Lesson 5. (1) Electric Field of a Line Charge

Lesson  5     (1)  Electric  Field  of  a  Line  Charge     Consider  a  long  thin  rod  with  a  uniform  distribution  of  charge  so  that  the  l...
Author: Rosanna Quinn
1 downloads 0 Views 777KB Size
Lesson  5     (1)  Electric  Field  of  a  Line  Charge     Consider  a  long  thin  rod  with  a  uniform  distribution  of  charge  so  that  the  line  charge   density   ! (C / m ) is  the  same  everywhere  on  the  rod.    We  will  calculate  the  electric   field  at  a  point  close  to  the  rod.  For  such  a  point,  the  rod  can  be  considered  to  be   infinitely  long.    Let  us  place  the  rod  on  the  y-­‐axis,  and  the  point  on  the  x-­‐axis  so  that   its  x-­‐coordinate  is   x .           Divide  the  y-­‐axis  into  small  segments   dy .  The   charge  on  this  segment  is     dq = ! dy     ! It  creates  the  electric  field   dE as  indicated  by   the  arrow  in  the  figure.  The  total  electric  field   is  the  sum  of  all  these  vectors  from  different   parts  of  the  rod.  Instead  of  adding  an   infinitely  many  small  vectors,  we  first  note   that  because  of  symmetry,  we  expect  the  total  electric  field  to  have  only  x-­‐ component.  Thus  it  is  sufficient  to  calculate       E x = ! dE x     ! The  magnitude  of   dE is     ! k dq k ! dy dE = 2 2 = 2 2   x +y x +y   The  x-­‐component  is     ! ! x x   dE x = dE cos! = dE = k ! dy 2 2 32 x 2 + y2 x + y ( )   Therefore,     +"

Ex = k! x #

!"

dy

( x 2 + y2 )

32

 

   

1  

The  integral  can  be  evaluated  by  changing  from   y to  the  variable   ! .  From     y = x tan ! dy = x sec 2 ! d!     ! 2 ! 2 x sec 2 " d" k" 2k "   Ex = k! x & = cos# d# = & 32 2 2 x x ! # %! 2 x (1+ tan " ) %! 2 " $   Note  that  the  electric  field  falls  off  as  1/distance.    Later  when  we  learn  Gauss  law,   we’ll  give  a  simpler  derivation  of  this  formula.     (2)  Electric  Field  of  a  Charged  Circular  Ring     For  a  circular  ring  of  radius   a  with  uniform  line  charge  density   ! ,  the  electric  field   at  a  point  on  the  axis  can  be  calculated  easily,  because  the  point  is  at  equal  distance   from  all  the  charges  on  the  ring.  Suppose  the  ring  is  placed  on  the  x-­‐y  plane  with  its   center  at  the  origin,  so  that  the  z-­‐axis  is  its  axis.  Consider  a  point  P  on  the  z-­‐axis  with   z-­‐coordinate   z .      

    Divide  the  ring  into  small  angular  segments   d! .  The  length  of  such  a  segment  is     d! = ad!     The  charge  on  the  segment  is     dq = ! d! = ! ad"     ! The  electric  field   dE due  to  the  segment  has  magnitude    

2  

 

! kdq k ! ad" dE = 2 = 2   2 z +a z + a2

  By  symmetry,  we  expect  the  net  electric  field  to  have  only  z-­‐component.       ! ! z k " az dEz = dE cos ! = dE = d#   32 z2 + a2 (z2 + a2 )   The  electric  field  is  therefore     2! k ! ( 2" ) az k ! az k ! az 2 " kqz   Ez = ! dEz = " d ! = d! = = " 3 2 3 2 2 2 2 2 2 2 32 2 2 32 z + a z + a z + a 0 (z + a ) 0 ( ) ( ) ( )   where  in  the  last  step,  we  have  replaced   ! by  the  total  charge   q = ! ( 2" a ) .  An  easy   way  to  obtain  this  result  is  to  multiply  the  electric  field  due  to  total  charge   q ,  all  at  a   distance  of   z 2 + a 2 from  the  point  concerned,  by  the  constant  factor   cos ! :     kq kq z   Ez = 2 2 cos ! = 2 2 2 z +a z + a z + a2   (3)  Electric  Field  of  a  Uniformly  Charged  Circular  Disk     The  electric  field  due  to  a  uniformly  charged  circular  disk  at  a  point  on  its  axis  can   also  be  calculated  using  the  result  for  a  ring.  Let   a be  the  radius  of  the  disk,  which   we  place  on  the  x-­‐y  plane  with  its  center  at  the  origin.    Let   ! be  the  surface  charge   density.  The  axis  of  the  disk  is  the  z-­‐ axis.  Let  the  z-­‐coordinate  of  the   point  P  be   z .         Divide  the  disk  into  thin  rings  of   radius   r and  thickness   dr .  The   charge  on  the  ring  is     dq = ! ( 2" rdr )     The  electric  field  due  to  this  ring  at   the  point  P  has  only  z-­‐component,   and  is  equal  to    

 

3  

dEz =

(kdq) z

(z

2

+r

2 32

)

= 2! k" z

rdr

(z

2

+ r2 )

32

 

  The  total  electric  field  is  therefore     a rdr   Ez = 2! k" z ! 2 2 32 0 (r + z )   Change  to  the  variable   ! using:     r = z tan ! dr = zsec 2 ! d! ! max = tan !1 ( a z )

 

  ! max

E x = 2! k" z

! 0

z tan # zsec 2 # d# z 3 (1+ tan 2 # )

32

#

! max

= 2" k#

! sin! d! = 2" k# (1" cos! ) = 2! k" %%1" max

0

$

& (( z2 + a2 ' z

    (4)  Electric  Field  due  to  an  Infinite  Charged  Sheet     When  the  radius   a of  the  circular  disk  becomes  very  large  compared  with     z ,  the   electric  field  of  the  circular  disk  at  P  becomes     # z& Ez ! 2! k" %1" ( ! 2! k"   $ a'   This  can  be  considered  the  electric  field  due  to  an  infinite  sheet  charge  of  uniform   density   !  at  any  point,  and  is  independent  of  the  location  of  the  point  .  The  field   lines  are  as  shown:       The  Coulomb  constant  can  be  written   in    the  form     1   k= 4!" 0   where   ! 0 = 8.85 !10 "12 C 2 / N # m 2 is   called  the  permittivity  of  free  space.   The  electric  field  due  to  an  infinite   sheet  can  be  written    

 

4  

E=

!   2" 0

  The  electric  field  due  to  multiple  sheets  is  the  vector  sum  of  the  field  of  the   individual  sheets.  An  important  case  is  a  pair  of  parallel  sheets  with  surface  charge   densities   ! and   !! respectively.  For  points  on  either  side  of  the  pair,  the  electric   fields  due  to  the  two  sheets  cancel  out.  For  any  point  between  the  sheets,  the  electric   fields  due  to  the  two  add.  Therefore,  the  electric  field  is  confined  to  the  space   between  the  sheets,  and  is  given  by     ! E =   "0   pointing  from  the  positive  to  the  negative  sheet.  The  field  lines   deviate  from  straight  lines  only  near  the  edges  of  the  sheets.          

 

5  

Suggest Documents