Location of Principal Epithermal Gold Deposits

High- and intermediate-sulfidation deposits Geneva, 13 October 2014 Lithocaps and high- to intermediatesulfidation epithermal deposits • Principal ...
0 downloads 0 Views 18MB Size
High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Lithocaps and high- to intermediatesulfidation epithermal deposits •

Principal characteristics



Origin of features, background



Case examples, variations

Exploration implications

Université de Genève : 13 October 2014

Jeffrey W. Hedenquist Ottawa, Canada

Location of Principal Epithermal Gold Deposits Western Pacific Belt

Tethys Belt

Eastern Pacific Belt .

Arribas et al., 2000

J.W. Hedenquist

1

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Kochbulak

Sillitoe and Hedenquist, 2003

Epithermal deposit types (end-members!) Arcs andesite

Shallow intrusion source of NaCl

Kupol

Rifts bimodal

Basalt source of H2S?

Hedenquist et al., 2000

Porphyry systems

High-sulfidation Au-Ag-Cu

Lacustrine beds

Intermediate sulfidation Au-Ag

Base of lithocap

Porphyry Cu-Au

Sillitoe, 2010 Economic Geology

J.W. Hedenquist

2

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Kawah Ijen, Java: volcanic crater with acidic lake

pH 0.0 Condensation of acid magmatic volatiles, SO2, HCl

Colloidal silica in suspension, and deposited in laminated sediments (also enargite, covellite, stannite in native S)

Photograph: Pierre Delmelle

Volcan Poás, Rica Volcan Costa Poás, Costa Rica

J.W. Hedenquist

3

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Volcan Poás, Costa Rica

Acid moat lake around dome, laminated siliceous sediments, paleosurface...

Chaquicocha

J.W. Hedenquist

4

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Tony Longo

Yanacocha laminated siliceous lake seds

Formation of advanced argillic alteration: hypogene & steam heated Steam-heated blanket CO2, H2S H2S + 2 O2 = H2SO4 pH >2 pH 3 H2SO4 + H2S HCl, SO2, CO2, H2S hypogene alteration

H2O, NaCl, SO2, HCl, CO2, H2S, ...

J.W. Hedenquist

CO2, H2S steam-heated alteration

5

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Types of epithermal deposits 3 endmember styles: two in volcanic arcs, 1 in rifts •

Hign sulf’n bodies: Cu-Au-As, sulfide rich, andesite arcs • Hosted by lithocaps: advanced argillic zones over porphyry systems



Inter. sulf’n veins: Ag-Au ± Zn-Pb, sulfide rich, andesite arcs • Zoned and/or complex mineralogy (intrusion related, diatreme) • Variable Au:Ag:bms transitional style, deep magma? HS (or lithocap) and IS(Mexican): locally affiliated; also deeper porphyry



Low S’n veins: Au-Ag bonanzas, sulfide poor, bimodal setting • LS veins: Au-Ag-Te, sulfide poor, alkalic association

J.W. Hedenquist

6

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

III

II I

Three epithermal deposit types to model / target: I. Low-grade, disseminated, oxidized or leachable ore II. Medium-grade, unoxidized and refractory deposit III. Structurally controlled, high-grade veins or lodes

Examples of epithermal deposits (w/ porphyry) •

HS replacements: Goldfield, Summitville; Quimsacocha; Yanacocha, Pierina, Alto Chicama; El Indio, La Coipa, PascuaVeladero; Chelopech, Bor; Chinkuashih; Zijinshan; Lepanto; Mulatos, Sauzal, Orisyvo

• Barren lithocaps: common, W. US, Andes, Asia, etc. (Shuteen) •

IS veins: Many Mexican Ag deposits; Comstock, Creede; Andean (“Cordilleran”), Quirivilca, Arcata; Fruta del Norte; San Jose; Victoria, Baguio; Kelian; Kushikino, Toyoha; Rosia Montana, Tethys belt



LS veins: Midas, Sleeper; El Peñón; Esquel; Hishikari; Kupol; Ovacik; (Cienega, Pinos Altos) • LS veins, alkalic: Cripple Creek, Emperor, Porgera, Ladolam

J.W. Hedenquist

7

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Geologic setting of HS (and IS) deposits Circum Pacific, 44 deposits

• • • • •

Neutral - mild extension, calc-alkaline andesite-dacite arcs 22 Volcanic domes (single, complex, summit; not host) 12 Central vent volcanoes (including IS) 3 Calderas 4 Diatremes 10 Insufficient information Hosts: A/D flows, bxs, ignimbrites, intrusions, seds LS deposits: Bimodal (rhyolite domes-basalt dikes) in extensional settings: Intra, near, and backarc; postcollision rifts (non porphyry) Arribas, 1995; White et al., 1995, Sillitoe, 1999; pers. obs.

Sl Ya RMt

Wa Vi

To

Waldemar Lindgren, 1922: “epithermal” = over, above; ~1 km deep

Arcs HS

IS

Rifts alkalic LS

LS(a)

Hedenquist et al., 1996, 2000

J.W. Hedenquist

8

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Temperature-dependent alteration mineralogy Hedenquist et al. (1996) from Henley and Ellis (1983), Reyes (1990)

HS replacements: silicic host, quartz-alunite halo (kaolinite, dickite, pyrophyllite, diaspore, topaz); alunite, barite, anhydrite • Barren lithocaps: silicic core, quartz-alunite halo, other adv. arg. minerals

musc

IS veins: muscovite (“sericite”); quartz, rhodochrosite, barite, anhydrite; local (early?) hi-T advanced argillic structures (e.g., LS, shallow (2

qtz-alun

qtzalun

10 - 100s m

4-6

2 - 4 10 g/t

13

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Residual quartz, vuggy : Tucari

Advanced argillic slides: 11

(if scanned can be reduced to 5)

Residual quartz, vuggy: Pierina

1) Hypogene acidic vapor condensates (pH~1 leaching, residual quartz)

Hypogene alunite, El Tambo Arribas et al., 2000

Quartz-alunite, Summitville

Residual quartz, vuggy: Summitville

White Island, New Zealand: High to low T fumaroles Steam-heated acid sulfate waters: can also occur over hypogene acidic fluids

~110 C

High-temperature hypogene vapors, ≤800 C with HCl, SO2

Steam-heated zone, ~100 C (CO2, H2S)

J.W. Hedenquist

14

High- and intermediate-sulfidation deposits

Domes 16.2, 24.8 Ma

Geneva, 13 October 2014

Alunite: 15.5, 17.3, 20.2 Ma

20 km

Falda Esperanza

La Coipa, to NW

1 km

Puren La Coipa

Arribas et al., 2005

Coipa Norte: Steam-heated cristobalite-aluniteKaolinite blanket over residual quartz zone

J.W. Hedenquist

15

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Puren, Chile

H2S + 2 O2 = H2SO4 Steam-heated alunite-kaolinite Puren Norte: 1.5 Moz

SiO2, Fe+++

chalcedony blanket

Puren Norte IS veins, 1.5 Moz Au eq. (Ag, Zn, Cu) vadose zone: steam-heated blanket Shallow geochemical anomalies (Ag…)

South central Peru

Chalcedony horizon at paleowater table, below steam-heated blanket of alunite-kaolinite (now eroded) Kaolinite, alunite…

J.W. Hedenquist

16

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Arribas et al., 2000

2) Steam-heated advanced argillic blanket, La Coipa

3) Supergene alunite, Rodalquilar

Massive supergene alunite, Rodalquilar; post-mineral weathering oxidation

Supergene oxidation critical to economics!

Supergene alunite, Riaza

Supergene alunite, Rodalquilar

Rodalquilar, Spain: looking ~east

J.W. Hedenquist

17

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Rodalquilar, Spain Arribas et al., 1995

Drilling beneath supergene alunite blanket; a mistake here....

Sonomi volcano

1 km

J.W. Hedenquist

18

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Nansatsu district, S Kyushu, looking east: Iwato HS deposit, Maruyama pit Inset: qtz-alun halo, sharp ctc with vuggy qtz, to r.)

Urashima et al., 1981

Tuff breccia Nansatsu Group

J.W. Hedenquist

19

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Iwato, Arabira rebody: Structural control to alteration and ore (in feeders)

30 m

Mulatos, Mexico: “Residual quartz is steep”, and must be sampled

J.W. Hedenquist

Sauzal, Mexico

20

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Cajamarca district, Peru Yanacocha district: supergene oxidized high-sulfidation Au (51.9 Moz Au, PR) Minas Conga, Perol: porphyry Au-Cu (641 Mt @ 0.3% Cu, 0.69 g/t Au) Co. Corona: porphyry Au-Cu (~300 Mt @ 0.3% Cu, 0.5 g/t Au) Michiquillay: porphyry Cu-Au (737 Mt @ 0.65% Cu, 0.16 g/t Au) Galeno: porphyry (445 Mt, 0.38% Cu, 0.11 g/t Au) Gustafson et al., 2004

Paleozoic-Mesozoic sedimentary rocks Co. Corona Perol-Cocanes Cerro Yanacocha

16-21 Ma Galeno

8-12 Ma CretaceousTertiary intrusive rocks

Tertiary volcanic rocks

Kupfertal

Michiquillay

40 km

Yanacocha

Kupfertal

oblique aerial to NE

J.W. Hedenquist

21

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Perol, Cocañez: 8 km

Kupfertal

5 km

Longo and Teal, 2005

Maqui Maqui; 3

Cerro Yanacocha; 25 Norte, Oeste, Sur, Encajon (Verde - sulfide)

Cerro Negro; 1

TapadoCorimayo; 4

La Quinua; 9 Kupfertal porphyry: KUP-3

J.W. Hedenquist

CarachugoCarachugoChaquicocha;10 6 Chaquicocha; San Jose; 4

2 km

22

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Gold deposited in leached core of deposits

Yanacocha Norte pH ~

>6

4-6

2-4

0.9 Mt Cu & 102 t Au

Buaki porphyry

FSE porphyry: 891 Mt @ 0.5% Cu & 0.7 g/t Au

Victoria veins, 11 Mt @ 7.3 g/t Au + AgCu-Pb-Zn

Guinaoang porphyry, 500 Mt @ 0.4% Cu & 0.4 g/t Au

Teresa veins, 0.8 Mt @ 5.74 g/t Au Nayak veins

1 km

Mankayan district, Luzon: geologic map

Mohong Hill porphyry + HS Chang et al., 2011

J.W. Hedenquist

29

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Lepanto high-sulfidation deposit, Far Southeast porphyry, and Victoria/Teresa intermediate sulfidation veins, Luzon, Philippines

Lepanto

FSE lithocap

From Palidan slide to north Unconformity and silicic-alunite (~1.4 Ma) lithocap – cliffs

Surface projections of Victoria-Teresa IS vein & Lepanto HS enargite, over Far Southeast porphyry Arribas et al. (1995); Claveria (2001); Hedenquist et al. (2001)

Alunite 1.40-1.45 Ma Enargite-Au

Porphyry Cu Hydro Bt 1.40-1.45 Ma Ser ~1.35 Ma X Horn 1.45 Ma

IS Au-Ag veins X Bt 1.18 Ma

Teresa veins

J.W. Hedenquist

Bt 2.2-1.8 Ma

Bulalacao ?

X Illite porphyry Wallrock, ~1.4 Ma Vein, ~1.3-1.15 Ma

30

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Targeting IS veins Present surface above Victoria veins, to south

Victoria-Teresa veins

Surface alteration (projection of veins)

Weak montmorillonite+pyrite; illite-montmorillonite+pyrite at lower elevation

DNK: dickite, nacrite, kaolinite, or any combinations

J.W. Hedenquist

31

High- and intermediate-sulfidation deposits

iX: illite crystallinity

Geneva, 13 October 2014

DNK: dickite, nacrite, kaolinite, or any combinations

Mankayan: Linked porphyry and epithermal deposits (1.4 to 1.2 Ma), both lithocap-hosted high- sulfidation deposit, and intermediatesulfidation veins

Lepanto FSE porphyry

Victoria veins Lepanto

500 m FSE

J.W. Hedenquist

32

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Y. Watanabe (2004)

Gold provinces in Kyushu

Kushikino: Mt Kamuridake to east capped by silicic zones, adv. argillic halos Kushikino IS veins: qtz-calcite-Au

Kushikino IS veins 2 km west

J.W. Hedenquist

33

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Volcanic setting of Kushikino IS deposit, Kyushu Volcanism: 3.6-3.9 Ma Muscovite (halo to pyrophyllite): 3.4-3.8 Ma Adularia-Au: 3.4-3.7 Ma (Izawa and Zeng, 2001)

55 t Au production

100200 m

500 m

0m

Arcata, Perú: IS Ag-Au vein: >3,000 t Ag, 30 t Au advanced argillic halo to veins at surface Candiotti et al. (1990)

J.W. Hedenquist

34

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Arcata, Perú: IS Ag vein: qtzrhodochrosite

Selene dome and IS Ag-vein system, Peru

Dietrich et al., 2007

1 km

Barren 14.714.1 Ma

13.7 Ma

13.5 Ma

J.W. Hedenquist

35

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Porphyry systems

Residual quartz (vuggy)

± enargite, Au (HS) Quartz-alunite

IS veins

Base of lithocap

Sillitoe, 2010

Porphyry Cu (Au)

Miocene volcanic arc, Peru:

Intermediate: Lower T magmatic, 100 Moz gold in high-sulfidation lithocap-hosted deposits, discovered in ~16 years

1996 (1998)

1997, 2000 (2002, 2004) ARUNTANI discovery (production) 2008: CHUCAPACA

J.W. Hedenquist

36

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Late Miocene high-sulfidation epithermal gold deposits of the Aruntani district, southern Peru

Recent discovery of a new ore type in an abandoned mining district

Dante Loayza, Jorge Barreda, Alvaro Crósta, Jeffrey Hedenquist and Wolfgang Morche: SEG Perth 2004

Tucari south: colluvial scree deposit of 5 MT @ 1.5 g/t gold (approx. 300,000 oz gold)

J.W. Hedenquist

37

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Discovery of Santa Rosa (1997/2002, 0.4 Moz Au) led to Tucari (2000/2004, 2+ Moz) Reawakened interest in region...

Tucari, 2002: 5000 m

Lago Titicaca

Chucapaca

Aruntani

J.W. Hedenquist

38

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Chucapaca: Dacite dome, lithocap alteration, low grades

Canahuire pseudogossan 2.5 km NE, diatreme host (intermediate sulf’dn assemblage)

Discovery Sept 2008: Buenaventura • Resource, mid 2011: 7.6 Moz Au eq.



Canahuire resource model & pit shell: Chucapaca JV W

E

1.3 km

350 m 100E 300W

g/t Au

700W

Looking North

• IS

mineralization related to plunging diatreme

• Think

J.W. Hedenquist

laterally (figuratively and literally)

39

High- and intermediate-sulfidation deposits

Geneva, 13 October 2014

Erosion level?

Exploration for epithermal and porphyry deposits •

Large variations between deposit types, styles and districts



Understand possibilities in the porphyry system



Model the prospect, do not fit prospect to a (“the”) model



Beware generalizations



Observations: • Lithology: effect on permeability • Structure: relation to lithology; feeders, veins • Alteration mineralogy, and zonation • Paleosurface, erosion level: topography, paleohydrology

J.W. Hedenquist

40

Suggest Documents