07 A 0,04

M5,5x0,5

8 1

1,9 0,4

24,75 ±1,5

2,15

2,1

15,7

5,15 ±0,3

23,5 ±0,35 PA2-100 + 1016 N

DC-Micromotor 1024 N ... S - K1752 with encoder PA2-100

ø10 ±0,03

0

0

ø6 -0,018 A

ø1,5 -0,03 ø0,07 A 0,04

M5,5x0,5

8 1

1,9 0,4 2,1

2,15

5,15 ±0,3

23,7 31,5 ±0,35

Encoders

24,75 ±1,5

PA2-100 + 1024 N DC-Micromotor 1224 N ... SR - K1752 with encoder PA2-100 0

0

ø12 ±0,03 ø6 -0,018 ø1,5 -0,03 ø0,07 A 0,04

A M5,5x0,5

8 1

1,9 0,4 2,1

2,15 22

24,75 ±1,5

5,15 ±0,3

31,05 ±0,35 PA2-100 + 1224 N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

259

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

Optional interface board

21

9

6,2 1

J2

25,4 1

4,3

J1

10,1

2

25,4

10

J2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Pin Function 1 2 3 4 5 6 7 8

Motor + Motor + VCC Channel A Channel B GND Motor Motor -

Connector J1 – Molex 52745-0896 J2 – Phoenix 1725711

Interface board PA2–100 Part No.: D100308900

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

J1

260

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders Magnetic Encoders

Features: 16 Lines per revolution 2 Channels Digital output

Series IE2 – 16 Lines per revolution Signal output, square wave Supply voltage Current consumption, typical (VDD = 12 V DC) Output current, max. admissible Pulse width 2) Phase shift, channel A to B 2) Signal rise/fall time, max. (CLOAD = 100 pF) Frequency range 1), up to Inertia of code disc Operating temperature range 1) 2)

IE2 – 16 16 2 4 ... 18 typ. 6, max. 12 15 180 ± 45 90 ± 45 2,5 / 0,3 7 0,11 – 25 ... +85

N V DD I DD I OUT P \ tr/tf f J

channels V DC mA mA °e °e μs kHz gcm2 °C

Velocity (rpm) = f (Hz) x 60/N Tested at 2 kHz

Ordering information Encoder type

number lines of channels per revolution

IE2 – 16

2

in combination with:

16

DC-Micromotors series 1336 … C, 1516 … SR, 1524 … SR, 1717 … SR, 1724 … SR, 1727 … C, 2224 … SR, 2232 … SR, 2342 … CR, 2642 … CR, 2657 … CR, 3242 … CR, 3257 … CR, 3863 … C

Features Solid state Hall sensors and a low inertia magnetic disc provide two channels with 90° phase shift. The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,4 mm!

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Output signals / Circuit diagram / Connector information Output circuit

Pin Function

V DD

Channel A 1 5/6

\

**

GND

Admissible deviation of phase shift: * 180° ≤ 45°

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

6,1 12,2

Rotation ** An additional external pull-up resistor can be added to improve the rise time. Caution: IOUT max. 15 mA must not be exceeded!

261

Motor – * Motor + * GND VDD channel B channel A

PVC-Ribbon cable 6 conductors 0,09 mm2

150 ±10

Channel A/B

3

Channel B

\ 6\ = 90° – P

1 2 3 4 5 6

4

P

6k8

Amplitude

Output signals with clockwise rotation as seen from the shaft end

642 531

*Note: The terminal resistance of all motors with precious metal commutation is increased by approx. 0.4 , and the max. allowable motor current in combination is 1A. Motors with graphite commutation and brushless motors have separate motor leads and higher motor current is allowed.

Connector DIN-41651 grid 2,54 mm

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

Encoders Magnetic Encoders

Features: 50 to 400 Lines per revolution 2 Channels Digital output

Series IE2 – 400 Lines per revolution Signal output, square wave Supply voltage Current consumption, typical (VDD = 5 V DC) Output current, max. 1) Pulse width Phase shift, channel A to B Signal rise/fall time, max. (CLOAD = 50 pF) Frequency range 2), up to Inertia of code disc Operating temperature range 1) 2)

IE2 – 50 IE2 – 100 50 100 2 4,5 … 5,5 typ. 6, max. 12 5 180 ± 45 90 ± 45 0,1 / 0,1 20 40 0,05 – 25 ... + 85

N V DD I DD I OUT P \ tr/tf f J

IE2 – 200 200

80

IE2 – 400 400 channels V DC mA mA °e °e μs kHz gcm2 °C

160

V DD = 5 V DC: Low logic level < 0,5 V, high logic level > 4,5 V: CMOS and TTL compatible Velocity (rpm) = f (Hz) x 60/N

Ordering information Encoder

number lines per revolution of channels

IE2 – 50 IE2 – 100 IE2 – 200 IE2 – 400

2 2 2 2

in combination with:

¬ DC-Micromotors series « 1319 ... SR, ­ 1331 ... SR « ®

50 100 200 400

The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,7 mm!

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Hybrid circuits with sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

Output signals / Circuit diagram / Connector information Output circuit

Output signals with clockwise rotation as seen from the shaft end

Pin Function 1 2 3 4 5 6

P

Amplitude

Encoders

Features These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

Channel A

4

V DD

PVC-Ribbon cable 6 conductors 0,09 mm2

150 ±10 \

Channel B

5/6

Channel A/B

3

GND

642 531

Admissible deviation of phase shift: 6\ = 90° –

\ P

* Note: The terminal resistance of all motors with precious metal commutation is increased by approx. 0.4 , and the max. allowable motor current in combination is 1A. Motors with graphite commutation have separate motor leads and higher motor current is allowed.

Connector DIN-41651 grid 2,54 mm

* 180° ≤ 45°

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

6,1 12,2

Rotation

Motor – * Motor + * GND VDD channel B channel A

262

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders Magnetic Encoders

Features: 64 to 512 Lines per revolution 2 Channels Digital output

Series IE2 – 512 Lines per revolution Signal output, square wave Supply voltage Current consumption, typical (VDD = 5 V DC) Output current, max. 1) Pulse width Phase shift, channel A to B Signal rise/fall time, max. (CLOAD = 50 pF) Frequency range 2), up to Inertia of code disc 3) Operating temperature range 1) 2) 3)

IE2 – 64 IE2 – 128 64 128 2 4,5 … 5,5 typ. 6, max. 12 5 180 ± 45 90 ± 45 0,1 / 0,1 20 40 0,09 – 25 ... + 85

N V DD I DD I OUT P \ tr/tf f J

IE2 – 256 256

80

IE2 – 512 512 channels V DC mA mA °e °e μs kHz gcm2 °C

160

V DD = 5 V DC: Low logic level < 0,5 V, high logic level > 4,5 V: CMOS and TTL compatible Velocity (rpm) = f (Hz) x 60/N For the brushless DC-Servomotors 1628 ... B, 2036 ... B and 2444 ... B the inertia of code disc is J = 0,14 gcm2

Ordering information Encoder

number lines per revolution of channels

IE2 – 64 IE2 – 128 IE2 – 256 IE2 – 512

2 2 2 2

in combination with: DC-Micromotors series 1336 … C, 1516 … SR, 1524 … SR, 1717 … SR, 1724 … SR, 1727 … C, 2224 … SR, 2232 … SR, 2342 … CR, 2642 … CR, 2657 … CR, 3242 … CR, 3257 … CR, 3863 … C

64 128 256 512

Brushless DC-Servomotors series 1628 … B, 2036 … B, 2057 ... B, 2444 … B

Features Hybrid circuits with sensors and a low inertia magnetic disc provide two channels with 90° phase shift. The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,4 mm. Built-on option for DC-Micromotors and Brushless DC-Servomotors.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Output signals / Circuit diagram / Connector information Output circuit

Output signals with clockwise rotation as seen from the shaft end

Pin Function 1 2 3 4 5 6

Amplitude

P

Channel A

4

V DD

PVC-Ribbon cable 6 conductors 0,09 mm2

150 ±10 \

Channel B

5/6

Channel A/B

3

GND

642 531

Admissible deviation of phase shift: 6\ = 90° –

\ P

*Note: The terminal resistance of all motors with precious metal commutation is increased by approx. 0.4 , and the max. allowable motor current in combination is 1A. Motors with graphite commutation and brushless motors have separate motor leads and higher motor current is allowed.

Connector DIN-41651 grid 2,54 mm

* 180° ≤ 45°

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

6,1 12,2

Rotation

Motor – * Motor + * GND VDD channel B channel A

263

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors and Brushless DC-Servomotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

DC-Micromotor 1319 T ... SR with Encoder IE2 – 50 ... 400

0

0

ø13 -0,052

ø6 -0,05

-0,004

ø1,5 -0,009 ø0,05 A 0,02

A

11 2,7

1

150 ±10

19,2

8,1 ±0,3

DC-Micromotor 1331 T ... SR with encoder IE2 – 50 ... 400

0

0

ø13 -0,052

ø6 -0,05

-0,004

ø1,5 -0,009

A

ø3,5

ø0,05 A 0,02

11 2,7

1

150 ±10 8,1 ±0,3

Encoders

31,2

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

264

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotor 1336 U ... C - 123 with Encoder IE2 – 16 ... 512 Orientation with respect to cable not defined 2x M1,6 1,5 deep ø0,3 A

ø15,5

ø6 -0,02

ø13 -0,05

-0,004

ø2 -0,009

A

ø0,05 A 0,02

ø10

Material PTFE Single wires 0,24 mm2

1

16,5 47,5

black –

±0,5

5,5

±1

red +

150 ±10

8 ±0,3

DC-Micromotor 1516 T ... SR with Encoder IE2 – 16 ... 512 Orientation with respect to cable not defined

6x ø0,3 A

0

M1,6 1,4 deep

ø15 -0,052

ø6

0 -0,05

-0,004

ø1,5 -0,009

A

ø0,05 A 0,02

13,3

ø10 2,4

6x 60

1 150 ±10

8,1 ±0,3

Encoders

15,8

DC-Micromotor 1524 T ... SR with Encoder IE2 – 16 ... 512 Orientation with respect to cable not defined

6x ø0,3 A

0

M1,6 1,4 deep

0

ø15 -0,052

ø6 -0,05 A

2,4

1

150 ±10

23,8

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

ø0,05 A 0,02

13,3

ø10

6x 60

-0,004

ø1,5 -0,009

8,1 ±0,3

265

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotor 1717 T ... SR with Encoder IE2 – 16 ... 512 Orientation with respect to cable not defined

6x ø0,3 A

M1,6 1,6

deep

ø15,9

0

0

-0,004

ø17 -0,052 ø6 -0,05 A

ø1,5 -0,009 ø0,05 A 0,02

ø3,5

13,3

ø10

2,4

6x 60

1 2

2,1

150 ±10

6 ±0,3 8,1 ±0,3

17

DC-Micromotor 1724 T ... SR with Encoder IE2 – 16 ... 512 Orientation with respect to cable not defined

6x ø0,3 A

M1,6

1,6 deep

ø15,9

0

0

ø17 -0,052

-0,004

ø6 -0,05 A

ø1,5 -0,009 ø3,5

ø0,05 A 0,02

13,3

ø10

6x 60

2,4

1 2

2,1

150 ±10

6 ±0,3

24 Encoders

8,1 ±0,3

DC-Micromotor 1727 U ... C - 123 with Encoder IE2 – 16 ... 512 Orientation with respect to cable not defined

6x ø0,3

M1,6 2,5 deep

ø15,5

ø17 -0,1

ø

-0,015

-0,004

ø2 -0,009 ø0,05 0,02

A

ø10

6x 60

Material PTFE Single wires 0,24 mm2 black –

±0,4

150

±10

38,2 ±1,3

5,5

±1

red +

1 30 ±0,5

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

266

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotor 2224 U ... SR with Encoder IE2 – 16 ... 512 Orientation with respect to cable not defined

6x ø0,3 A

M2

ø22

3,7 deep

0

0 -0,062

ø7 -0,05

ø2

A

-0,004 -0,009

ø14,9

ø0,05 A 0,02

13,3

ø12

2,4

6x 60

1

150 ±10

24,2

8,1 ±0,3

DC-Micromotor 2232 U ... SR with Encoder IE2 – 16 ... 512 Orientation with respect to cable not defined

6x ø0,3 A

M2

ø22

3,7 deep

0 -0,062

0

-0,004 -0,009

A

ø0,05 A 0,02

ø7 -0,05 ø2

13,3

ø12

2,4

6x 60

ø14,9

1 32,2

150 ±10

Encoders

8,1 ±0,3

DC-Micromotor 2342 S ... CR with Encoder IE2 – 16 ... 512 Scale reduced

Orientation with respect to cable not defined

6x ø0,3 A

M2

ø15,5

2,5 deep

ø23

-0,006

ø10 -0,015 ø3 -0,010 A

ø0,05 A 0,02

ø17

6x 60 Material PTFE Single wires 0,38 mm2 black –

12,2 ±0,4

150 ±10

5,5 ±

1

red +

1 45 ±0,5 53,7 ±1,5

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

267

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotor 2642 W ... CR with Encoder IE2 16 – 512 Orientation with respect to cable not defined 3x M2 3 deep ø15,5 ø0,3 A

0

0

ø10 -0,015

ø26 -0,1

A

Scale reduced

-0,006

ø4 -0,010 ø0,05 A 0,02

ø6,5

ø17

6x 60

1

M3 3 deep

3x

2,4 ±0,15

ø0,3 A

Material PTFE Single wires 0,38 mm2

46,3 ±1

red +

150 ±10

10 ±0,3 12,4 ±0,3

54,5 ±1

5,5 ±

1

black –

DC-Micromotor 2657 W ... CR with Encoder IE2 16 – 512 Orientation with respect to cable not defined 3x ø0,3 A

M2

ø15,5

4 deep

Scale reduced 0 ø26 -0,1

0 ø10 -0,015 A

ø4

ø6,5

-0,006 -0,010 ø0,05 A 0,02

ø17

6x 60

M3 4 deep

61,3 ±1 black –

10±0,3

150 ±10

12,4±0,3

69,5 ±1

1

red +

2,4 ±0,15

ø0,3 A

5,5 ±

Encoders

Material PTFE Single wires 0,38 mm2

1

3x

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

268

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotor 3242 G ... CR with Encoder IE2 16 – 512 Scale reduced

Orientation with respect to cable not defined 6x ø0,3 A

M3 3 deep

ø15,5

0

0

-0,006

ø16 -0,015 ø5 -0,010

ø32 -0,1

A

ø0,05 A 0,02

ø8

ø22

1,5 6x60

3 ±0,15

Material PTFE Single wires 0,38 mm2

46,3 ±1

13 ±0,3

55 ±1

red +

5,5 ±

1

black –

150 ±10

10±0,3

DC-Micromotor 3257 G ... CR with Encoder IE2 16 – 512 Scale reduced

Orientation with respect to cable not defined 6x ø0,3 A

M3

ø15,5

3 deep

0

0

-0,006

ø16 -0,015 ø5 -0,010

ø32 -0,1

A

ø0,05 A 0,02

ø8

ø22

1,5 6x60

3

Material PTFE Single wires 0,38 mm2

±10

Encoders

13 ±0,3

70 ±1

red +

5,5 ±

1

black –

61,3 ±1

150

10±0,3

±0,15

DC-Micromotor 3863 H ... C - 2016 with Encoder IE2 16 – 512 Orientation with respect to cable not defined

6x

ø0,3 A

M3 3

ø16

deep

0

0

ø 38 -0,1

ø16 -0,02

-0,004

Scale reduced

ø 6 -0,010

A

ø0,04 A 0,02

ø22

1,5 2,2

6x 60

64 77,8 ±0,5

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

269

150 ±10 22,8 25 ±0,3

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotor 1628 T ... B - K313 with Encoder IE2 – 64 ... 512

M1,6

0

ø16 ±0,1

2 deep

ø6 -0,005

-0,004

ø1,5 -0,008

A

ø0,05 A 0,02

ø10

3x 120

7,1 ±0,3

1

150 ±10

8,1 ±0,3

28

10,8

(38,8)

For details on the cable connection see the motor data sheet

Brushless DC-Servomotor 2036 U ... B - K313 with with Encoder IE2 – 64 ... 512

M2 2,5 deep

ø16

0

ø20 ±0,1

ø6 -0,005 A

3x120

-0,004

ø2 -0,008 ø0,05 A 0,02

ø12

1

150 ±10

8,1 ±0,3

36

10,8

7,1 ±0,3

Encoders

(46,8)

For details on the cable connection see the motor data sheet

Brushless DC-Servomotor 2057 S ... B - K313 with with Encoder IE2 – 64 ... 512 3x M2 2,5 deep 3x M2 2 deep

ø16

ø20 ±0,1

0

ø9 -0,005 A

3x120

-0,004

ø3 -0,008 ø0,05 A 0,02

ø12 ø17 1

3x 120

9 ±0,3 10,8

57,5

150 ±10

10 ±0,3

(68,3)

For details on the cable connection see the motor data sheet

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

270

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Brushless DC-Servomotor 2444 S ... B - K313 with with Encoder IE2 – 64 ... 512

ø16

M2 3 deep

0

ø24 ±0,1

ø10 -0,006 A

-0,004

ø3 -0,008 ø0,05 A 0,02

3x120

ø17

1 10,8

44

11,6 ±0,3

150 ±10

12,6 ±0,3

(54,8)

Encoders

For details on the cable connection see the motor data sheet

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

271

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders Magnetic Encoders

Features: 10 Lines per revolution 2 Channels Digital output

Series 30B Lines per revolution Signal output, square wave Supply voltage Current consumption, typical (VCC = 5 V DC) Pulse width Phase shift, channel A to B Logic state width Cycle Signal rise/fall time, typical Frequency range 1) Inertia of code disc Operating temperature range 1)

N VCC ICC P \ S C tr/tf f J

30B 10 2 4,5 ... 5,5 5 180 ± 45 90 ± 45 90 ± 45 360 ± 30 5 / 0,2 up to 7,2 0,09 – 20 ... + 85

channels V DC mA °e °e °e °e μs kHz gcm2 °C

Velocity (rpm) = f (Hz) x 60/N

Ordering information Encoder type 30B19 30B20 30B18

number lines of channels per revolution

in combination with DC-Micromotors

2 2 2

series 1016, 1024 series 1219, 1224 series 1336

10 10 10

The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced with a 150 mm ribbon cable and a connector.

Solid state Hall sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Output signals / Circuit diagram / Connector information Connectors

C P

Amplitude

2

1

6

5

Channel A 2

Φ S tr

S

V CC

S

3/4

Channel A/B

5

GND

S tf

17

2

1

6

5

12,2 6,1

10K

Encoders

Features These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are designed for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

6

Standard 10P (Panduit 050-010-455)

Option 6P (DIN-41651 grid 2,54 mm)

Channel B Pin Function Rotation Output signals with clockwise rotation as seen from the shaft end Encoders 30B19, 30B20 channel A leads B Encoders 30B18 channel B leads A

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Output circuit

272

1 2 3 4 5 6 7 8 9 10

Motor + VCC Channel A Channel B GND Motor – – – – –

Ribbon cable PVC - 6 conductors 0,09 mm2 / 28 AWG

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors 1016 N ... G - K380, 1024 N ... S - K380 with Encoder 30B19

0

0

ø10 ±0,06 ø10 ±0,03

ø6 -0,018 ø1,5 -0,03 ø0,07 A A M5,5x0,5 0,04

Ribbon cable length 150 ±10

0,4 L2

1,9 2,1

2,15

5,15 ±0,3

L1

Motor type 1016 1024

L1 27,2 35,2

L2 13,5 13,5

L1 30,2 33,7

L2 13,5 11,7

DC-Micromotors 1219 N ... G - K380, 1224 N ... S - K380 with Encoder 30B20

ø12 ±0,06

0

0

ø12 ±0,03 ø6 -0,018 ø1,5 -0,03 A M5,5x0,5 ø0,07

A

0,04

Ribbon cable length 150 ±10

0,4 L2

1,9 2,15 L1

5,15 ±0,3 Motor type 1219 1224

DC-Micromotor 1336 U ... C - 123 with Encoder 30B18

2x ø0,3 A

M1,6

ø11 ø13,9

1,5 deep

0

0

ø 6 -0,02

ø13 -0,05

A

ø10

ø2

ø 3,5

-0,004 -0,009 ø0,05 A 0,02

Ribbon cable length 150 ±10

1 6

2 16,3

6 ±0,3 8 ±0,3

49,5 ±0,5

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

273

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

2,1

Encoders Magnetic Encoders

Features: 15 or 16 Lines per revolution 2 Channels Digital output

Series 20B, 21B Lines per revolution Signal output, square wave Supply voltage Current consumption, typical (V CC = 5 V DC) Pulse width Phase shift, channel A to B Logic state width Cycle Signal rise/fall time, typical Frequency range 1) Inertia of code disc Operating temperature range 1)

N V CC I CC P \ S C tr/tf f J

20B 15 2 4,5 ... 5,5 5 180 ± 45 90 ± 45 90 ± 45 360 ± 30 5 / 0,2 up to 7,2 0,2 – 20 ... + 85

21B 16 2 4,5 ... 5,5 5 180 ± 45 90 ± 45 90 ± 45 360 ± 30 5 / 0,2 up to 7,2 0,2 – 20 ... + 85

channels V DC mA °e °e °e °e μs kHz gcm2 °C

Velocity (rpm) = f (Hz) x 60/N

Ordering information Encoder type 20B3 20B18

21B3 21B18

number lines per revolution 21B of channels 20B

in combination with DC-Micromotors and DC-Motor-Tacho units

2 2

free standing for independent use series 1336, 1841, 2251

15 15

16 16

The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced with a 150 mm ribbon cable and a 10-pin connector.

Solid state Hall sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Output signals / Circuit diagram / Connector information Connectors

C P

Amplitude

Channel A 2

Φ S tr

S

S

3/4

Channel A/B

5

GND

Channel B

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

6

5

17

2

1

6

5

12,2

6

Standard 10P (Panduit 050-010-455)

Option 6P (DIN-41651 grid 2,54 mm)

Pin Function

Rotation Output signals with clockwise rotation as seen from the shaft end Encoders 20B channel A leads B Encoders 21B channel B leads A

1

6,1

S tf

2

V CC

10K

Encoders

Features These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are designed for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

Output circuit

274

1 2 3 4 5 6 7 8 9 10

Motor + VCC Channel A Channel B GND Motor – – – – –

Ribbon cable PVC - 6 conductors 0,09 mm2 / 28 AWG

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders 20B3, 21B3 free standing, with ball bearings Orientation with respect to cable not defined

2x

-0,016

0

ø17 ø14,5 ø16 -0,043 ø7 -0,015

M2 3 deep 2x

0

2-56UNC

-0,006

2,8 -0,02 ø3 -0,012

3 deep

ø10,92 6,7 Ribbon cable length 150 ±10

2 ±0,3 1,5

4,3

±0,2

11,9 ±0,3 12,7 ±0,3

17,4 ±0,5

14,2 ±0,3

DC-Micromotor 1336 U ... C - 123 with Encoders 20B18, 21B18

2x ø0,3 A

M1,6

1,5 deep

ø16

0

0

ø2

ø 6 -0,02

ø13 -0,05

-0,004 -0,009 ø0,05 A

A

ø 3,5

0,02

ø10 Ribbon cable length 150 ±10

1 26,2

24,5 (50,7)

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

275

6 ±0,3 8 ±0,3

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

2

Encoders Magnetic Encoders

For combination with: Stepper Motor: AM1020

Series AE 30B19 Lines per revolution

AE 30B19 10

N

2 channels

Signal output, square wave Supply voltage Current consumption, typical (V CC = 5 V DC) Pulse width Phase shift, channel A to B

V CC I CC P

4,5 … 5,5 5 180 ±45 90 ±45

V DC mA °e °e

Logic state width

S

90 ±45

°e

Cycle

C

360 ±30

°e

Signal rise/fall time, typical

tr / tf

5 / 0,2

μs

Frequency range 1) Inertia of code disc Operating temperature range

f J

up to 7,2 9 –20 … +85

kHz ·10-9 kgm2 °C

1)

Velocity (rpm) = f (Hz) x 60/N

Features / Output signals / Circuit diagram These incremental shaft encoders are designed for indication and control of shaft velocity and direction of rotation as well as for position verification.

Circuit diagram

Output signals C

Solid state Hall sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

Amplitude

P

4/5 Channel A/B S tr

Details for the stepper motors and suitable reduction gearheads are on the coresponding data sheets.

S

S

S tf

3

Channel B

Rotation

0

Encoders

0

Function Motor Phase A + Motor Phase B – GND Channel B Channel A Vcc Motor Phase A – Motor Phase B +

Connector type: Receptacle type: Top entry: Side entry:

ø6 -0,012

ø10 -0,05

Cable connection Colour black orange green red violet yellow white blue

JST#08ZR-3H (not supplied) B8B-ZR S8B-ZR

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

GND

Reccomendation: Please use a latch to capture the outputs.

Valid for clockwise rotation, seen from the shaft end.

Pin 1 2 3 4 5 6 7 8

V CC

10K

The supply voltages for the encoder and the stepper motor as well as the two channel output signals are interfaced through a individual lead wires with 125 mm in length with an 8-pin connector.

6

Channel A

-0,007

ø1,2 -0,011

M5,5 x 0,5

0

0,4 -0,05 1

+0,08 1,9 0

8

2,15 23 ±0,2

Individual lead wires, AWG30, length 125 mm.

276

6,5 ±0,2

AE 30B19

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders Magnetic Encoders

For combination with: Stepper Motor: AM1524

Series AE 23B8 Lines per revolution

AE 23B8 12

N

2 channels

Signal output, square wave Supply voltage Current consumption, typical (V CC = 5 V DC) Pulse width Phase shift, channel A to B

V CC I CC P

5 … 15 5 180 ±45 90 ±45

V DC mA °e °e

Logic state width

S

90 ±45

°e

Cycle

C

360 ±30

°e

Signal rise/fall time, typical

tr / tf

5 / 0,2

μs

Frequency range 1) Inertia of code disc Operating temperature range

f J

up to 7,2 20 –20 … +85

kHz ·10-9 kgm2 °C

1)

Velocity (rpm) = f (Hz) x 60/N

Features / Output signals / Circuit diagram These incremental shaft encoders are designed for indication and control of shaft velocity and direction of rotation as well as for position verification.

Circuit diagram

Output signals C

Solid state Hall sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

Amplitude

P

4/5 Channel A/B S

S

tr

S

S tf

6

Channel B

Rotation

Recommendation: Please use a latch to capture the outputs.

Valid for clockwise rotation, seen from the shaft end.

Cable connection Function Motor Phase B – Motor Phase B + Vcc Channel A Channel B GND Motor Phase A – Motor Phase A +

0

ø16 -0,05

7

8

5

6

3

4

1

2

GND

-0,02

ø15 -0,07

0

ø6 -0,018

-0,007

ø1,5 -0,011

0

1 -0,05 28 ±0,2

Connector type Molex serie 40312 Ribbon cable, 120 mm - PVC 8 conductors - 0,09 mm2

7,5 ±0,2

AE 23B8

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

277

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

Details for the stepper motors and suitable reduction gearheads are on the corresponding data sheets.

Pin 1 2 3 4 5 6 7 8

V CC

10K

The supply voltages for the encoder and the stepper motor as well as the two channel output signals are interfaced through a cable and 8-pin connector.

3

Channel A

Encoders Optical Encoders PRECIstep® Technology

For combination with: Stepper Motor: AM2224, AM2224-R3

Series PE 22–120 Lines per revolution

PE 22–120 120

N

2 channels

Signal output, square wave Supply voltage Current consumption, typical (V CC = 5 V DC) Pulse width Phase shift, channel A to B

V CC I CC P

4,5 … 5,5 20 180 ±45 90 ±45

V DC mA °e °e

Logic state width

S

90 ±45

°e

Cycle

C

360 ±30

°e

Signal rise/fall time, typical

tr / tf

0,5 / 0,1

μs

Frequency range 1) Inertia of code disc Operating temperature range

f J

up to 30 24 –20 … +85

kHz ·10-9 kgm2 °C

1)

Velocity (rpm) = f (Hz) x 60/N

Features / Output signals / Circuit diagram These incremental shaft encoders in combination with two phases stepper motors are designed for indication and control of both, shaft velocity and direction of rotation as well as for position verification.

Circuit diagram

Output signals C

Amplitude

P

The supply voltage for the encoder and the stepper motors as well as the two channel output signals are interfaced through a ribbon cable with connector.

5

Channel A

V CC

2,7K

The encoder is integrated in the Stepper Motors and extends the overall length by only 11 mm.

7/8 Channel A/B S

S

S

S

tr

tf

6

Channel B

Details for the stepper motors and suitable reduction gearheads are on the corresponding data sheets. Rotation

Recommendation: Please use a latch to capture the outputs.

Valid for clockwise rotation, seen from the shaft end.

Encoders

GND

-0,02

ø22 -0,08 Cable connection Pin 1 2 3 4 5 6 7 8 9 10

Function Motor Phase A + Motor Phase A – Motor Phase B + Motor Phase B – Vcc GND Channel A Channel B N.C. N.C.

Connector type FCI serie 71600-010LF Ribbon cable, 180 mm - PVC

11 40,85 (AM2224-R3) 37,80 (AM2224) 1 2

9 10

PE 22–120

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

278

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders Magnetic Encoders

Features: 16, 32, 64 Lines per revolution 3 Channels Digital output

Series HXM3-64 Signal output, square wave Supply voltage 1) Current consumption, typical (VCC = 5 V DC) Pulse width Phase shift, channel A to B Logic state width Cycle Signal rise/fall time, typical Rotational speed up to Inertia of code disc Operating temperature range 1)

HXM3-64 3 4,5 ... 5,5 9 180 ± 45 90 ± 45 90 ± 45 360 ± 30 60 / 60 (at 50 pF load) 30 000 0,02 1) -25 ... +85

VCC I CC P \ S C tr/tf n max. J

channels V DC mA °e °e °e °e +s rpm gcm2 °C

No additional inertia for series 0620

Ordering information Encoder HXM3-64

number of channels

lines per revolution

3

64

in combination with:

¬ « ­ « ®

DC-Micromotors series 0615 Brushless DC-Servomotors series 0620

Note: Lines per revolution refers to pre-quadrature resolution and equals the cycles per revolution

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors and Brushless DC-Servomotors are designed for indication and control of both shaft velocity and direction of rotation as well as for positioning.

Encoder is programmable by user to 16, 32, and 64 lines per revolution by setting the CFG2 pin to high, open, or ground respectively. The input power must be cycled off and on to change the settings.

Solid state sensors and a low inertia magnetic disc provide two channels with 90° phase shift and one index channel.

Please note: Velocity (rpm) = f (Hz) x 60/N Details for the DC-Micromotors and suitable reduction gearheads are on separate catalog pages.

The supply voltage for the encoder and the DC-Micromotor as well as the output signals are interfaced with a flexible printed circuit (FPC) to a 8-pin ZIF connector.

An optional interface board with suitable connector is also available on request.

Output signals / Circuit diagram / Connector information Output circuit

Output signals with clockwise rotation as seen from the shaft end

Pin Function 1 Motor + * 2 VDD 3 Channel Z 4 Channel A 5 Channel B 6 Cfg2 7 GND 8 Motor – * * Note: Brushless motors have separate motor leads.

Amplitude

C P S

S

tr

S

S

2

V DD

3/4/5

Channel A/B/Z

tf

Channel A

4,22

0,12

Φ

7

Channel B

GND

6

4 1

0,3 ±0,03

4,50

Connector Molex 52745 grid 0,5 mm FPC / FFC, 8-conductors

Channel Z Rotation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

8

279

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders

Features

DC-Micromotor 0615 N ... S - K1707 with Encoder HXM3-64

0

0

ø1,5 -0,03

ø6 ±0,03 ø5 -0,018 ø6

M4,5x0,5

A

ø0,07 A 0,04

6

4,2

1,7

0,4

4,4

1,9 2,15

0,3

5,15 ±0,3

15

4,5

6

25±1,0

2,1 19,4 ±0,3

4 1

8

1

8

HXM3-64+0615N Brushless DC-Servomotor 0620 K ... B - K1674 with Encoder HXM3-64

ø6 ±0,03

0

ø5 -0,018 A

ø6

0

ø1,5 -0,03

M4,5x0,5

ø0,07 A 0,04

6 4,2

25±1,0

4,5

6

2,7

Encoders

5

4

0,4 41±1,0

1,9 1,5 15

4

1,8 5,15 ±0,3

9

21,5 ±0,03 HXM3-64+0620K Optional interface board

21

9

6,2 1

J2

25,4 1

4,3

J1

10,1

2

25,4

10

J2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Pin Function 1 2 3 4 5 6 7 8

Motor + VDD 5V Channel Z Channel A Channel B Cfg2 GND Motor –

Connector J1 – Molex 52745-0896 J2 – Phoenix 1725711

Interface board HXM3-64 Part No. D100308900

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

J1

280

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders Magnetic Encoders

Features: 32, 64, 128, 256 Lines per revolution 3 Channels Digital output

Series HEM3-256-W Signal output, square wave Supply voltage 1) Supply voltage 2) Current consumption, typical (V DD = 3,3 or 5 V DC) Output current, max. 3) (V DD = 3,3 / 5 V DC) Pulse width Phase shift, channel A to B Logic state width Signal rise/fall time, max (CLOAD = 50 pF) Rotational speed up to Inertia of code disc Operating temperature range

HEM3-256-W 3 3,0 ... 3,6 4,5 ... 5,5 16 2/4 180 ± 45 90 ± 45 90 ± 45 0,1 / 0,1 30 000 0,02 -30 ... +85

VDD VDD I DD I OUT P \ S tr/tf n max. J

channels V DC V DC mA mA °e °e °e +s rpm gcm2 °C

V DD = 3,3 V DC: Connect pins 3 and 4 to 3,3 V DC V DD = 5 V DC: Connect pin 3 to 5 V DC, do not connect pin 4 3) V DD = 5 V DC: Low logic level < 0,5 V, high logic level > 4,5 V: CMOS and TTL compatible 1) 2)

Ordering information Encoder

number of channels 3 3 3 3

HEM3-032-W HEM3-064-W HEM3-128-W HEM3-256-W

lines per revolution 32 64 128 256

for combination with: DC-Micromotors series ¬ 0816 ... S « ­ 1016 ... G, 1024 ... S « ® 1224 ... S, 1224 ... SR

Note: Lines per revolution refers to pre-quadrature resolution and equals the cycles per revolution

Features These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are designed for indication and control of both shaft velocity and direction of rotation as well as for positioning.

The supply voltage for the encoder and the DC-Micromotor as well as the output signals are interfaced with discrete wires and an 8-pin Molex crimp style connector. Details for the DC-Micromotors and suitable reduction gearheads are on separate catalog pages. Encoders

Solid state sensors and a low inertia magnetic disc provide two channels with 90° phase shift and one index channel. The nominal supply voltage for the encoder is selectable and either 3,3 VDC or 5,0 VDC. Output signals / Circuit diagram / Connector information

Output circuit

Output signals with clockwise rotation as seen from the shaft end

Pin Function 1 2 3 4 5 6 7 8

Amplitude

C P S

S

tr

S

S

4

V DD 3,3V

5/6/7

Channel A/B/I

2

GND

Motor – GND VDD 5V VDD 3,3V Channel A Channel B Index Motor +

tf

Channel A Φ

Channel B

175 ±25 Wire: Tefzel 30 AWG MIL-W-227459/32

1

Channel I

Connector Molex 51021-0800 grid 1,25 mm

Rotation

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

8

281

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotor 0816 N ... S - K1707 with Encoder HEM3-XXX-W

+0,19

0

ø8 -0,10

0

ø6 -0,018 ø1,5 -0,03 A M5,5x0,5 ø0,07

A

0,04

175 ±25

0,4 1,9

8

1

2,15

2,1

16

5,15 ±0,3

1

8

8,5 ±0,3 HEM3-XXX-W+0816N DC-Micromotor 1016 N ... G - K1707 with Encoder HEM3-XXX-W

ø10 ±0,1

0

0

ø6 -0,018 ø1,5 -0,03 A M5,5x0,5 ø0,07

A

0,04

175 ±25

0,4 1,9 2,1

2,15 1

Encoders

8

5,15 ±0,3

15,7 8,5 ±0,3

1

8

HEM3-XXX-W+1016N DC-Micromotor 1024 N ... S - K1707 with Encoder HEM3-XXX-W

0

0

ø6 -0,018

ø10 ±0,1

A

ø1,5 -0,03

M5,5x0,5

ø0,07 A 0,04

175 ±25

0,4 1,9 2,15 8

1

23,7

2,1 5,15 ±0,3

1

8

8,5 ±0,3 HEM3-XXX-W+1024N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

282

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotor 1224 N ... S - K1707 / 1224 N ... SR - K1707 with Encoder HEM3-XXX-W

ø12 ±0,1

0

0

ø6 -0,018 ø1,5 -0,03 ø0,07 A 0,04

A M5,5x0,5

175 ±25

0,4 1,9 2,15 8

1

22

2,1 5,15 ±0,3

1

8

9,1 ±0,3

Encoders

HEM3-XXX-W+1224N

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

283

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Encoders Magnetic Encoders

Features: 32 to 256 Lines per revolution 3 Channels Digital output

Series IE3 – 256 Lines per revolution Frequency range 1), up to Signal output, square wave Supply voltage Current consumption, typical 2) Output current, max. 3) Pulse width Phase shift, channel A to B 4) Signal rise/fall time, max. (CLOAD = 50 pF) Inertia of encoder magnet Operating temperature range

IE3 – 32 IE3 – 64 32 64 15 30 2+1 index 4,5 … 5,5 typ. 16, max. 21 4 90 ± 45 90 ± 45 0,1 / 0,1 0,08 – 40 ... + 100

N f U DD I DD I OUT P \ tr/tf J

IE3 – 128 128 60

IE3 – 256 256 120

kHz channels V DC mA mA °e °e μs gcm2 °C

1)

speed (rpm) = f (Hz) x 60/N UDD Enc = 5 V: with unloaded outputs UDD Enc = 5 V: low logic level < 0,4 V, high logic level > 4,5 V: CMOS- and TTL compatible 4) at 5 000 rpm 2) 3)

Ordering information Encoder

number lines per revolution of channels

IE3 – 32 IE3 – 64 IE3 – 128 IE3 – 256

2+1 2+1 2+1 2+1

in combination with:

¬ DC-Micromotors series « 2342 ... CR, 2642 ... CR, 2657 ... CR ­ 3242 ... CR, 3257 ... CR, 2237 ... CXR « ®

32 64 128 256

Features The encoder is available in a variety of different resolutions and is suitable for speed control and positioning applications. The motor and encoder are connected via separate ribbon cables.

A permanent magnet on the shaft creates a moving magnetic field which is captured using a single-chip angular sensor and further processed. At the encoder outputs, two 90° phase-shifted rectangular signals are available with up to 256 impulses and an index impulse per motor revolution.

Options Connector: AWG 28 / PVC ribbon cable (6-conductors), with connector PicoBlade (pitch 1,25 mm)

6

1

Output signals / Circuit diagram / Connector information Output circuit

Output signals with clockwise rotation as seen from the shaft end

Connection Encoder No. 1 2 3 4 5 6

P

Amplitude

Encoders

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

A

UDD Enc

Φ

Function n.c. Channel I (Index) GND Enc UDD Enc Channel B Channel A

A, B, I B Po

2 ±0,5

GND Enc

6

I

Caution: Incorrect lead connection will damage the motor electronics! When using the encoder at low temperature it is important to keep the cable unmoved.

Rotation Admissible deviation of phase shift: \ Po 6Po = 90° – 180° ” 45° 6\ = 90° – 180° ” 45° P * P *

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

1

284

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

DC-Micromotors 23xx ... CR up to 32xx ... CR with encoder IE3 – 32 ... 256 M 1:1

10

V for set speed value not defined. in parentheses apply to BL motors operating without sensors. additional external pull-up resistor can be added to improve the rise time. Caution: Iout max. 15 mA must not be exceeded.

4) Data 5) An

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

304

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Description of connections (Motor-dependent)

DC motor

BL motor

Connection “Mot A“, “Mot B“, “Mot C“: – Motor connection Mot A Mot B Mot C

Mot + Mot reserved

Phase A Phase B Phase C

Connection “Sens A“, “Sens B“, “Sens C“: – Sensor input Sens A Sens B Sens C f

reserved encoder canal A encoder canal B ” 400 kHz

Hall sensor A Hall sensor B Hall sensor C

Versions Version Speed Controller

Option

Motor Type

Sensor Type

Set speed value specification 1)

Speed at Unsoll =10 V

Part No.

SC 1801 S SC 1801 S SC 1801 F SC 1801 P SC 1801 P

3530 3531 3533 3530 3531

BL DC BL BL DC

Hall sensors (digital) Incremental encoder 2) sensorless (high speed) Hall sensors (digital) Incremental encoder 2)

0 ... 10 V 0 ... 10 V 0 ... 10 V 0 ... 10 V 0 ... 10 V

30 000 rpm 10 000 rpm 40 000 rpm 30 000 rpm 10 000 rpm

6500.01377 6500.01393 6500.01378 6500.01379 6500.01394

SC 2804 S SC 2804 S SC 2402 P SC 2402 P

3530 3531 3530 3531

BL DC BL DC

Hall sensors (digital) Incremental encoder 2) Hall sensors (digital) Incremental encoder 2)

0 ... 10 V 0 ... 10 V 0 ... 10 V 0 ... 10 V

20 000 rpm 10 000 rpm 20 000 rpm 10 000 rpm

6500.01390 6500.01391 6500.01381 6500.01392

1) 2)

The velocity range can be configured by software. Versions with PWM and other configurations are available on request. preset value is 512 lines

Accessories

Programming adapter Adapter connector Motor connector adapter Encoder adapter

5 mm » 2,54 mm 0620 ... B penny-motor BX4 IE2 HEDS

Motor Type

for SC 1801 S Part No.

for SC 2804 S Part No.

BL BL BL DC DC

6501.00097 6501.00083 6501.00090 6501.00085 6501.00084 6501.00001

6501.00096 6501.00087 6501.00086 6501.00063 6501.00001

Digital output

FG

Electronic supply

Motor supply

UP

Umot

22k

Protection function: Overtemperature

n soll PI-velocity

Ua

controller

Setpoint input 0 ... 10 V Rotational direction input

3 Phase PWM block commutator

Unsoll Evaluation rotational direction

DIR

ϕ(t)

Speed calculation

Microcontroller

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Hallsensor A Hallsensor B Hallsensor C

Armature position calculation

I2t-current limitation

Phase A Phase B Phase C

MOSFET Power amplifier

I ist

5V-Control

RS

Vcc +5V SGND

brown orange yellow

BL Motor

green blue grey red black

GND

305

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Drive Electronics

Circuit diagram - brushless with Hall sensors (Option 3530)

Speed Controller General description

„

The Speed Controllers SC 1801 P/F/S, SC 2402 P and SC 2804 S are suitable for both Brushless DC-Servomotors (BL motors) and DC Micromotors (DC motors). With a few exceptions, they cover the entire range of FAULHABER GROUP motors.

In this configuration, no Hall sensors are used. Instead, the retroactive EMC of the motor is used for switching and for controlling the revs.

The SC 1801 Series is extremely compact and is suitable for even the smallest Faulhaber motors; the SC 2804 Series is the larger, more powerful variant.

In the configuration of DC motors with encoders, the motors are operated with controlled revs. An incremental decoder is required as an actual-revs transmitter.

„

BL motors without Hall sensors (operation without sensors)

DC motors with encoders

Main features:

„

„

The Speed Controllers are very flexible. With a programming adapter and the “FAULHABER Motion Manager“ software, they can be freely configured by the customer.

„

Depending on the configuration, either a BL motor or a DC motor with appropriate sensors for rotation speed measurement can be operated.

In the configuration of DC motors without sensors, the motors are operated with controlled revs, the actual-revs value being registered either via the retroactive generator voltage (EMC), or via IxR compensation, depending on the load. This type of operation must be tuned to the type of motor being used.

„

The Speed Controllers are designed as velocity controller. Regulation is effected via a PI regulator.

„

Operation without sensors is possible, the revs being determined by evaluating the retroactive generator voltage (EMC).

„

Common to all the Speed Controllers is a current limiter that limits the maximum motor current in the case of excessive thermal loading. In the standard configuration, this current limiter is set at the factory to the maximum permitted value for the respective Speed Controller.

DC motors without encoders

In addition to the above, further parameters can be altered using the “FAULHABER Motion Manager“ software: „

Regulator parameters

„

Output current limitation

„

Fixed revs

„

Encoder resolution

„

Revs set-point specification via analog or PWM signal

„

Maximum revs or speed range

Standard variants

Areas of use

To allow prompt operability without programming adapter and software, the Speed Controllers are delivered in various standard variants. The variants of each type of controller can be flexibly reconfigured.

The low wiring effort and the compact construction of the Speed Controllers allows them to be used in a wide variety of applications. The flexible connection capabilities open up a wide area of use in all fields, for example in distributed automation-technology systems, handling and tooling machines, or pumps.

Configuration by the customer All Controllers can be configured to one of the operating modes listed below, using a programming adapter and the “FAULHABER Motion Manager“ software: „

Note Instruction manuals dealing with installation and commissioning of the Speed Controllers are included in delivery.

BL motors with digital Hall sensors

In the configuration of BL motors with digital Hall sensors, the motors are operated with controlled revs, the signals of the digital Hall sensors being used for switching and determining the actual revs.

Connection diagram

Power supply PC with USB- or RS232 interface

Adapter board for encoder (optional)

FAULHABER DC-Micromotor with encoder

Drive Electronics

RS232 zero modem or USB cable

or

otio

er

M an nM ag

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

Programming adapter (optional)

Speed Controller

306

FAULHABER Brushless DC-Servomotor with digital Hall sensors

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Connection diagramm supply unit

Configuration

Full Drive

Controlled operation

Programming adapter (optional)

Speed Controller (IO 1)

Mot C

(IO 2)

Mot B

FG

SC 1801 SC 2402 SC 2804

DIR Unsoll z.B. 0 ...10 V

z.B. 5 ...18 V

12 V

12 V

Rev controller via parameter Umot

Mot A SGND VCC

GND

Sens C

Umot

Sens B

UP

Sens A

Rev set-point specification via parameter Unsoll

Connection diagram operation modes BL motors

Speed Controller Mot C

(IO 1)

FG DIR Unsoll

SC 1801 SC 2402 SC 2804

Phase C

Phase B

BL Motor BL-Motor

Phase B

Mot A

Phase A

with digital Hall sensors

Phase A

SGND

GND

DC Motor DC-Motor

Motor –

Mot B

(IO 2)

Phase C

VCC

+5V (Versorgung) (supply)

GND

Sens C

Hall C

Umot

Sens B

Hall B

UP

Sens A

Hall A

BL Motor BL-Motor sensorless

Connection diagram operation modes DC motors

(IO 1)

Mot C

(IO 2)

Mot B

Motor –

with encoder

Mot A

Motor +

SGND

GND

VCC

+5V (Versorgung) (supply)

GND

Sens C

Kanal B

Umot

Sens B

Kanal A

UP

Sens A

FG DIR Unsoll

SC 1801 SC 2402 SC 2804

For notes on technical data and lifetime performance refer to „Technical Information“. Edition 2009 – 2010

307

Motor +

DC Motor DC-Motor sensorless

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice. www.faulhaber.com

Drive Electronics

Speed Controller

Dimensional drawing and connection information SC 1801 P M 1:1 Connection

32 ±0,4