Mathematics in Image Processing Georges KOEPFLER [email protected]

MAP5, UMR CNRS 8145 ´ UFR de Mathematiques et Informatique Universite´ Rene´ Descartes - Paris 5 ` 45 rue des Saints-Peres 75270 PARIS cedex 06, France

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 1/30

Outline



Natural and Numerical Images



Mathematical Representation



Image Processing Tasks



Denoising



Segmentation



Compression

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 2/30

Natural vs. Numerical Images

50

100

150

200

250 50

100

150

200

250

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 3/30

Natural vs. Numerical Images

50



The human eye depends on a finite number of cells;

100

150

200

250 50

100

150

200

250

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 3/30

Natural vs. Numerical Images

50



The human eye depends on a finite number of cells;

100

• 150

Classical camera photos have a natural grain i.e. resolution, approached by current numerical cameras;

200

250 50

100

150

200

250

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 3/30

Natural vs. Numerical Images

50



The human eye depends on a finite number of cells;

100

• 150

Classical camera photos have a natural grain i.e. resolution, approached by current numerical cameras;

200

250 50

100

150

200

natural or digital image ?

250

⇓ we process only digital images (correctly sampled)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 3/30

Numerical Images discrete grid 75 80 85 90 95 100 105 110 115 120 125 70

80

90

100

110

120

130

140

150

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 4/30

Numerical Images discrete grid 75 80 85 90 95 100 105 110 115 120 125 70

95

80

90

100

110

126 132 118 114 104 105 89

71

70

64

68

65

65

65

73

79

88

77

85

76

122 124 113 93

89

77

66

46

60

56

68

75

72

70

71

76

88

78

96

84

117 107 102 88

58

46

33

34

42

47

61

78

89

76

91

99

90

92

82

96

105 96

83

100

105

110

115 80

93

58

13

15

18

16

22

26

33

46

64

65

88 109 127 115 84

85 100 70

17

8

11

11

13

10

13

18

24

34

44

61

88 123 144 103 84

61

94

38

4

5

8

14

15

27

48

41

30

40

49

60

69

52

89

32

6

8

15

24

30

42

66 139 42

72

59

96 101 64

38

73

36

10

14

13

22

30 104 88 204 91 132 56 127 140 99

39

61

56

13

20

31

39

38 128 95 144 104 147 77 143 167 128 100 90

37

55

46

7

22

33

62

56

94

59

77

75 146 150 191 170 152 133 114 92

26

30

27

12

28

53

73

64

78

64

78

84 120 172 232 194 194 152 128 116

22

21

19

22

35

55

95

71

75

73

76

85 102 168 215 223 237 144 118 136

35

44

44

44

45

55 102 101 68

76

70

93 128 171 203 195 221 121 120 146

44

43

47

76

50

61

95 127 83

77

72

97 143 142 148 137 145 109 127 152

32

43

54

87

68

56

74

98

86

71

73

95 116 119 128 121 120 121 139 157

28

37

61

87

83

61

58

70

76

81

95 110 123 126 128 120 125 127 146 164

25

29

56 105 97

80

70

85 103 108 122 125 127 121 125 110 115 120 154 169

26

37

63 123 111 92

29

43

65 135 115 97 107 121 125 121 118 108 104 107 112 115 121 139 153 161

24

45

87 143 128 107 115 117 126 119 116 113 113 113 123 123 141 138 167 163

82

84

86

120

130

140

150

88 129 132 99 90 117 122 75

86 119 95

96 109 123 124 124 115 110 114 109 107 110 131 156 167

88

90

92

94

96

98

100

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 4/30

Numerical Images discrete grid 75 80 85 90 95 100 105 110 115 120 125 70

95

80

90

100

110

126 132 118 114 104 105 89

71

70

64

68

65

65

65

73

79

88

77

85

76

122 124 113 93

89

77

66

46

60

56

68

75

72

70

71

76

88

78

96

84

117 107 102 88

58

46

33

34

42

47

61

78

89

76

91

99

90

92

82

96

105 96

83

100

105

110

115 80

93

58

13

15

18

16

22

26

33

46

64

65

88 109 127 115 84

85 100 70

17

8

11

11

13

10

13

18

24

34

44

61

88 123 144 103 84

61

94

38

4

5

8

14

15

27

48

41

30

40

49

60

69

52

89

32

6

8

15

24

30

42

66 139 42

72

59

96 101 64

38

73

36

10

14

13

22

30 104 88 204 91 132 56 127 140 99

39

61

56

13

20

31

39

38 128 95 144 104 147 77 143 167 128 100 90

37

55

46

7

22

33

62

56

94

59

77

75 146 150 191 170 152 133 114 92

26

30

27

12

28

53

73

64

78

64

78

84 120 172 232 194 194 152 128 116

22

21

19

22

35

55

95

71

75

73

76

85 102 168 215 223 237 144 118 136

35

44

44

44

45

55 102 101 68

76

70

93 128 171 203 195 221 121 120 146

44

43

47

76

50

61

95 127 83

77

72

97 143 142 148 137 145 109 127 152

32

43

54

87

68

56

74

98

86

71

73

95 116 119 128 121 120 121 139 157

28

37

61

87

83

61

58

70

76

81

95 110 123 126 128 120 125 127 146 164

25

29

56 105 97

80

70

85 103 108 122 125 127 121 125 110 115 120 154 169

26

37

63 123 111 92

29

43

65 135 115 97 107 121 125 121 118 108 104 107 112 115 121 139 153 161

24

45

87 143 128 107 115 117 126 119 116 113 113 113 123 123 141 138 167 163

82

84

86

90

92

94

130

140

150

88 129 132 99 90 117 122 75

96

grid of numbers or pixels

98

250

86 119 95

96 109 123 124 124 115 110 114 109 107 110 131 156 167

88

120

100

200

150

100 120 50

115 110

0 80

105 85

90

100 95

100

105

95

relief or function

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 4/30

Numerical Images (cont.)

image data

relief

topographic map

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 5/30

Mathematical representation Although discrete it is useful to represent an image with an infinite resolution, as a function on real numbers.

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 6/30

Mathematical representation Although discrete it is useful to represent an image with an infinite resolution, as a function on real numbers. Basic analysis: a real valued function of one variable   2 2 x − x2β x ∈ [−2, 2] : f (x) = α 1 − . e β 1.4

1.2

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6 −2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 6/30

Mathematical representation Although discrete it is useful to represent an image with an infinite resolution, as a function on real numbers. Basic analysis: a real valued function of one variable   2 2 x − x2β x ∈ [−2, 2] : f (x) = α 1 − . e β 1.4

1.2

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6 −2

−1.5

−1

−0.5

0

0.5

1

1.5

2

But in an image we need columns and rows: thus we use functions of two variables. Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 6/30

Mathematical representation (cont.) Consider the function of two variables x ∈ [−2, 2], y ∈ [−2, 2] thus (x, y) ∈ [−2, 2] × [−2, 2] and z = u(x, y) ∈ R . 

2

x +y u(x, y) = α 1 − β

2



e

2 +y 2

−x



.

1 z 0.8 z=f(x,y) z=f(x,y)

0.6

0.4

0.2

y x

0 2

(x,y) (x,y) O

1

2 1

0 0 −1

−1 −2

−2

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 7/30

Mathematical representation (cont.) Consider the function of two variables x ∈ [−2, 2], y ∈ [−2, 2] thus (x, y) ∈ [−2, 2] × [−2, 2] and z = u(x, y) ∈ R . 2



x +y u(x, y) = α 1 − β

2



e

2 +y 2

−x



.

1.4

1

1.2

z

1

0.8

0.8 0.6

z=f(x,y) z=f(x,y)

0.6

0.4

0.4

0.2

0.2

−0.2

0

y

−0.4

x 0 2

−0.6 2

(x,y) (x,y) O

1

2 1

0

1 0

0 −1

−1 −2

−2

−1 −2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 7/30

Mathematical representation (cont.) Consider the function of two variables x ∈ [−2, 2], y ∈ [−2, 2] thus (x, y) ∈ [−2, 2] × [−2, 2] and z = u(x, y) ∈ R . 2



x +y u(x, y) = α 1 − β

2



e

2 +y 2

−x

.



1.4

1

1.2 50

z

1

0.8

0.8 0.6

z=f(x,y) z=f(x,y)

0.6

100

0.4

0.4

0.2

0.2

−0.2

0

y

−0.4

x 0 2

150

−0.6 2

(x,y) (x,y) O

1

2 1

0

200

1 0

0 −1

−1 −2

−2

−1 −2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 250 50

100

150

200

250

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 7/30

Image processing D : digital, A : analogic digital D

m

......... .. ... LL.

OBJECT

A

-

camera scanner

ACQUISITION

A

-

sampling+quantification A/D

DIGITALIZATION

D

-



output

computer DSP

PROCESSING

@

@ @ D @ R @

analogic D/A output



Satellite images give information about natural resources, meteorological data, . . .



Medical images help detect anatomical pathologies, give quantitative data and functional informations. . .



Video surveillance is an important issue for security in public transportation. . .



Images and videos have to be stored/transmitted efficiently. . .

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 8/30

Image processing D : digital, A : analogic digital D

m

......... .. ... LL.

OBJECT

A

-

camera scanner

ACQUISITION

A

-

sampling+quantification A/D

DIGITALIZATION

D

-



output

computer DSP

PROCESSING

@

@ @ D @ R @

analogic D/A output



Satellite images give information about natural resources, meteorological data, . . .



Medical images help detect anatomical pathologies, give quantitative data and functional informations. . .



Video surveillance is an important issue for security in public transportation. . .



Images and videos have to be stored/transmitted efficiently. . .

Process images as a discrete grid of numbers or a function but take into account the visual content! Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 8/30

Edge/contour detection Detect an object thanks to its boundary and characterize boundaries by change of luminosity.

Idea:

S S L S S J  J L

S L BB

AA

S L  C  C

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 9/30

Edge/contour detection Detect an object thanks to its boundary and characterize boundaries by change of luminosity.

Idea:

S S L S S J  J L

S L BB

AA

S L  C  C

A discrete rectangular grid : directions or NW W SW

N S

NE E SE

(line,column) j−1 j j+1 i−1

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 9/30

Edge/contour detection Detect an object thanks to its boundary and characterize boundaries by change of luminosity.

Idea:

S S L S S J  J L

S L BB

AA

S L  C  C

A discrete rectangular grid : directions or NW W SW

N S

NE E SE

i−1 i i+1

(line,column) j−1 j j+1 • • • •

Finite difference operators are used, for example: p k∇u(i, j)k = (u(i + 1, j) − u(i − 1, j))2 + (u(i, j + 1) − u(i, j − 1))2 Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 9/30

Edge/contour detection (cont.)

50

100

150

200

250 50

100

150

200

250

u(l, c)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 10/30

Edge/contour detection (cont.)

50

50

100

100

150

150

200

200

250

250 50

100

150

u(l, c)

200

250

50

100

150

200

250

k∇uk (inverse colormap: 0=white, 255=black)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 10/30

Edge/contour detection (cont.)

50

100

150

200

250 50

100

150

200

250

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 11/30

Edge/contour detection (cont.)

50

50

100

100

150

150

200

200

250

250 50

100

150

200

250

50

100

150

200

250

(inverse video)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 11/30

Edge/contour detection (cont.)

un (l, c) = u(l, c) + n(l, c)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 12/30

Edge/contour detection (cont.)

un (l, c) = u(l, c) + n(l, c)

k∇un k

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 12/30

Edge/contour detection (cont.)

un (l, c) = u(l, c) + n(l, c)

k∇un k

Need to smooth / regularize / denoise the data!

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 12/30

Denoising Additive noise: a noisy pixel is very different from its neighbors. Data

Mean Filter

0

5

5

0

5

5

7

150

5

7

20

5

1

10

2

1

10

2

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 13/30

Denoising Additive noise: a noisy pixel is very different from its neighbors. Data

Mean Filter

Median Filter

0

5

5

0

5

5

0

5

5

7

150

5

7

20

5

7

5

5

1

10

2

1

10

2

1

10

2

0 ≤ 1 ≤ 2 ≤ 5 ≤ 5 ≤ 5 ≤ 7 ≤ 10 ≤ 150 =⇒ median=5

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 13/30

Median Filter

50

50

100

100

150

150

200

200

250

250 50

100

150

200

250

50

100

150

200

250

The Median Filter is non linear, gives quite good results but needs a sorting algorithm.

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 14/30

Denoising: a zoo of equations • The Mean Filter is replaced by weighted local means, this

can be written ∂u = ∆u ∂t

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 15/30

Denoising: a zoo of equations • The Mean Filter is replaced by weighted local means, this

can be written ∂u = ∆u ∂t • Non linear Partial Differential Equations:

∂u = |∇u| div ∂t



∇u |∇u|



Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 15/30

Denoising: a zoo of equations • The Mean Filter is replaced by weighted local means, this

can be written ∂u = ∆u ∂t • Non linear Partial Differential Equations:

∂u = |∇u| div ∂t



∇u |∇u|



• Total Variation Minimization:

∂u = div ∂t



∇u |∇u|



Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 15/30

Heat Equation t = 0.1

t=0

u(x, y, 0.1)

u(x, y, 0) 1

1

0

0

0.33 1.0

1

1.0

0.67 −1

−1 1.0

0.5

1.0

0.5 0.5

0.5

y

0

0

x

y

0

0

x

t=1

t = 0.5

u(x, y, 1)

u(x, y, 0.5)

1

1

0

0

0.2

1.0

1.0 0.4

0.346 0.461

0.6

−1

−1 0.5

1.0

0.230

0.115

1.0

0.5 0.5

0.5

x y

0

0

y

0

0

x

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 16/30

Heat Equation t = 0.1

t=0

u(x, y, 0.1)

u(x, y, 0) 1

1

0

0

0.33 1.0

1

1.0

0.67 −1

−1 1.0

0.5

1.0

0.5 0.5

0.5

y

0

0

x

y

0

0

x

t=1

t = 0.5

u(x, y, 1)

u(x, y, 0.5)

1

1

0

0

0.2

1.0

1.0 0.4

0.346 0.461

0.6

−1

−1 0.5

1.0

0.230

0.115

1.0

0.5 0.5

0.5

x y

0

0

y

0

0

x

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 16/30

Heat Equation: evolution

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 17/30

Heat Equation: evolution

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 17/30

Heat Equation: evolution

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 17/30

Heat Equation: evolution

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 17/30

Heat Equation: evolution

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 17/30

Heat Equation: evolution

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 17/30

Heat Equation (cont.)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 18/30

Heat Equation (cont.)

Gσ ⋆ u0 = u(., σ 2 /2)

k∇u(., σ 2 /2)k

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 18/30

Mean Curvature Motion

∂u = |∇u| div ∂t



∇u |∇u|



original

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 19/30

Mean Curvature Motion

∂u = |∇u| div ∂t



∇u |∇u|



k∇uk

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 19/30

Total Variation Minimization

∂u = div ∂t



∇u |∇u|



original

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 20/30

Total Variation Minimization

∂u = div ∂t



∇u |∇u|



k∇uk

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 20/30

Total Variation Minimization (cont.)

noisy image

denoised image

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 21/30

Total Variation Minimization (cont.)

original image

denoised image

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 22/30

Inpainting Idea:

Complete the level lines. . .

occlusions

level lines (each 20)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 23/30

Inpainting Idea:

Complete the level lines. . .

partial restoration

level lines (each 20)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 23/30

Inpainting Idea:

Complete the level lines. . .

initial level lines

level lines (each 20)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 23/30

Segmentation Analyze original image g and get a simple image u. Thus to segment an image is: • replace the original by a cartoon; Idea:

• partition the image in homogeneous regions;

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 24/30

Segmentation Analyze original image g and get a simple image u. Thus to segment an image is: • replace the original by a cartoon; Idea:

• partition the image in homogeneous regions; M UMFORD -S HAH

functional: E(K) =

Z

(u − g)2 + λℓ(K)

Ω\K

S Ω = O , O regions s.t. O ∩ O′ = ∅ S K = ∂O, set of boundaries

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 24/30

Segmentation Analyze original image g and get a simple image u. Thus to segment an image is: • replace the original by a cartoon; Idea:

• partition the image in homogeneous regions; M UMFORD -S HAH

functional: E(K) =

Z

(u − g)2 + λℓ(K)

Ω\K

S Ω = O , O regions s.t. O ∩ O′ = ∅ S K = ∂O, set of boundaries

Merge two regions O,O′ iff E(K \ (∂O ∩ ∂O′ )) < E(K) .

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 24/30

Segmentation

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 25/30

Segmentation: medical application

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 26/30

Segmentation: medical application

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 26/30

Texture Segmentation

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 27/30

Texture Segmentation

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 27/30

Texture Segmentation

Original data

gray level segmentation

wavelet coefficient segmentation

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 27/30

Color Segmentation

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 28/30

Color Segmentation

original

100 regions

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 28/30

Compression Idea:

In an image objects of different scale/size are present.

Get a pyramidal or multiscale representation of an image.

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 29/30

Compression Idea:

In an image objects of different scale/size are present.

Get a pyramidal or multiscale representation of an image.

(Images & Idea: Basarab M ATEI, University Paris 6)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 29/30

Compression with wavelets u(x, y) =

X

cλ Ψλ (x, y)

λ

(Images & Idea: Basarab M ATEI, University Paris 6)

Georges KOEPFLER – MAP5 – University Rene´ D ESCARTES – Paris 5 Mathematics in Image Processing – p. 30/30