

	 Home
	 Add Document
	 Sign In
	 Create An Account

M A T H E M A T I C A L I N D U C T I O N P R O O F B Y C O N T R A D I C T I O N S T R U C T U R A L I N D U C T I O N

Proof Techniques MATHEMATICAL INDUCTION PROOF BY CONTRADICTION STRUCTURAL INDUCTION
Mathematical induction 𝑃 0 & ∀𝑘 𝑃 𝑘 → 𝑃 𝑘 + 1
→ ∀𝑛 𝑃(𝑛)
 Give...

Author:
Robyn Caldwell

 42 downloads
 1 Views
507KB Size

 Report

 Download PDF

Recommend Documents

I n d u s t r i a l A u t o m a t i o n P r o d u c t s

I N S T I T U T O P O L I T E C N I C O N A C I O N A L

I N S T I T U T O P O L I T E C N I C O N A C I O N A L

D o c t r i n a D o c t r i n a

K T H I n f o r m a t i o n a n d C o m m u n i c a t i o n T e c h n o l o g y

C O N T R A T O D E S U M I N I S T R O

B A T H R O O M F U R N I T U R E UNIQUE. c o l l e c t i o n

C O N N E C T I C U T C H I L D R E N S M E D I C A L C E N T E R C O N T I N U I N G M E D I C A L E D U C A T I O N

C O N N E C T I C U T C H I L D R E N S M E D I C A L C E N T E R C O N T I N U I N G M E D I C A L E D U C A T I O N

C O N N E C T I C U T C H I L D R E N S M E D I C A L C E N T E R C O N T I N U I N G M E D I C A L E D U C A T I O N

N A T I O N A L N U M I S M A T I C C O L L E C T I O N (N N C) L I B R A R Y A C Q U I S I T I O N S (THE N E T H E R L A N D S)

I N S T I T U T O P O L I T E C N I C O N A C I O N AL

H E L L E N I C O R T H O D O X C H U R C H O F T H E A N N U N C I A T I O N

I N T R O D U C T I O N T O T H E R M O F O R M I N G

A N N U A L R E P O R T A R T S & C U L T U R E C O M M U N I T Y I N I T I A T I V E S E D U C A T I O N H E A L T H

T I T U L O P R I M E R O C A P I T U L O U N I C O. Disposiciones Generales

E T H N I C T R A D I T I O N A L N A T I O N A L C E L T I C M U S I C

H E L P F U L T I P S F O R O U T O F S C O P E T O P I C S O N T H E I R S A D V A N C E D C E R T I F I C A T I O N E X A M

F E D E R A L C H A M B E R O F A U T O M O T I V E I N D U S T R I E S A U S T R A L I A N A U T O M O T I V E I N D U S T R Y

SCHOOL FORMAL MENUS I N T R O D U C T I O N S C H O O L F O R M A L P A C K A G E S M E N U C H O I C E S B U F F E T M E N U C O N T A C T

C O M M U N I C A T I N G S C I E N C E, R I S K C O M M U N I C A T I O N A N D S T R A T E G I E S I N C A S E O F C R I S E S

Co n s t i t u t i o n a l populism a n d r e e le c t i o n s, i n s t i t u t i o n a l

M E M O R I A. I N S T I T U C I O N A L

O F I C I N A D E C O N C U R S O S D E A R Q U I T E C T U R A D E M A D R I D

Proof Techniques MATHEMATICAL INDUCTION PROOF BY CONTRADICTION STRUCTURAL INDUCTION

Mathematical induction 𝑃 0 & ∀𝑘 𝑃 𝑘 → 𝑃 𝑘 + 1

→ ∀𝑛 𝑃(𝑛)

 Given a predicate P(n) over natural numbers n In order to prove that P(n) holds for every n It is enough to prove

P(0) P(k) -> P(k+1)

P holds for 0 if P holds for an arbitrary value k, it also holds for k+1

Proof by contradiction ¬𝑆 → 𝑓𝑎𝑙𝑠𝑒 → 𝑆

To prove that some statement S is true 1. Assume instead that S is false 2. Deduce a contradiction Since “not S” was the only thing we assumed, that must be where the problem lies. So S can’t have been false after all. S must be true (which is what we wanted to prove).

Example

Using proof by contradiction, prove the statement S given by 𝑃 0 & ∀𝑘 𝑃 𝑘 → 𝑃 𝑘 + 1

→ ∀𝑛 𝑃(𝑛)

In other words, prove that mathematical induction really does work.

1. Assume S is false The statement S S = 𝑃 0 & ∀𝑘 𝑃 𝑘 → 𝑃 𝑘 + 1

→ ∀𝑛 𝑃(𝑛)

is of the form A -> B, where A = 𝑃 0 & ∀𝑘 𝑃 𝑘 → 𝑃 𝑘 + 1

B = ∀𝑛 𝑃(𝑛)

To make S false, we need to assume that A is true but B is false. Any others choices would make “A -> B” true.

1. Assume S is false (cont.) Since A is a conjunction, the only way to make it true

is to assume that both parts are true simultaneously

P(0) (forall k)(P(k) -> P(k+1))

 Since B is the statement (forall n)P(n), its negation is

the statement “it is not the case that P(n) is true for all n”, or in other words,

(exists n)(¬P(n))

1. Assume S is false (cont.)

 So, when we assume S is false, we are really

making three assumptions:

A1: A2: A3:

P(0) (forall k)(P(k) -> P(k+1)) (exists n) ¬P(n) Naming the assumptions is important [we’ll need to refer to them later]

2. Deduce a contradiction [A3] tells us that there’s at least one value of n for

which P(n) is false. There may be several such values.

Consider the set of all n’s for which P(n) fails Wrong = { n | ¬P(n) } This is a set of natural numbers, so it has a smallest

member, call it w.

2. Deduce a contradiction (cont.) What can we say about the number w? P(w) fails, because w is in Wrong, so… w can’t be 0, because P(0) holds by [A1], so… there is some v such that w = v + 1. What can we say about the number v? v (= w-1) is smaller than w, so… v is not in Wrong, because w is the smallest number in Wrong In other words, P(v) holds.

2. Deduce a contradiction (cont.) But now… P(v) holds, so… P(v+1) holds, by A2, so… P(w) holds, because w = v+1 And this gives us the required contradiction, because

we know that P(w) actually fails. So S must be true, i.e. mathematical induction really

does work.

Nat Mathematical induction tells us when P(n) is true for

all natural numbers n But we’re computer scientists, not mathematicians… we can’t really define complete infinite sets (like the natural numbers). We use recursive definitions instead. data Nat = Zero | Succ Nat

Induction over Nat Assuming Nat is an accurate implementation of the natural numbers, we can deduce: Given a predicate P defined on Nat To prove P(n) holds for all n in Nat, it is

enough to prove

P(Zero) P(k) -> P(Succ k)

But is this actually valid?

Nat vs the Natural Numbers Does Nat correctly implement the natural numbers? It is certainly true that every natural number is either

0 or else of the form (m+1) for some m So every natural number n can be represented by a value in Nat

0 is represented by Zero 1 is represented by Succ Zero 2 is represented by Succ (Succ Zero)

and so on.

Nat vs the natural numbers (cont.) But consider this code:

loop :: Nat loop = Succ loop This is valid Haskell, and loop is a valid object of type Nat But loop cannot correspond to any natural number n, because that number would satisfy the impossible equation n = n + 1.

Well-defined values We’ll say that a value in Nat is finite provided it is

either

Zero; Succ n

or else of the form where n is itself finite

 The value loop is not finite. We can think of it as an

extra, “infinite”, value.

Induction over Nat (revisited) Basic mathematical induction doesn’t tell us anything about the “extra” values that don’t correspond to natural numbers. Given a predicate P defined on Nat To prove P(n) holds for all finite n in Nat, it is

enough to prove

P(Zero) P(k) -> P(Succ k)

Induction Principle for List a We can extend this idea to other algebraic data types as well. data List a = Empty | Push a (List a)

 Given a predicate P defined on List a To prove P(l) holds for all finite l in List a, it is

enough to prove

P(Empty) P(k) -> P(Push x k)

for arbitrary x :: a

 Says nothing about loop = Push x loop

Induction Principle for Tree a data Tree a = Empty | Node (Tree a) a (Tree a) Given a predicate P defined on Tree a To prove P(n) holds for all finite t in Tree a, it is

enough to prove

P(Empty) P(l) & P(r) -> P(Node l x r)

for arbitrary x :: a

 Says nothing about loop = Node loop x loop

Induction over general data types Each data type has its own induction principle To state the relevant principle, you first need to

describe the data type…

data T a1 … am = C1 (T1 a1 … am) … (Tm1 a1 … am) | … | Cn (T1 a1 … am) … (Tmn a1 … am) In general: m type variables and n constructors (for some m and n)

What data types look like data T a1 … am = C1 (T1 a1 … am) … (Tm a1 … am) | … | Cn (T1 a1 … am) … (Tm a1 … am) Example data Mixture a b c = NewMix | PairMix (Either a b) a b (Tree c) | ... | OtherMix (Mixture a c b) c (List a)

Structural Induction data Mixture a b c = NewMix | PairMix (Either a b) a b (Tree c) | ... | OtherMix (Mixture a c b) c (List a)

1. "Given a predicate P over , to prove P(t) holds for all finite t, it is enough to prove…" 2. Deal with each constructor in turn. 3. Identify whether the constructor refers to the type being defined.

Structural Induction (cont.) data Mixture a b c = NewMix | PairMix (Either a b) a b (Tree c) | ... | OtherMix (Mixture a c b) c (List a)

NewMix 1. Does it refer to the main type? 2. No, it's a base case. 3. Need to prove P(NewMix).

Structural Induction (cont.) data Mixture a b c = NewMix | PairMix (Either a b) a b (Tree c) | ... | OtherMix (Mixture a c b) c (List a)

PairMix (Either a b) a b (Tree c) 1. Does it refer to the main type? 2. No, it's a base case. 3. Need to prove P(PairMix e x y t), for arbitrary e :: Either a b, x :: a, b :: y and t :: Tree c.

Structural Induction (cont.) data Mixture a b c = NewMix | PairMix (Either a b) a b (Tree c) | ... | OtherMix (Mixture a c b) c (List a)

OtherMix (Mixture a c b) c (List a) Does it refer to the main type? 1. YES, it's a recursive case. 2. Need to prove P(m) -> P(OtherMix m z l), for arbitrary z :: c and l :: List a.

Example: Another type of tree data NewTree a = Node a [NewTree a]

Node 2 [Node 1 [Node 2 Node 2 Node]], Node 3 [Node 2 Node 3 Node 1 Node 3]]

[], [1 []

[], [], [], []

Example: Another type of tree (cont.) data NewTree a = Node a [NewTree a]

1. Only one constructor. 2. Does it refer to the type being defined? 3. YES. 4. What does a typical value look like? Node x [t1,...,tn]

"To prove P(t) for all finite t of type Tree a, it is enough to prove that

P(t1) & ... & P(tn) -> P(Node x [t1,...,tn])

for arbitrary n and x :: a.

Example: Another type of tree (cont.) "To prove P(t) for all finite t of type Tree a, it is enough to prove that

P(t1) & ... & P(tn) -> P(Node x [t1,...,tn])

for arbitrary n and x :: a.

The "base case" (leaf) corresponds to taking n = 0. In that case there are no conditions on the left; as part of proving the statement above, we will have proven

P(Node x [])

Example: Another definition of Nat data NewNat = MkNat [NewNat] deriving Show zero :: NewNat succ :: NewNat -> NewNat zero = MkNat [] succ n@(MkNat ns) = MkNat (n:ns) *Main> Main.succ zero MkNat [MkNat []] *Main> Main.succ it MkNat [MkNat [MkNat []],MkNat []]

0 = [] 1 = [0] 2 = [1,0] … n+1 = [n,...,0] … Notation n@(MkNat ns)

n is an alias for MkNat ns

Structural Induction over NewNat data NewNat = MkNat [NewNat] 1. Only one constructor, which DOES refer to the type being defined. MkNat [n1,...,nj] 2. Typical element has the form "To prove P(t) for all finite n of type NewNat, it is enough to prove that

P(n1) & ... & P(nj) -> P(MkNat [n1,...,nj])

for arbitrary j.

The usual base case (zero) corresponds to j = 0

"prove P(MkNat [])"

Summary Mathematical induction lets us prove statements

P(n) for all natural numbers n The natural numbers are only one data type among many Given an arbitrary type T, we can formulate a "principle of structural induction for T" which tells us how to prove a statement P(t) for all finite t :: T. Each data type has its own principle. NEXT SECTION How do we actually use structural induction to prove things?

Suggest Documents

I n d u s t r i a l A u t o m a t i o n P r o d u c t s

Read more

I N S T I T U T O P O L I T E C N I C O N A C I O N A L

Read more

I N S T I T U T O P O L I T E C N I C O N A C I O N A L

Read more

D o c t r i n a D o c t r i n a

Read more

K T H I n f o r m a t i o n a n d C o m m u n i c a t i o n T e c h n o l o g y

Read more

C O N T R A T O D E S U M I N I S T R O

Read more

B A T H R O O M F U R N I T U R E UNIQUE. c o l l e c t i o n

Read more

C O N N E C T I C U T C H I L D R E N S M E D I C A L C E N T E R C O N T I N U I N G M E D I C A L E D U C A T I O N

Read more

C O N N E C T I C U T C H I L D R E N S M E D I C A L C E N T E R C O N T I N U I N G M E D I C A L E D U C A T I O N

Read more

C O N N E C T I C U T C H I L D R E N S M E D I C A L C E N T E R C O N T I N U I N G M E D I C A L E D U C A T I O N

Read more

N A T I O N A L N U M I S M A T I C C O L L E C T I O N (N N C) L I B R A R Y A C Q U I S I T I O N S (THE N E T H E R L A N D S)

Read more

I N S T I T U T O P O L I T E C N I C O N A C I O N AL

Read more

H E L L E N I C O R T H O D O X C H U R C H O F T H E A N N U N C I A T I O N

Read more

I N T R O D U C T I O N T O T H E R M O F O R M I N G

Read more

A N N U A L R E P O R T A R T S & C U L T U R E C O M M U N I T Y I N I T I A T I V E S E D U C A T I O N H E A L T H

Read more

T I T U L O P R I M E R O C A P I T U L O U N I C O. Disposiciones Generales

Read more

E T H N I C T R A D I T I O N A L N A T I O N A L C E L T I C M U S I C

Read more

H E L P F U L T I P S F O R O U T O F S C O P E T O P I C S O N T H E I R S A D V A N C E D C E R T I F I C A T I O N E X A M

Read more

F E D E R A L C H A M B E R O F A U T O M O T I V E I N D U S T R I E S A U S T R A L I A N A U T O M O T I V E I N D U S T R Y

Read more

SCHOOL FORMAL MENUS I N T R O D U C T I O N S C H O O L F O R M A L P A C K A G E S M E N U C H O I C E S B U F F E T M E N U C O N T A C T

Read more

C O M M U N I C A T I N G S C I E N C E, R I S K C O M M U N I C A T I O N A N D S T R A T E G I E S I N C A S E O F C R I S E S

Read more

Co n s t i t u t i o n a l populism a n d r e e le c t i o n s, i n s t i t u t i o n a l

Read more

M E M O R I A. I N S T I T U C I O N A L

Read more

O F I C I N A D E C O N C U R S O S D E A R Q U I T E C T U R A D E M A D R I D

Read more

×
Report "M A T H E M A T I C A L I N D U C T I O N P R O O F B Y C O N T R A D I C T I O N S T R U C T U R A L I N D U C T I O N"

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

Copyright © 2024 KIPDF.COM. All rights reserved.

About Us |
Privacy Policy |
Terms of Service |
Help |
Copyright |
Contact Us

×
Sign In

Email

Password

 Remember me

Forgot password?

Sign In

 Login with Google
 Login with Facebook

