Light Emitting Plasma Lighting ( LEP ) Solutions Manual

Light Emitting Plasma Lighting ( LEP ) Solutions Manual November 2014 Index 1. Technology Background . . . . . . . . . . . . . . . . . . . . . . ....
Author: Aldous Blake
4 downloads 0 Views 2MB Size
Light Emitting Plasma Lighting ( LEP ) Solutions Manual

November 2014

Index 1. Technology Background

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

Key Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 How LEP Technology Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Bulb Thermodynamics and Lifetime Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 LEP System Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. STA-41-01 Technical Data and Reliability Guide .

. . . . . . . . . . . . . . . . . . . . . . . . .

6

Environmental Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DVT/HALT Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Lumens/CCT Versus Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Lumens/CCT Versus Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Lumens/CCT Versus Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Profile Ignition and Wam-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Start Time Versus Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 MTBF Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 MTBF Study Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Accelerated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Notes on Lumens Maintenance and CCT Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Lumen Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 CCT Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Field Trial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 UV and IR Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Compliance & Performance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Product Spec Sheet

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

BLP1000 High Mast Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 R400 Roadway Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. Case Studies

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

Ford Dealership Showroom Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 International Shipping Port Upgrades to LEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 LEP Replaces Fluorescent Lighting on Manufacturing Floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LEP Illuminates High School Gymnasium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 LEP Parking Lot Lighting in Silicon Valley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 LEP Roadway Lighting in Guangdong, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 600 Indiana Street Lights Upgraded to LEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 LEP Chosen To Light New Steel Mill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Gymnasium Lighting in Oakland, CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1

AMKO SOLARA LEP At AMKO SOLARA we use advanced lighting technology at the core of every luminaire to provide superior lighting performance in a highly efficient, intelligent, and durable design. Some technology highlights include: Light Emitting Plasma (LEP) - Plasma is a high-intensity light source that shares the same benefits as LED, like longevity and reliability, but has a much greater lumen density (up to 200x greater) and can distribute light evenly across wide areas. LEP uses a solid-state driver and a responsive emitter configuration to provide advanced dimming capabilities through digital or analog control. Our LEP luminaires deliver energy savings while providing an improved quality of light for enhanced visibility, safety and security. LEP is best used for high illuminance applications at heights above 25 feet. See our LEP FAQ for additional information. Improved Color Recognition - Our LEP series offers a full spectrum light source and delivers better color recognition than competing HID products which translates into brighter colors and a warmer, more inviting work environment.

Key Benefits High Mast Lighting •Energy Savings: LEP luminaires scale to high lumen output needed for high mast lighting without sacrificing efficiency and lifetime as LED and HID sources do. LEP saves up to 75% energy while producing equivalent visibility. •Long Life: LEP sources last 3-5 times longer than HPS sources, reducing costly maintenance at poles as high as 100ft in the air. LEP luminaires provide tremendous maintenance savings as well as mission-critical reliability for ports, airports, and industrial yards. •Light Quality: The full color spectrum provides a greater than 2x advantage over HPS in nighttime visibility.

Roadway Lighting •Cost of Ownership: LEP's luminaire efficiency and 50,000-hour lifetime combine to offer the lowest cost of ownership for roadway lighting when compared to 250W or higher HPS systems. •High Lumens Package: Even more cost effective as you scale to higher light levels without sacrificing energy efficiency or increasing the weight of the luminaire. •Light Distribution: Maximize pole spacing and achieve uniform illumination and luminance distributions using optics tailored to LEP's single point source. 2

APPLICATION / BRIEF

How LEP Technology Works LEP light sources create a light-emitting plasma by coupling RF (radio-frequency) energy into an electrode-less quartz lamp. The RF energy is created and amplified by an RF circuit that is driven by a Solid-State Power Amplifier. The following three steps outline the process of light generation in all LEP systems:

Lamp

Resonant Cavity or “Puck”

Step 1:

Input

An RF circuit is established by connecting an RF power

Probe

amplifier to a ceramic resonant cavity known as the “puck”. In the center of the puck is a sealed quartz lamp that contains materials consistent with metal-halide lamps.

Feedback Probe Power Amplifier Step 2: The puck, driven by the power amplifier, creates a standing wave confined within its walls. The electric field is strongest at the center of the lamp which ionizes the gasses inside the lamp (purple glow).

Step 3: The ionized gas in turn heats up and evaporates the metal-halide materials which form a bright plasma column within the lamp (blue to bright white light). This plasma column is centered within the quartz envelope and radiates light very efficiently. In the back side of the lamp, a highly reflective powder is used to reflect nearly all of this light in the forward direction.

3

Bulb Thermodynamics and Lifetime Considerations The LEP emitter design aims to maintain an optimal thermodynamic power balance that enables the highest plasma output while keeping the lamp wall under a safe operating temperature. The total RF power into the emitter, P in, is balanced with the radiated optical power, P radiated, and conducted heat by the puck, P conducted. The lamp chemistry or fill and the geometry are the main parameters used to optimize luminous flux while keeping the lamp wall temperature below 1100 Kelvin or 827 Celsius. A halide pool gathers at the coldest spot of the lamp replenishing the plasma through a reversible phase change process during its entire lifetime. At the designed vapor pressures and quartz temperatures, devitrification and wall whitening processes are rare resulting in a long-lasting lamp. A properly designed lamp operating at its specified environment eliminates catastrophic lamp failures. It should be noted that the LEP lamp does not contain metal electrodes as a typical HID lamp. Electrodes are the primary cause of failure in such systems where electrode wear-out, wall darkening from sputtered electrodes, and cracking of quartz-metal seal are common. LEP emitters do not display any of these failure modes. It is also worth noting that a significant amount of energy (>20%) in HID lamps are wasted in heating electrodes where this energy is used to create light in a LEP system. Therefore, the LEP emitter is inherently much more robust and efficient compared to traditional HID lamp systems.

P radiated