McGill University. 4 th High-order CFD Workshop. Farshad Navah. Siva Nadarajah. June, PhD Candidate. Associate Professor

McGill University McGill University 4th High-order CFD Workshop Farshad Navah PhD Candidate Siva Nadarajah Associate Professor McGill University C...
Author: Steven Wells
6 downloads 0 Views 2MB Size
McGill University

McGill University 4th

High-order CFD Workshop

Farshad Navah PhD Candidate

Siva Nadarajah Associate Professor McGill University Computational Aerodynamics Group

June, 2016

Farshad Navah

4th High-order CFD Workshop

June, 2016

1 / 32

McGill University

Outline

1 High-order CFD Code

Code description 2 Code verification

NS solver verification via MMS Example of solution verification 3 BS1 - DNS of the Taylor-Green Vortex

Farshad Navah

4th High-order CFD Workshop

June, 2016

2 / 32

McGill University High-order CFD Code Code description

I

Governing equations: Compressible Navier-Stokes equations

I

Discretization scheme: high-order correction procedure via flux reconstruction (CPR)

I

Numerical Flux: Roe scheme for inviscid terms and BR2 for viscous terms

I

Divergence computation method: Chain rule (CR) for inviscid fluxes and the Lagrange polynomials (LP) for viscous fluxes

I

Solution method: Backward Euler → Full Newton

I

Nodes: GLL

I

Parallelization: Open-MPI

Farshad Navah

4th High-order CFD Workshop

June, 2016

3 / 32

McGill University High-order CFD Code Code description

Recent Developments (Farshad Navah) I

Governing equations: Compressible Reynolds-averaged Navier-Stokes equations closed by the negative Spalart-Allmaras (SA) turbulence model (ICCFD7-1902)

I

Solution method: 15-digits accurate analytical Jacobian of RANS-SA(pos/neg), verified via complex step

I

Code verification: Method of manufactured solutions (Euler, NS, RANS-SA)

Farshad Navah

4th High-order CFD Workshop

June, 2016

4 / 32

McGill University Code verification

Code verification in CFD

Farshad Navah

4th High-order CFD Workshop

June, 2016

5 / 32

McGill University Code verification

Simulation Step

Sources of Error in CFD

Reality ⇓

=⇒

Modelling error

Conceptual model ⇓

=⇒

Programming & Discretization errors

=⇒

Round-off & Iterative convergence errors

Numerical model ⇓ Numerical solution

Farshad Navah

4th High-order CFD Workshop

June, 2016

6 / 32

McGill University Code verification

V&V Model validation

Sources of Error in CFD ⇐⇒

Modelling error

⇑ Solution verification ⇐⇒

Discretization error

⇑ Code verification

⇐⇒

Programming errors

⇑ Solution process

Farshad Navah

⇐⇒ Round-off & Iterative convergence errors

4th High-order CFD Workshop

June, 2016

7 / 32

McGill University Code verification

Methods of Code Verification in CFD I

Method of analytical solutions Pros: -non-intrusive Cons: -limited range of models (no RANS solutions) -(often) over-simplified flows (ex: Couette flow)

I

Method of manufactured solutions (MMS) Pros: -Covers all possible models/flow regimes -Verifies targeted boundary conditions -Allows for debugging Cons: -Creation of a proper MS is delicate wrt to model validity/numerical stability, etc. -Deployment needs expertise

Farshad Navah

4th High-order CFD Workshop

June, 2016

8 / 32

McGill University Code verification NS solver verification via MMS

Examples of Code and Solution Verification

Focus: Discretization and Programming Errors ◦ Round-off error ◦ Iterative convergence error

Farshad Navah

)

−→ Residual norm is at least 3 orders of magnitude lower than error norm

4th High-order CFD Workshop

June, 2016

9 / 32

McGill University Code verification NS solver verification via MMS

Manufactured solution: ρM S = ρ0 + ρx sin(aρx πx/L)

+ ρy cos(aρy πy/L)

+ ρxy cos(aρxy πx/L) cos(aρxy πy/L)

UM S = u0 + ux sin(aux πx/L) + uy cos(auy πy/L) + uxy cos(auxy πx/L) cos(auxy πy/L) VM S =

v0 + vx cos(avx πx/L)

+ vy sin(avy πy/L)

+ vxy cos(avxy πx/L) cos(avxy πy/L)

PM S = p0 + px cos(apx πx/L)

+ py sin(apy πy/L)

+ pxy cos(apxy πx/L) cos(apxy πy/L)

EM S = PM S /((γ−1)ρM S ) +

1 2 (U +V 2 ) 2 MS MS

Domain: Ω = [0, 1]2

Grids: Series of doubling isotropic quads Farshad Navah

4th High-order CFD Workshop

June, 2016

10 / 32

McGill University Code verification NS solver verification via MMS

Viscous - (Full NS) Solution: subsonic

Viscosity: µ = 0.001

Boundary conditions: weak Dirichlet

Farshad Navah

4th High-order CFD Workshop

June, 2016

11 / 32

McGill University Code verification NS solver verification via MMS

ρE error distribution versus grid refinement for P 4

(a) 4 × 4

(b) 8 × 8

(d) 32 × 32 Farshad Navah

(c) 16 × 16

(e) 64 × 64

4th High-order CFD Workshop

June, 2016

12 / 32

McGill University Code verification NS solver verification via MMS

NS solver verification Order of accuracy - P1 3.0

3.0 kρ − ρex k1

kρu − ρuex k1

2.5

kρu − ρuex k2

kρ − ρex k∞

Order of accuracy

Order of accuracy

kρ − ρex k2

2.0

1.5

1.0

2.5

2.0

1.5

1.0 10−2

h= 3.0 kρv − ρvex k1

p

10−1

10−2

(1/N )

h= 3.0 kρE − ρEex k1

2.0

1.5

1.0

(1/N )

2.5

p

(1/N )

kρE − ρEex k∞

2.0

1.5

1.0 10−2

h=

Farshad Navah

10−1

p

kρE − ρEex k2

kρv − ρvex k∞

Order of accuracy

Order of accuracy

kρv − ρvex k2 2.5

kρu − ρuex k∞

p

10−1

(1/N )

10−2

h=

4th High-order CFD Workshop

10−1

June, 2016

13 / 32

McGill University Code verification NS solver verification via MMS

NS solver verification Order of accuracy - P2 4.0

4.0 kρ − ρex k1

kρu − ρuex k1

3.5

kρu − ρuex k2

kρ − ρex k∞

Order of accuracy

Order of accuracy

kρ − ρex k2

3.0

2.5

2.0

3.5

3.0

2.5

2.0 10−2

h= 4.0 kρv − ρvex k1

p

10−2

(1/N )

h= 4.0 kρE − ρEex k1

3.0

2.5

2.0

(1/N )

3.5

p

(1/N )

kρE − ρEex k∞

3.0

2.5

2.0 10−2

h=

Farshad Navah

p

kρE − ρEex k2

kρv − ρvex k∞

Order of accuracy

Order of accuracy

kρv − ρvex k2 3.5

kρu − ρuex k∞

p

10−2

(1/N )

h=

4

th

High-order CFD Workshop

June, 2016

14 / 32

McGill University Code verification NS solver verification via MMS

NS solver verification Order of accuracy - P3 5.0

5.0 kρ − ρex k1

kρu − ρuex k1

4.5

kρu − ρuex k2

kρ − ρex k∞

Order of accuracy

Order of accuracy

kρ − ρex k2

4.0

3.5

3.0

4.5

4.0

3.5

3.0 10−2

h= 5.0 kρv − ρvex k1

p

10−2

(1/N )

h= 5.0 kρE − ρEex k1

4.0

3.5

3.0

(1/N )

4.5

p

(1/N )

kρE − ρEex k∞

4.0

3.5

3.0 10−2

h=

Farshad Navah

p

kρE − ρEex k2

kρv − ρvex k∞

Order of accuracy

Order of accuracy

kρv − ρvex k2 4.5

kρu − ρuex k∞

p

10−2

(1/N )

h=

4

th

High-order CFD Workshop

June, 2016

15 / 32

McGill University Code verification NS solver verification via MMS

NS solver verification Order of accuracy - P4 6.0

6.0 kρ − ρex k1

kρu − ρuex k1

5.5

kρu − ρuex k2

kρ − ρex k∞

Order of accuracy

Order of accuracy

kρ − ρex k2

5.0

4.5

4.0

5.5

kρu − ρuex k∞

5.0

4.5

4.0 −2

h= 6.0 kρv − ρvex k1

−2

p10 (1/N )

h= 6.0 kρE − ρEex k1

5.5

kρE − ρEex k2

kρv − ρvex k∞

Order of accuracy

Order of accuracy

kρv − ρvex k2

5.0

4.5

4.0

5.5

kρE − ρEex k∞

5.0

4.5

4.0 −2

h=

Farshad Navah

p10 (1/N )

p10 (1/N )

−2

h=

4th High-order CFD Workshop

p10 (1/N )

June, 2016

16 / 32

McGill University Code verification NS solver verification via MMS

NS solver verification Order of accuracy - P5 7.0

7.0 kρ − ρex k1

kρu − ρuex k1

6.5

kρu − ρuex k2

kρ − ρex k∞

Order of accuracy

Order of accuracy

kρ − ρex k2

6.0

5.5

5.0

6.5

6.0

5.5

5.0 10−2

h= 7.0 kρv − ρvex k1

p

10−2

(1/N )

h= 7.0 kρE − ρEex k1

6.0

5.5

5.0

(1/N )

6.5

p

(1/N )

kρE − ρEex k∞

6.0

5.5

5.0 10−2

h=

Farshad Navah

p

kρE − ρEex k2

kρv − ρvex k∞

Order of accuracy

Order of accuracy

kρv − ρvex k2 6.5

kρu − ρuex k∞

p

10−2

(1/N )

h=

4

th

High-order CFD Workshop

June, 2016

17 / 32

McGill University Code verification NS solver verification via MMS

NS solver verification qx → 2.0 × qx

Order of accuracy - P3 1.4

2.5 kρ − ρex k1

kρu − ρuex k1

kρ − ρex k2

2.0

kρ − ρex k∞

1.0

Order of accuracy

Order of accuracy

1.2

0.8 0.6 0.4 0.2

10−2

h= 1.4 kρv − ρvex k1

1.0 0.5

p

−0.5

h= 2.5 kρE − ρEex k1

kρv − ρvex k2

2.0

kρv − ρvex k∞

0.8 0.6 0.4

0.0

Farshad Navah

kρE − ρEex k2

kρE − ρEex k∞

0.5

−0.5

p

(1/N )

10−2

h=

4

th

(1/N )

1.0

0.0

h=

p

1.5

0.2

10−2

10−2

(1/N )

Order of accuracy

Order of accuracy

1.0

kρu − ρuex k∞

0.0

0.0 −0.2

1.2

kρu − ρuex k2

1.5

High-order CFD Workshop

p

(1/N )

June, 2016

18 / 32

McGill University Code verification Example of solution verification

Example of solution verification

Farshad Navah

4th High-order CFD Workshop

June, 2016

19 / 32

McGill University Code verification Example of solution verification

Turbulent Boundary Layer from TMR 2D zero-pressure-gradient flat plate with Re = 5 × 106 , M a = 0.2, χ∞ = 0.3 and χw = 0:

Figure: Domain and boundary conditions description

Discretization: 5 levels of h refinement 3 levels of p refinement: P 1, P 2 and P 3 Farshad Navah

4th High-order CFD Workshop

June, 2016

20 / 32

McGill University Code verification Example of solution verification

−3 3.00 ×10

10−4

2.95

10−5

|Cd − Cdexact|

2.90

10−6

P1 P2 P3

10−8 10−9

Cd

2.85

10−7

2.80 2.75

O(h2 ) O(h3 )

10−10

2.70

O(h4 ) 10

−11

P1 P2 P3 CFL3D FUN3D

2.65 10−3

h=

p

10−2

(1/N )

h=

(a) Estimated Cd Error

Farshad Navah

10−3

4th High-order CFD Workshop

p

10−2

(1/N )

(b) Cd

June, 2016

21 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

BS1 - DNS of Taylor-Green Vortex

Farshad Navah

4th High-order CFD Workshop

June, 2016

22 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

Code optimization CPR on Tensor-products

−→ Very sparse D and L operators

BR2 on Tensor-products

−→ Interior Penalty.

TGV for P 3 − 64 is 5 times cheaper after optimization

Farshad Navah

4th High-order CFD Workshop

June, 2016

23 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

12 simulations Resolution: 643 , 1283 , 2563

(based on dofs)

Polynomial: P 3, P 4, P 5, P 9

Farshad Navah

4th High-order CFD Workshop

June, 2016

24 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

Kinetic Energy, Ek , vs t∗ 0.14

0.14 P3 – 64 P3 – 128 P3 – 256 Spectral DNS

0.13 0.12

0.12 0.11

Ek

Ek

0.11 0.10

0.10

0.09

0.09

0.08

0.08

0.07

0.07

0.06

0.06 0

2

4

t∗

6

8

10

0

0.14

2

4

t∗

6

8

10

0.14 P5 – 66 P5 – 126 P5 – 258 Spectral DNS

0.13 0.12

P9 – 60 P9 – 130 P9 – 260 Spectral DNS

0.13 0.12 0.11

Ek

0.11

Ek

P4 – 65 P4 – 130 P4 – 255 Spectral DNS

0.13

0.10

0.10

0.09

0.09

0.08

0.08

0.07

0.07

0.06

0.06 0

Farshad Navah

2

4

t∗

6

8

10

0

4th High-order CFD Workshop

2

4

t∗

6

8

10

June, 2016

25 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

Kinetic energy dissipation, −∂Ek /∂t, vs t∗ 0.014

0.014 P3 – 64 P3 – 128 P3 – 256 Spectral DNS

0.012

−∂Ek /∂t∗

0.010

−∂Ek /∂t∗

0.010

P4 – 65 P4 – 130 P4 – 255 Spectral DNS

0.012

0.008

0.008

0.006

0.006

0.004

0.004

0.002

0.002

0.000

0.000 0

2

4

t∗

6

8

10

0.014

0

2

4

t∗

6

8

10

6

8

10

0.014 P5 – 66 P5 – 126 P5 – 258 Spectral DNS

0.012

−∂Ek /∂t∗

0.010

−∂Ek /∂t∗

0.010

P9 – 60 P9 – 130 P9 – 260 Spectral DNS

0.012

0.008

0.008

0.006

0.006

0.004

0.004

0.002

0.002

0.000

0.000 0

Farshad Navah

2

4

t∗

6

8

10

0

2

4th High-order CFD Workshop

4

t∗

June, 2016

26 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

Enstrophy, , vs time, t∗ 12

12 P3 – 64 P3 – 128 P3 – 256 Spectral DNS

8

8

6

6

4

4

2

2

0

0 0

2

4

t∗

6

8

10

0

12

2

4

t∗

6

8

10

6

8

10

12 P5 – 66 P5 – 126 P5 – 258 Spectral DNS

10

P9 – 60 P9 – 130 P9 – 260 Spectral DNS

10

8

8

6

6

ε

ε

P4 – 65 P4 – 130 P4 – 255 Spectral DNS

10

ε

ε

10

4

4

2

2

0

0 0

Farshad Navah

2

4

t∗

6

8

10

0

2

4th High-order CFD Workshop

4

t∗

June, 2016

27 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

Vorticity isocontours at x/L0 = −π and t∗ = 8 663

P = P5 1263

2583

Farshad Navah

4th High-order CFD Workshop

June, 2016

28 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

Vorticity isocontours at x/L0 = −π and t∗ = 8

Farshad Navah

Res = 2563

P3

P4

P5

P9

4th High-order CFD Workshop

June, 2016

29 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

Energy spectrum

10−1 P3 – 64 P3 – 128

10−2

Ek

10−3 10−4 10−5 10−6 10−7 100

101

k

Farshad Navah

4th High-order CFD Workshop

June, 2016

30 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

Work units vs DOFs

Work Units

107

P3 P4 P5 P9

106

105

104 105

106

107 DOFs

Farshad Navah

4th High-order CFD Workshop

June, 2016

31 / 32

McGill University BS1 - DNS of the Taylor-Green Vortex

Thank you for your attention! Questions?

Farshad Navah

4th High-order CFD Workshop

June, 2016

32 / 32

Suggest Documents