Magic squares of Lie groups

Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras Magic squares of Lie groups Tevian Dray Department of Mathematics Oregon State U...
Author: Amber Anderson
5 downloads 0 Views 717KB Size
Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras

Magic squares of Lie groups Tevian Dray Department of Mathematics Oregon State University http://math.oregonstate.edu/~tevian

(supported by FQXi and the John Templeton Foundation) Tevian Dray

Magic squares of Lie groups

Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras

Joshua Kinkaid Department of Mathematics Oregon State University

Corinne Manogue Department of Physics Oregon State University

John Huerta Centro de An´ alise Matem´ atica, Geometria e Sistemas Dinˆ amicos Instituto Superior T´ecnico (Lisboa)

Aaron Wangberg Dept of Mathematics & Statistics Winona State University Robert Wilson School of Mathematical Sciences Queen Mary, University of London

(supported by FQXi and the John Templeton Foundation)

Tevian Dray

Magic squares of Lie groups

Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras

Book

The Geometry of the Octonions Tevian Dray and Corinne A. Manogue World Scientific 2015 ISBN: 978-981-4401-81-4 http://octonions.geometryof.org/GO

Tevian Dray

Magic squares of Lie groups

Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras

Lie Algebras History

The Freudenthal–Tits Magic Square Freudenthal (1964), Tits (1966): R C H O Vinberg (1966):

Goal:

R a1 a2 c3 f4

C a2 a2 ⊕ a2 a5 e6

H c3 a5 d6 e7

O f4 e6 e7 e8

sa(3, A ⊗ B) ⊕ der(A) ⊕ der(B) der(H) = so(3); der(O) = g2 Description as symmetry groups

[Wangberg (PhD 2007), Wangberg & Dray (JMP 2013, JAA 2014), Dray, Manogue, and Wilson (CMUC 2014)] Tevian Dray

Magic squares of Lie groups

Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras

Lie Algebras History

History Barton & Sudbery (2003): Well-understood in terms of Lie algebras. Satisfactory group description not yet known. Rosenfeld (1956/1997): Isometry groups of projective planes over A ⊗ B. Cayley-Moufang plane:

F4 ←→ OP2

Baez (2002): OK for E6 ; not for E7 , E8 . In short, more work must be done before we can claim to fully understand the geometrical meaning of the Lie groups E6 , E7 and E8 . Tevian Dray

Magic squares of Lie groups

Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras

R C H O

R su(3, R) sl(3, R) sp(6, R) f4(4)

Real Forms The Structure of E6 Symplectic Groups Conformal Groups

C su(3, C) sl(3, C) su(3, 3, C) e6(2)

Tevian Dray

H su(3, H) sl(3, H) d6(−6) e7(−5)

O f4 e6(−26) e7(−25) e8(−24)

Magic squares of Lie groups

Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras

R C H O

R su(3, R) sl(3, R) sp(6, R) f4(4)

Real Forms The Structure of E6 Symplectic Groups Conformal Groups

C su(3, C) sl(3, C) su(3, 3, C) e6(2)

H su(3, H) sl(3, H) d6(−6) e7(−5)

O su(3, O) sl(3, O) e7(−25) e8(−24)

Dray & Manogue (2010):

F4 ∼ = SO(9, 1) ⊂ E6 = SL(3, O) using SL(2, O) ∼ = SU(3, O), E6 ∼ ! ! X θ M 0 X = M= 0 1 θ† n Triality!

Tevian Dray

Magic squares of Lie groups

Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras

R C H O

R su(3, R) sl(3, R) sp(6, R) ??

Real Forms The Structure of E6 Symplectic Groups Conformal Groups

C su(3, C) sl(3, C) sp(6, C) ??

H su(3, H) sl(3, H) sp(6, H) ??

O su(3, O) sl(3, O) sp(6, O) ??

Dray & Manogue (2010):

F4 ∼ = SU(3, O), E6 ∼ = SL(3, O) using SL(2, O) ∼ = SO(9, 1) ⊂ E6 ! ! X θ M 0 X = M= 0 1 θ† n Triality!

Tevian Dray

Magic squares of Lie groups

Introduction 3 × 3 Magic Square 2 × 2 Magic Square Clifford Algebras

Real Forms The Structure of E6 Symplectic Groups Conformal Groups

The Subgroup Structure of E6 164

116 1

sl(3, O) m6 [E6 ] hQQQQ O Q mmm

m (2) Btz mmmm m mmm mmm

so(9, 1) = sl(2, O) [D5 ] O

(3)

O

so(9, 1) = sl(2, O) [D5 ] O

(3)

Btz

so(9) = su(2, O) [B4 ]

Btz

so(9) = su(2, O) [B4 ] O

hQQQ QQQ QQQ QQQ QQQ QQ

m6 mmm mmm mmm mmm mmm so(8) m hQ 6 mmm [DO 4 ] QQQQQ (1) QQQ R(1) mmm Rxℓ mmmm QQQxℓ (1) (1) (2) m QQ Rxℓ Sℓ →Sℓ mmm (1) QQQ (3) Sℓ →Sℓ mmm

so(6) [D3 ]

so(6) [D3 ]

(1)

O

so(5) [B2 ]

O

so(4) = so(3) ⊕ so(3) [D2 ]

O

so(4) = so(3) ⊕ so(3) [D2 ]

hQQQ QQGQℓ +2Sℓ(1) QQQ QQQ QQQ QQ

O

so(4) = so(3) ⊕ so(3) [D2 ]

mm6 mmm mmm (3) mmm mmm Gℓ +2Sℓ mmm (2)

Gℓ +Sℓ

so(3) [B1 ] O

Gℓ +Sℓ1

su(3, 1, H)1 [C ]

4 £@ @ O O ££ ££ ££ ££Gℓ +S 1 Aℓ £ ℓ £ ££ ££ GF

^

Gℓ −2Sℓ

so(5) [B2 ]

O

su(3, O) [F4 ] G O

`

Aℓ

Aℓ

Â?

6V

sl(3, H) ⊕ su(2, C)C [A5 ⊕O A1 ]

sl(2, O) = so(9, 1) [D5 ] \

}> }} }} }} }} }} }} ED } } }} 1 Btz

2 Aℓ ,Btz

su(2, 1, H)1 [C3 ]

(3)

Gℓ −2Sℓ

so(5) [B2 ]

@A

O

(2)

Gℓ −2Sℓ

H

/O

so(6) [D3 ]

O

O O

2 Btz

so(7) = su(1, O) [B3 ]

O

su(2, 1, O) [F4(36,16) ]

sl(2, 1, H) [A5 ]

1 Btz

so(7) = su(1, O) [B3 ] O

1 Btz 2 Btz

Gℓ +Sℓ1

so(9) = su(2, O) [B4 ]

so(7) = su(1, O) [B3 ] O

B1 2 tz Btz

O

Btz →Btz

(2)

(1)

Btz

sl(2, 1, H) ⊕ su(2, C)2 [A5 ⊕ A1 ]

QQQ B (2) QQQtz QQ (1) QQQ

(1)

Btz

so(9, 1) = sl(2, O) [D5 ]

. sl(3, O) 2 [E6 ] h O > }} }} }} } } 2 1 Btz Btz }} } 2 Btz }} } } }}



su(2, O) = so(9) o [B4 ]

Aℓ

sl(3, H) [A5 ] [

O

1 Btz

? _ so(8)

[D4 ]

Gℓ +Sℓ1

2 Btz

Gℓ +Sℓ1

Aℓ }> H ±G O }} µµ ±± }} µµ Aℓ ± 1 Rxℓ }} µ G1 +Sℓ1 ±± 1 }} Rxℓ µµ ±± BC }} µµ }} ±±± } µ } }} µµ ±± @Aµµ ±± su(3, H)1 sl(2, H) ±± su(1, O) = so(7) µµ Aℓ µ ±±± [C3 ] [B3 ] [A = D ] µ 3 3 V.. Gℓ +Sℓ1 µµ e ± > O ] ]

Suggest Documents