LEDs and Lighting Controls: The SecondTsunami

LEDs and Lighting Controls:  The Second Tsunami On behalf of the U.S. Department of Energy and NETL Morgantown LEDs and Lighting Controls:  The Secon...
Author: Victor Green
5 downloads 2 Views 5MB Size
LEDs and Lighting Controls:  The Second Tsunami On behalf of the U.S. Department of Energy and NETL Morgantown

LEDs and Lighting Controls:  The Second Tsunami The Second Tsunami Dr. John W. Curran, President, LED Transformations, LLC This session is eligible for 2 Contact Hours.

To earn a certificate you must: – Have your badge scanned at the door – Attend 90% of this presentation – Fill out the online evaluation for this session

Copyright  Materials This presentation is protected by US and  International copyright laws.  Reproduction,  distribution, display and use of the  presentation without written permission of  LED Transformations, LLC is prohibited. f i Ci hibi d © 2014 LED Transformations, LLC

3

Course Description Course Description LEDs and Lighting Controls: The Second Tsunami

This presentation will examine the future of the  lighting industry, as LEDs become the dominant light  source and lighting controls become commonplace in  d li h i l b l i almost all applications. The new age of “personal  lighting ” will forever change how lighting is used,  lighting, will forever change how lighting is used allowing occupants to set personal preferences for  their environment while the use of color and visual  clues will allow the environment to communicate with  building occupants in new and exciting ways. 4

Learning Objectives Learning Objectives LEDs and Lighting Controls: The Second Tsunami • Discuss how lighting controls will expand to include all  lighting environments and what attendees must do to  prepare for that expansion • Examine the implications to business as the ability of LEDs  to provide almost unlimited color choices vastly expands  the use of color to affect mood and health of building  g occupants • Explain what the new lighting paradigm of "personal  lighting" controls will mean as controls and LEDs blend into  lighting controls will mean as controls and LEDs blend into one comprehensive offering • Determine how to support new lighting applications which  will allow building elements to communicate with will allow building elements to communicate with  occupants 5

Course Outline 1. LED Technology – Where are we? Color and the Eye y – How the optic p system y senses 2. C color 3. LEDs & Lighting Control – A natural synergy 4. Lighting Control Systems – LED light, data and communications 5 The 5. Th Future F t – LEDs, LED OLEDs OLED and d th the d definition fi iti off a "luminaire" 6. Preparing for the Future – What businesses should be doing now

6

LED Technology

LEDs Lighting Market Share Growing in all segments LEDs Lighting Market Share – G i i ll t 2010 100 80 60 40 20 0

Incandescent Halogen HID

Architectural

Outdoor

Hospitality 

Shopping

Industrial

Office

Residential

Compact Fluorescent LED

100 80 60 40 20 0

Incandescent Halogen HID Linear Fluorescent

Architecttural

Outdoor

Hospitaliity 

Shoppingg

Halogen

Industriaal

Incandescent

Office

Residenttial

2020 100 80 60 40 20 0

2016

Linear Fluorescent

Compact Fluorescent LED

HID

Archittectu…

Outdo oor

Hospiitality 

Shopp ping

Indusstrial

e Office

Residential

Linear Fluorescent Compact Fluorescent LED

Data Source:  McKinsey & Company ‐ Lighting the way:   Perspectives on the global lighting market, McKinsey &  p g g g , y Company, July 2011

7

Performance LED efficacy projections Performance – LED ffi j ti

LED Technology

SSL R&D Multi‐Year  Program Plan, May  g , y 2014

8

LED Technology

DesignLights Consortium It is where customers are looking DesignLights Consortium – It i h t l ki 53,991 products listed as of 8‐13‐14

Source:  DesignLights Consortium Data Base

9

LED Technology

Terminology Some photometric definitions Terminology – S h t t i d fi iti

One photon has energy Ep() = hc/p where h is Planks' constant c is the speed of light i h d f li h and p is the photon's wavelength

Spectral Power P() {in watts} = n Ep()/sec   

which is just the number of photons (n} emitted            j p ( } by the light source per second times the energy     per photon

Intensity () {in candela} = 683 P() V() /  where P() is the spectral power,   where P() is the spectral power V() is the eye response (luminosity) function,  is the solid angle {in steradians} into which the  light is emitted and 683 is a correction factor 

If the light source has multiple  wave‐ lengths, the total luminous intensity is  found by integrating over all wavelengths y g g g  = 683  P() V() d 

10

LED Technology

Terminology Some photometric definitions Terminology – S h t t i d fi iti

Luminous Flux (lumen) is proportional  to the number of photons emitted per  second corrected for the eye's  response

A B

y( ) Luminous Intensity (candela) is  proportional to the density of photons  emitted per second into a specific solid  angle (corrected for the eye's response)

Note that anywhere within the solid angle  Note that anywhere within the solid angle (cone), the luminous intensity is the same.   However, if surface A is twice the radius of  surface B, the illumination on surface A will  be ¼ the illumination on surface B

Illumination (ft‐cd / lux) is proportional to  the density of photons per second falling  on a given surface (corrected for the eye'ss  on a given surface (corrected for the eye response) with the surface having  dimensions of square feet (ft‐cd) or  square meters (lux)

11

LED Technology

Energy Reduction Requirements ASHRAE 90.1 Energy Reduction Requirements – ASHRAE 90 1 ASHRAE 90.1

2.5

Office Manufacturing School/University

Lumen Powe er Density (W//ft2)

2

Retail Warehouse Parking Garage Healthcare Clinic

1.5

1

0.5

0 1999

2001

2004

2007

2010

2013 12

LED Technology

Semi Conductor Heritage Improved performance and lower cost Semi‐Conductor Heritage – I d f dl t LEDs follow a development rule known as Haitz’s Law Haitz’s Law Red Output (in lumens/device) White Output (in lumens/device) Red Cost (in $/lumen)

100 000 100.000

Cost / Lumeen ($ / lumeen) C

Light outp put / packagge (in lumeens)

1,000.000

White Cost (in $/lumen) Output Trend Cost Trend

10.000

1.000

0.100

0.010

0.001 0 001 1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

Data Source:  Roland Haitz & Lumileds

13

LED Device Trends Haitzs LED Device Trends – H it Law at work L t k

LED Technology Data Source:  Vrinda Bhandarkar,  Strategies Unlimited

LED Prices  in $/klum in $/klum $350 9/3/12 $300 $250 4/19/13

$200 $150

5/9/14 5/9/14

$100 $ $50 $0 2000

2002

2004

2006

2008

2010

2012

Year

14

LED Technology

Efficacy of Color LEDs Improving as well Efficacy of Color LEDs – I i ll Efficacy vs. Color (Cree XP‐E2 LEDs)

Efficcacy (in lum/W)

120 100 80 60 40

350 mA

20

700 mA

0 Red

Red‐Orange

Amber

Green

Blue

Efficacy vs. Color (Philips Lumiled Rebel LEDs)

Efficacy (in lum/W W)

120 100 80 60 40 20 0 Red

Red‐Orange PC Amber

Green

Cyan

Blue

15

Standards Help manage the risks Standards – H l th i k

LED Technology

• LM‐79‐08 Approved Method:  Electrical and Photometric  Measurements of Solid‐State Lighting Products –

Describes testing procedure for evaluating light distribution from LED‐based luminaires

• LM‐80‐08 Approved Method for Measuring Lumen  pp f g Depreciation of LED Light Sources – –

Describes testing procedure for measuring lumen depreciation of LED devices Does not describe how to evaluate data taken 

• TM‐21‐11 Projecting Long Term Lumen                                                           Maintenance of LED Light Sources –

Provides the method for determining when the  P id th th d f d t i i h th “useful lifetime” of an LED is reached

• ANSI C78.377‐2008 A Specifications for the Chromaticity                             of Solid‐State of Solid State Lighting Products for Electric Lamps Lighting Products for Electric Lamps –

Describes binning structure to specify LED device colors 16

Standards The generation gap Standards – Th ti

LED Technology

Timeline for a new LED‐based product LM‐80 Testing (To claim 50k hours)

LDL LF = Lighting Facts LF  Lighting Facts LDL = Lighting Design Lab, Energy Star or Design Lights Consortium = Market Release = Market Release

LM 80 Testing (minimum) LM‐80 Testing (minimum) Design

Tooling

Pilot

LF LDL

Agency

LED Mfg Introduces new LED LED

LED Mfg Introduces new LED

LED Mfg Introduces new LED 17

LED Technology

Testing Time/Temperature Can have a drastically different effect Testing Time/Temperature – C h d ti ll diff t ff t

21 days at 37.5OC

3 minutes at 70OC

18

LED Technology

Light Loss Factors (LLF) Still lit after all these years Light Loss Factors (LLF) – Still lit ft ll th How to maintain  the specified  h ifi d illuminance over  the lifetime of  the luminaires? Avoiding Zombie LED luminaires

19

Light Loss Factors (LLF) Two types Light Loss Factors (LLF) – T t

LED Technology

• Lighting g g systems y ((luminaires and lamps) p ) will decrease in light output over time due to reduction in lumen output of the source and changing surface properties of the luminaire, source and even environment • In design of lighting systems, this loss is typically accounted for by employing a reduction factor known as the Light Loss Factor (LLF), (LLF) which is typically caused by four things: – – – –

Ballast factor Lamp lumen depreciation (LLD) Luminaire dirt depreciation (LDD) Lamp burnout

20

LED Technology

Light Loss Factors (LLF) Influenced by many factors Light Loss Factors (LLF) – I fl db f t

• Light Loss factors are estimates of system performance and can be affected by many things: – – – –

Operating cycle – depends on occupants Environment cleanliness – depends on maintenance staff Thermal characteristics – often ignored Relamping schedule – spot versus group

• Effects of using an LLF closer to 1.0 during the design process: – System y mayy not provide enough g light g near end of life ((negative) g ) – Fewer luminaires can be used, reducing energy usage and cost (positive)

• Effects of using an LLF much less than 1.0: – – – –

Excessive energy use (negative) Overlit spaces (negative) Glare (negative) Light trespass (negative)

21

LED Technology

Lumen Depreciation Examples Traditional light sources Lumen Depreciation Examples – T diti l li ht

For conventional lamps, LLD is commonly calculated as the  p p g p ( ) expected lumen output at a given point in time (mean lumens)  divided by the initial lumen output (initial lumens) • The point in time for measuring                                                                                               the mean lumens is given as a                                                                                          g percentage of the rated life                                                                                                  (e.g. 40% fluorescent and                                                                                                     metal halide, 50% all others) • Rated life is the point at which Incandescent / Halogen High Pressure Sodium 50% of the lamps in a test sample fail • Use of mean lumens is common U f l i practice, but can result in light levels lower than target design SSource: M Royer, Lumen Maintenance and Light Loss  MR L M i t d Li ht L Factors: Consequences of Current Design Practices for  LEDs, LEUKOS, 12/13

Metal Halide

T8 Fluorescent 22

LED Technology

Lumen Depreciation Applied to LED sources Lumen Depreciation – A li d t LED

Five different light sources: 2 LED; 2 fluorescent; L Prize and their  associated lumen depreciation rates associated lumen depreciation rates

Source: M Royer, Lumen Maintenance and Light Loss Factors: Consequences of Current Design Practices for LEDs, LEUKOS, 12/13

23

LED Technology

Color Shifts Can change in many directions Color Shifts – C h i di ti

Results of DOE CALiPER testing from 2008 thru 2010 shows color shifts after  6000 hours of operation (black)                                                                                               p ( ) and 12,000 hours (red)

Shift to blue

Shift to yellow

Source:  Michael Royer, PNNL

24

LED Technology

Color Shifts Can change in many directions Color Shifts – C h i di ti

Even worse, the color shift can move in different directions over those time  p periods as shown

Shift to blue

Source:  Michael Royer, PNNL

Shift to yellow

25

Color Shifts Why the changes? Color Shifts – Wh th h ?

LED Technology

A number of different mechanisms can be responsible for color shifts In some older LEDs that use soft  silicon coverings, the phosphor can  settle to the bottom Low/mid power LED housings can  yellow, affecting the reflection of  light from the sides of the cavity

Edges of phosphor plates can curl  with a shift to blue (left image)      or delaminate with a shift to  yellow (right image)  26

Color Shifts Rate of change Color Shifts – R t f h

LED Technology

Earlier high power LED results

Some mid‐power LED results

Recent high power LED results

Source:  DOE Gateway Report  Source DOE Gateway Report Color Maintenance of LEDs in Laboratory and Field Applications September 2013 

27

LED Technology

Additional Standards Still missing a number of important ones Additional Standards – Still i i b fi t t

• • • • • • •

Driver lifetime and reliability Luminaire lifetime L i i color Luminaire l shift hift Dimming for luminaires Flicker tolerances Transient protection Power quality 28

Course Outline 1. LED Technology – Where are we? 2 Color and the Eye  2. Color and the Eye – How the optic system senses  How the optic system senses color 3. LEDs & Lighting Control  LEDs & Lighting Control – A natural synergy A natural synergy 4. Lighting Control Systems – LED light, data and  communications 5. The Future – LEDs, OLEDs and the definition of a  "luminaire" 6. Preparing for the Future – What                                            businesses should be doing now 29

Color and the Eye

An Experiment What color is the ball? An Experiment – Wh t l i th b ll?

30

Color and the Eye

An Experiment What color is the ball? An Experiment – Wh t l i th b ll? Without light objects have NO Color

Red object – Absorbs blue & green

31

Color and the Eye

An Experiment What color is the ball? An Experiment – Wh t l i th b ll?

32

Color and the Eye

Light Terminology – The eye receptors Light Terminology Th t

Cone cell Rod cell

Image Source:   Ivo Kruusamagi,  Wiki di Wikipedia

Some differences: 1. 2. 3. 4.

Three types of cone cells (long, medium and short wavelengths); one type of rod cell Rods are about 100 times more sensitive to light than cones Multiple rod cells terminate on one interneuron amplifying the signal but giving them less image resolution Cones have a faster response time to light stimuli making them more sensitive to temporal changes 33

Color and the Eye

Light Terminology The eye receptors Light Terminology – Th t

Response difference between rods and cones

34

Color and the Eye

Light Terminology The eye receptors Light Terminology – Th t

Rod vision and night vision are not the same thing! high light sensitivity poor acuity it no color vision No moon

low light sensitivity hi h high acuity it color vision 

Full Moon

Twilight

Office

Full Sun

Mesopic Regime Photopic Regime

Scotopic Regime

It can take 45  minutes to  dark adapt

Cones Dominant Rods Dominant 106

105

104

103

102

101

1

10‐1

10‐2

10‐3

10‐4

10‐5

10‐6

Luminance (cd/m2) 35

Color and the Eye

Light Terminology – The Color Matching Functions Light Terminology  The Color Matching Functions

Each of the three cone cells responds differently to light depending on wavelength.  A single  cone’s response is ambiguous.  To determine color, multiple cones must be triggered and the  brain compares responses to determine color Color matching functions for the eye response brain compares responses to determine color.  Color matching functions for the eye response  are shown here.

Eye Response Functions (CIE 1931) 1.80E+00

Colorr Matching Fu unction

1.60E+00

Z  (Short Wavelength)

1.40E+00

N t Th Y Note:  The Y curve is defined to  i d fi d t be identical to the Eye Sensitivity  Function V(λ)

Y  (Medium Wavelength)

1.20E+00 1.00E+00

X  (Long Wavelength)

8.00E‐01 6.00E‐01

Red (X) ( )

4.00E‐01

Green (Y)

2.00E‐01

Blue (Z)

0.00E+00

350

450

550 650 Wavelength

750

850 36

Color and the Eye

Light Terminology The eye’s response to color Light Terminology – Th ’ t l

Photopic Eye Response 1 0.9 0.8 07 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 400

450

500

550

600

650

700

Wavelength (nm)

37

Color and the Eye

Photometric Considerations MacAdam Ellipses Photometric Considerations – M Ad Elli How much must two colors differ in  order for an observer to distinguish then order for an observer to distinguish then  as different? David MacAdam in 1942 published what is still  the major definitive work on this subject h d f k h b He found that any two  p points must have a  minimum geometrical  distance to yield a per‐ ceptible difference in  color.  These distances,  called steps, actually  represent standard  deviations.

38

MacAdam Ellipses A closer look MacAdam Ellipses – A l l k

Color and the Eye 50% of the general  population can  distinguish a color difference of one  distinguish a color difference of one MacAdam ellipse

Source:  Gerard Harbers, Xicato

39

Color and the Eye

ANSI C78 377 2011 Chromaticity Standards ANSI C78.377‐2011 – Ch ti it St d d Radius of amber circle  Radius of amber circle shows the EnergyStar color  shift tolerance at 6000 hrs  of  Δ u’v’ = 0.007

Specifies 8 different  standard color bins for  LEDs based on a 7 step LEDs, based on a 7‐step  MacAdam ellipse But this still leaves a  very wide range in each  “bin” which is not  acceptable in many  li hti lighting applications li ti Source:  ANSI C78.377‐2011

40

Color and the Eye

Light Terminology – The eye receptors Light Terminology Th t

Opponent Colors

Color Perception Fovea Absolute Quantities Ab l t Q titi Brightness

L Cone Visible Lightt

MC M Cone

Chan 1 (R – G)

(Chan 3) R (+), G (‐)

(Ratio Ch1 to Ch2)

Chan 2 (Y – B)

Y (+), B (‐)

S Cone

Colorfulness  (Strength of Ch1 & Ch2)

Relative Quantities Q Chan 3 

Brightness

Rod Retina

Hue

Neurons

Nerve Fiber

• Lightness • Chroma • Saturation

Visual Cortex 41

Color and the Eye

Light Terminology – The eye receptors Light Terminology Th t

Equilibrium • The eyes are most stable when the primary colors (red, green,  blue) are within their field of view • Combinations of complimentary colors also suffice Combinations of complimentary colors also suffice • The colors do not have to be present in equal amounts Simultaneous Contrast Simultaneous Contrast • If only a single color is present,                                                                    the eye will try to generate the                                                                    missing complement in any                                                                           nearby achromatic (gray or                                                                           colorless) area colorless) area 42

Blue Light Issues Confusion Blue Light Issues – C f i

Color and the Eye

What mayy be beneficial for an occupant p during g the day may be harmful for an occupant at night, and may vary significantly between individuals in a given space. p Even more complicated p is the need to balance the desire for alertness with preservation of normal circadian rhythms among night-shift medical staff,, for example. p Therefore,, even if a prescription p p for effective nonvisual stimulation is developed, implementing the solution may not be straightforward, g , especially p y if there are users with different histories and needs occupying the space at the same time. DOE Publication: Lighting for Health: LEDs in the New Age of Illumination, May 2014 

43

Blue Light Issues Confusion Blue Light Issues – C f i

DOE Publication: Optical Safety of LEDs, June 2013 

Color and the Eye

The cool white (Cool LED and D65) and warm  white sources (Warm LED and Halogen) have white sources (Warm LED and Halogen) have  comparable areas under the B() curve 44

Color and the Eye

Light Terminology – The eye receptors Light Terminology Th t

H How about the two orange squares and their gray backgrounds? b t th t d th i b k d?

45

Course Outline 1. LED Technology – Where are we? 2 Color and the Eye  2. Color and the Eye – How the optic system senses  How the optic system senses color 3. LEDs & Lighting Control  LEDs & Lighting Control – A natural synergy A natural synergy 4. Lighting Control Systems – LED light, data and  communications 5. The Future – LEDs, OLEDs and the definition of a  "luminaire" 6. Preparing for the Future – What                                            businesses should be doing now 46

The Eye LEDs & Lighting Controls

An An Experiment TheExperiment The LED Advantage – LED Advantage – What color is the ball? Wh t Unique characteristics U l i i thh b ll? t i ti • LEDs can be turned on an off with  no reduction in lifetime, unlike  d lf lk other light sources – This is often how LED luminaires are  dimmed by rapidly turning them on  and off

• There is no restrike time with LEDs  so they are come on at full  brightness 

47

©  2014 LED Transformations, LLC

LEDs & Lighting Controls

The LED Advantage Unique characteristics The LED Advantage – U i h t i ti

Potential energy  savings using sensors savings using sensors  to turn‐off or reduce  light in area when  then are not in use then are not in use Required more often  by latest building  codes

Area Type

Percent (%) Reduction

Locker room

65

Large work room/office

55

Rest room

50

File room

45

Small work room

40

Corridors

25

Small offices

22

48

LEDs & Lighting Controls

Lighting Controls New regulations for further energy savings Lighting Controls – N l ti f f th i

• CA Title 24 – new requirements for photosensors, occupancy sensors and d multi-level lti l l lilighting hti controls, t l b both th indoors and outdoor (effective 1/1/14) – – – –

Aisles in warehouses and libraries Parking lots and garages Outdoor lighting requires photocells and automated controls Vacancy sensors and controls in residential bathrooms

• NYC LL48 – Requires vacancy sensors in many areas (effective 12/28/10) – – – –

Classrooms Break rooms Conference rooms Offices less than 200 ft sq 49

LEDs & Lighting Controls

New Rules for Lighting Principles of Task‐Ambient Lighting New Rules for Lighting – Pi i l f T k A bi t Li hti • •







Daylighting with glare control Daylighting with glare control Ambient lighting that delivers  ~300‐500 lux (30‐50 fc) on  workplane Task lighting that delivers  ~200‐750 lux (20‐75 fc) evenly  across desk area across desk area  Accent lighting or wallwashing to provide perception of  brightness/cheerfulness Light finishes to bounce light  and make faces attractive and  save lighting energy save lighting energy Source:  Naomi Miller, PNNL

50

LEDs & Lighting Controls

NREL Research Facility Efficient lighting is an important element NREL Research Facility – Effi i t li hti i i t t l t

LED task lights with sensor control use 15 watts with sensor control use 15 watts versus previous fluorescents at 35 watts 51

LEDs & Lighting Controls

NREL Research Facility Daylighting helps reduce energy usage NREL Research Facility – D li hti h l d

52

LEDs & Lighting Controls

A Typical MR 16 Issue Compatibility with existing equipment A Typical MR‐16 Issue – C tibilit ith i ti i t

A demonstration of various                                                         LED l LED lamps was carried out at                                                             i d the Intercontinental Hotel in                                                                   San Francisco under the                                                                             DOE’s Gateway program During the testing, one manufacturer’s LED lamps began to  flash and flicker at night.  Subsequently it was removed from  the test program Later the problem was traced to the legacy lighting control  Later the problem was traced to the legacy lighting control system that was programmed to reduce the voltage late at  night (which no one involved at the time was aware of)

53

LEDs & Lighting Controls

A Typical MR 16 Issue Compatibility with existing equipment A Typical MR‐16 Issue – C tibilit ith i ti i t

Two types of transformers used to step-down the voltage to 12V tto power MR MR-16 16 llamps • •

Magnetic transformers Electronic Low Voltage Transformers (ELVT) N Note the dead zone at the  h d d h start of each cycle

A 35W halogen presents a large resistive  load to the ELVT which allows the  transformer to easily start‐up

Typical output of a low‐cost, self‐oscillating  yp p , g ELVT driving a single 35W halogen MR‐16  (current – green; voltage – yellow)

The DC‐DC driver in an LED MR‐16, by  contrast presents a negative load to the  ELVT resulting in potential flickering or  even complete failure of the ELVT to start

54

LEDs & Lighting Controls

Some Concerns Do your homework Some Concerns – D h k Lighting Controls a)

b)

System Compatibility i. ii.

Performance can be unpredictable Proprietary systems can create future issues

iii.

More features; more problems

Legacy wiring c) d)

c)

Electronic transformers i. ii.

d)

Lower power draw means potentially more luminaires per circuit In retrofit applications, control architecture may not match Older systems designed for incandescent electrical characteristics Impedance mismatch can create flicker, dimming and failure

Software Issues i. ii.

Often poorly documented similar to “as-built” drawings Unconstrained by any laws of physics

55

LEDs & Lighting Controls

Lots of Issues Remain NEMA SSL‐7A example Lots of Issues Remain – NEMA SSL 7A l Poor User Experiences p • • • • • • • • •

Dimming range Dead travel Pop‐on Drop‐out Popcorn p Ghosting Flashing/Strobing Induced Flicker Induced Flicker Audible noise

• Dimming smoothness • Dimming monotonicity • Dimming up/down  symmetry • Dimmer loading Dimmer loading • Dimmer ‐ LED light engine  inoperability • Premature failure of  Premature failure of dimmer and/or LED light  engine Source:  Michael Poplawski, PNNL

56

LEDs & Lighting Controls

Lighting Control Dimming using power line Lighting Control – Di i i li Types of Line Voltage • Leading Edge – Incandescent – Magnetic low voltage transformers

• Trailing Edge – Electronic low voltage transformers

• When using g this type yp of control – Make sure product conforms to existing standards – Verify compatibility with manufacturers

57

LEDs & Lighting Controls

Lighting Control Different combinations yield different results Lighting Control – Diff t bi ti i ld diff t lt

58

LEDs & Lighting Controls

NEMA SSL 7a 2013 Specifications for dimming controls NEMA SSL‐7a‐2013 – S ifi ti f di i t l • Defines design specifications for LED sources and dimmers • Defines compliance test procedures for LED sources and dimmers • Predicable,, specified p p performance – Minimum definition for dimmable – Room for product differentiation

• Compliant dimmers will have performance ratings that will be valid with all compliant LED sources – Full-featured operation – Load ratings (maximum and minimum, if necessary)

• C Compliant li t LED sources will ill h have performance f ratings that will be valid with all compliant dimmers – Dimmer loading characteristics – Dimming range (relative maximum output output, minimum output) Source:  DOE Mkt Workshop ‐ Managing Risks: Dimming Michael Poplawski, November 2013

59

LEDs & Lighting Controls

Time Scheduling The simplest control scheme Time Scheduling – Th i l t t l h 6 am

Noon

6 pm p

12 am

kW

12 am

Lights off

Lights on

Lights off

Time of day

Turn off lights after hours or when  a space is not normally used.

Source: Steven Mesh Lighting Education & Design 

60

LEDs & Lighting Controls

Time Scheduling Some additional energy savings Time Scheduling – S dditi l i 6 am

Noon

6 pm p

12 am

kW

12 am

Lights off

Lights on

Lights off

Time of day

Reduce the maximum light level for  an entire space or building.

Source: Steven Mesh Lighting Education & Design 

61

LEDs & Lighting Controls

Daylight Harvesting Taking advantage of natural light Daylight Harvesting – T ki d t f t l li ht 6 am

Noon

6 pm p

12 am

kW

12 am

Lights off

Lights on

Lights off

Time of day

Dim or turn off lights based on  available natural light.

Source: Steven Mesh Lighting Education & Design 

62

LEDs & Lighting Controls

Occupancy/Vacancy Sensing Taking occupants into account Occupancy/Vacancy Sensing – T ki t i t t 6 am

Noon

6 pm p

12 am

kW

12 am

Time of day

Turn off lights when the space is  unoccupied (vacant).

Source: Steven Mesh Lighting Education & Design 

63

LEDs & Lighting Controls

Personal Control Giving occupants a say in their lighting Personal Control – Gi i t i th i li hti 6 am

Noon

6 pm p

12 am

kW

12 am

Lights off

Lights on

Lights off

Time of day

Dim or turn off lights based on  personal preference or needs.

Source: Steven Mesh Lighting Education & Design 

64

LEDs & Lighting Controls

Demand Response Working with the electric utility Demand Response – W ki ith th l t i tilit Also known as Variable Load Shedding 6 am

Noon

6 pm p

12 am

kW

12 am

Lights off

Lights on

Lights off

Time of day

Dim or turn off lights during  periods of peak demand.

Source: Steven Mesh Lighting Education & Design 

65

LEDs & Lighting Controls

The Net Result Combining the approaches The Net Result – C bi i th h 6 am

Noon

6 pm p

12 am

kW

12 am

Time of day

Aggregate strategies for that space,  and its resulting energy use.

Source: Steven Mesh Lighting Education & Design 

66

LEDs & Lighting Controls

Comparison No controls versus combined reduction methods Comparison – N t l bi d d ti th d

Ab t 75% d ti i About 75% reduction in energy usage

Source: Steven Mesh Lighting Education & Design 

67

Course Outline 1. LED Technology – Where are we? 2 Color and the Eye  2. Color and the Eye – How the optic system senses  How the optic system senses color 3. LEDs & Lighting Control  LEDs & Lighting Control – A natural synergy A natural synergy 4. Lighting Control Systems – LED light, data and  communications 5. The Future – LEDs, OLEDs and the definition of a  "luminaire" 6. Preparing for the Future – What                                            businesses should be doing now 68

Lighting Control Systems

Lighting Control Topologies Connection architecture Lighting Control Topologies – C ti hit t

Bus Star

Fully Connected

Daisy Chain

Mesh

Ring Tree

Source:  IES TM‐23‐11

69

Lighting Control Systems

Lighting Control Physical Layer Electrical characteristics Lighting Control Physical Layer – El t i l h t i ti

RS‐232 (currently TIA‐232) – electrical characteristics and timing of signals, and  the physical size and pinout of connectors for serial binary single‐ended data  and control signals for point to point connections RS‐485 (currently TIA‐485) – a network designed to handle                                            communications to a series of devices in a system – fast over a                                       short distance or slower over a long distance Ethernet – a network technology on which data may be sent and received from  each connected unit (frequently called a node). It defines wiring and connection  ( q y ) g methods as well as basic communication rules for carrying data USB – developed by a consortium of computer manufacturers to establish  communication between devices and a host controller                                                     (such as personal computers). The technology was                                                             intended to replace a variety of serial and parallel ports                                                    used to connect computer peripherals. USB can also                                                         serve as the power connection. Source:  IES‐TM‐23‐2011

70

Lighting Control Systems

Lighting Control Protocols A wide range from various sources Lighting Control Protocols – A id f i

building control controlling equipment by means of a current  LonWorks – platform used for automation of  source analog control voltage in the nominal source analog control voltage in the nominal  building systems including HVAC and lighting building systems including HVAC and lighting range from 0 to 10 volts positive MIDI – Musical Instrument Digital Interface ACN – a bi‐directional protocol that controls  Modbus – an industrial control protocol theatrical lighting, audio and  effects RDM – extension of DMX512 allowing bi RDM  extension of DMX512 allowing bi‐ ASCII – American National Standard Code for  directional communications Information Interchange   SMPTE – time code synchronization protocol BACnet – a communication protocol that is  TCP/IP – Transmission Control Protocol  /  specifically designed for the needs of building specifically designed for the needs of building  Internet Protocoll automation and control systems XML – Extensible Markup  Language is a  DALI – Digital Addressable Lighting Interface is a  standard for document markup non‐proprietary lighting control protocol ZigBee g ee – su suite of specifications for high level  te o spec cat o s o g e e DMX512 – Asynchronous Serial Data  A h S i lD communication protocols using small, low‐ Transmission Standard for Controlling Lighting  power digital radios based on the IEEE 802.15.4  Equipment and Accessories standard for wireless personal area networks EnOcean – standard for self‐powered sensor  Z‐Wave – designed for low‐power and low‐ designed for low‐power and low‐ modules operating over unlicensed frequencies bandwidth appliances   Source:  IES‐TM‐23‐2011 Konnex – European open standard for home & 

0‐10 VDC – front end/user driven method of 

71

Lighting Control Systems

Wired vs Wireless Control Systems Wired benefits Wired vs. Wireless Control Systems – Wi d b fit

Central control – with an area having many lighting circuits, a  centralized system allows a single keypad rather than banks of centralized system allows a single keypad rather than banks of  switches on the wall Reliability of signal transmission – hard wiring of system  eliminates the potential for communication issues due to  interference or signal propagation limitations Greater control ‐ A wired system can give more sophisticated  Greater control  A wired system can give more sophisticated control and flexibility Security – ability to gain unauthorized access to hard wired  control systems is more difficult (although not impossible) Fault detection – hard wiring allows easier troubleshooting using  equipment such as time domain reflectometer tools which can  equipment such as time domain reflectometer tools which can pinpoint the location of faults along wire runs 72

Lighting Control Systems

Wired vs Wireless Control Systems Wireless benefits Wired vs. Wireless Control Systems – Wi l b fit

Lower installation cost – with no need to cut open walls, run  cable etc wireless systems typically have much lower cable, etc., wireless systems typically have much lower  installation costs, particularly for retrofit applications Less planning – since there are no in‐wall requirements,  advanced planning for controls is minimized Flexibility – the lack of in‐wall wiring also allows greater  flexibility in changing control configurations in the future flexibility in changing control configurations in the future Reliability – while typically less reliable than wired systems,  some wireless systems use architectures that allow multiple  y p pathways for communications which can accommodate for  individual point failures (e.g. fully connected, ring, mesh  configurations) 73

Lighting Control Systems

Stand Alone Sensing/Control Simple/inexpensive Stand‐Alone Sensing/Control – Si l /i i

Pros & Cons + Sensors are built into the luminaires S b ilt i t th l i i + No wiring required (except for power) + Simplest installation p + Some manufacturers offer RF capability to allow luminaires to  provide a minimal grouping function via wireless  + Minimum commissioning effort Mi i i i i ff t – Limited control capabilities – Limited sensor selection (those provided and installed by the  Limited sensor selection (those provided and installed by the luminaire manufacturer) – No building integration

74

Lighting Control Systems

System Sensing/Control Expanded features at higher cost System Sensing/Control – E d df t t hi h t

Pros & Cons + Sensors are located based on building structure/control needs Sensors are located based on building structure/control needs + Minimum restrictions on types of sensors used + Complete control of lighting system which can be tailored to  building occupancy and use building occupancy and use + System can be integrated into a complete building control  system (e.g. HVAC, security, etc.) + Software control and remote monitoring capabilities f l d bl + Communication with electric utility for load shedding which  can provide rate reductions – Higher installation costs – Extensive commissioning recommended/required – Often  Often "closed" closed  systems which limits future expansion to one mfg systems which limits future expansion to one mfg 75

Lighting Control Systems

Lighting Controls Combining LEDs with sensors Lighting Controls – C bi i LED ith Types of Sensors • Occupancy/Vacancy Sensors

– Passive IR – use thermal image to                                                                                       detect activity – Microwave  Microwave – transmits microwave                                                                                     transmits microwave pulses and measures reflections                                                                                         to detect activity – Ultrasonic – similar to sonar, uses reflections from bursts of high  frequency sound to detect activity – Acoustic – microphones which listen for activity

• Photocells/Daylight Sensors – measure ambient light to either turn  system on/off or set particular dimming level / ff i l di i l l • Video cameras – uses change in scenes to detect activity • Timing – sets on/off or dimming level based on time of day

76

Lighting Control Systems

Occupancy vs Vacancy Sensors What is the difference? Occupancy vs. Vacancy Sensors – Wh t i th diff ?

• Occupancy sensors turn lights on when someone enters an area and turns them off a set time after the person leaves – preferred for areas where someone entering the area may not be able to turn on the lighting control (e.g. playrooms for small children, laundry y rooms where arms may y typically yp y be carrying y g items, etc.))

• Vacancy sensors do not turn lights on. Someone entering an area controlled by a vacancy sensor must manually turn the lights g on. However,, the vacancy y sensor will turn the lights g off when it senses that person has left the area – preferred in areas where the lights should not come on automatically should someone enter the area. For example, children's bedrooms, areas where pets are free to roam, etc. Some building codes require the use of vacancy sensors whenever sensors are used

77

New Combinations Lighting Control Systems

New Features; New Issues Sensors become important New Features; New Issues – S b i t t

Now besides  concerns about  obstructions to  b i the lighting,  specifiers and  installers will also  need to consider  line of sight for line of sight for  the sensors Source:  Gateway Report, “Use of Occupancy Sensors in LED Parking Lot and Garage Applications: Early Experiences” 10/12 

78

New Combinations Lighting Control Systems

New Features; New Issues Sensors become important New Features; New Issues – S b i t t Energy savings will be a function of: • Time delay until turn‐off

– Longer time delays decrease energy savings – Shorter time delays can increase the                                                            annoyance factor for facility occupants Low Level

• Low illumination setting – Decreasing the low level setting increases                                                               the potential energy savings

• Exogenous factors such as amount of                                                        vehicular and pedestrian traffic the                                               p High Level sensor detects – Heavy traffic can negate the overall usefulness of an occupancy or  motion sensor (e.g. it is on all the time) o o se so (e g s o a e e)

79

Lighting Control Systems

Lighting Controls Off saves more than on Lighting Controls – Off th Annual Energy Usage (in kWh/yr/fixture) 1400 1200 1000 800 600 400 200 0 Original HPS  (w/ballast)

LED Product       (no controls)

LED Product           10 minute             turn‐off delay

LED Product           2.5 minute            turn‐off delay

Source:  Gateway Report, “Use of Occupancy Sensors in LED Parking Lot and Garage Applications: Early Experiences” 10/12 

80

Lighting Control Systems

Lighting Control 0 to 10 Volt Lighting Control – 0 t 10 V lt • Two analog standards

– Current source (theatrical standard) covered by ESTA E1.3 Current source (theatrical standard) covered by ESTA E1 3 – Current sink (lighting standard) covered  by IEC Standard 60929 Annex E

• IEC Standard 60929 – Provide full light output when control voltage is 10V (or above)  – Minimum output or off at 1V (or below) – Standard also requires that ballast/driver limit maximum control current  t 20 A to 2.0 mA

• Output many be linear based on                                                            voltage output, actual light output,                                                            power output, or perceived light                                                                output.

81

Lighting Control Systems

Lighting Control DALI digital control Lighting Control – DALI di it l t l •



Digital Addressable Lighting Interface (DALI) is an International Standard  (IEC 62386) lighting control system providing a single interface for all (IEC 62386) lighting control system providing a single interface for all  Electronic Control Gears (light sources) and Electronic Control Devices  (lighting controllers) Enables components from different manufacturers to be used together Enables components from different manufacturers to be used together – – – – –

• •

Dimmable ballasts Transformers Relay modules Controllers Emergency Fittings (e.g. Exit Signs)

Allows addressing of 64 individual components per DALI line as well as  status reporting of lamps and ballasts Originally designed for fluorescent control, standard has been expanded  to include LED modules as well (Part 207)

82

Lighting Control Systems

Lighting Control DMX digital control Lighting Control – DMX di it l t l •

DMX512 is a digital control lighting standard developed by the US Institute of Theater Technology Technology. Now known as ANSI standard E1.11-2008 “DMX512-A - Asynchronous Serial Digital Data Transmission Standard for Controlling Lighting Equipment and Accessories”



The DMX protocol consists of a stream of data which is sent over a balanced cable system connected between the data transmitter (usually consoles) and a data receiver such as – – – – – –

Dimmers Intelligent lights Color changers Lasers Strobes Other theatrical devices such as smoke and confetti machines

83

Lighting Control Systems

Hacking Listening light bulbs Hacking – Li t i li ht b lb

Hackers were able to connect to lamp  communication network, becoming part of  the system without any indication that they  had connected Master Lamp Master Lamp

WiFi 802.11

802.15.4 6LoWPAN  wireless mesh network wireless mesh network

84

Lighting Control Systems

Hacking Listening light bulbs Hacking – Li t i li ht b lb

Romantic evening or high security site for mobile banking?

85

New Combinations Lighting Control Systems

Now you have heard everything hackers and wireless Now you have heard everything – h k d i l

Trustwave Holdings, an e‐security  firm, published an advisory notice  last week warning Satis smart toilet  owners that their toilets could  potentially get hacked. potentially get hacked. “Attackers could cause the unit to  unexpectedly open/close the lid,  activate bidet or air‐dry functions,  i bid i d f i causing discomfort or distress to  user,” Trustwave Holdings said in its  notice.

Source:  inax Source: Trustwave SpiderLabs Source:  Trustwave Security Advisory TWSL2013‐020

86

Lighting Control Systems

Successful Lighting Control A matter of homework Successful Lighting Control – A tt fh k

• Designed properly – With rapidly accelerating technology, most specifiers  and designers are no longer able to design lighting controls without and designers are no longer able to design lighting controls without  significant assistance from factory‐trained sales agents • Installed Installed properly  properly – Training such as the California Advanced Lighting  Training such as the California Advanced Lighting Controls Training Program (CALCTP) or the National Advanced Lighting  Controls Training Program (NALCTP) has proven it makes a significant  difference, and a regional program should be mandatory or highly  encouraged for installers.  • Commissioned properly – At present, the only “commissioners” of lighting  should be factory trained – consider making “factory certified” a  requirement for system start‐up, programming and operator education. 

Source: http://e3tnw.org/Documents/pre%20confirmation%20ALCS%20FlashTAG%20Recommendations%20wo%20appendices.pdf

87

Lighting Control Systems

Successful Lighting Control A matter of homework Successful Lighting Control – A tt fh k

• Evaluated for cost‐effectiveness – The most cost‐effective applications  available at the present time are outdoor indoor parking industrial high available at the present time are outdoor, indoor parking, industrial high‐ bay and library lighting – large areas with continuous lighting and  infrequent occupancy. In many indoor applications, it is difficult to justify  installing a sophisticated control system on energy payback alone, partly installing a sophisticated control system on energy payback alone, partly  because the great advances in luminaire efficiency and luminaire‐level  controls have reduced the potential savings from advanced centralized  control systems considerably. Cost‐ A Annual Energy Usage lE U effective controls may consist of a                                                                                       (in kWh/yr/fixture) 30.0% simple timer or controller for the                                                                                         25.0% 20.0% lighting circuit(s) at the electrical                                                                                      15 0% 15.0% panel.  10.0% Source:  http://e3tnw.org/Documents/pre%20confirmation%20AL CS%20FlashTAG%20Recommendations%20wo%20appendi ces.pdf

5.0% 0.0% Power  LED failures  Supply/Driver  (shorts,  Components connections,  connections board)

Moisture  ingress,  corrosion

Power quality  (surge, noise,  etc ) etc.)

88

Lighting Control Systems

Building Occupants Don't discount their ability to reduce usage Building Occupants – D 't di t th i bilit t d Strategy

Occupancy

Personal Tuningg

Definition

Adjustment of light levels according to the  Adj t t f li ht l l di t th presence of occupants Adjustment of individual light levels by occupants  according to their personal preferences; applies,  for example to private offices workstation‐specific for example, to private offices, workstation specific  lighting in open‐plan offices, and classrooms

Examples

O Occupancy sensors,  timeclocks, energy  management system Dimmers, wireless on‐off  switches, bi‐level switches,  computerbased controls pre‐ computerbased controls, pre set scene selection

Adjustment of light levels automatically in  Daylight               response to the presence of natural light Harvesting

Photosensors, time clocks

(1) Adjustment of light levels through  (1) Adj f li h l l h h commissioning and technology to meet location‐ specific needs or building policies; or (2) provision  Institutional            of switches or controls for areas or groups of  Tuning occupants; examples of the former include high‐ end trim dimming (also known as ballast tuning or end trim dimming (also known as ballast tuning or  reduction of ballast factor), task tuning, and lumen  maintenance

Dimmable ballasts, on‐off or  dimmer switches for    non‐ personal lighting

Multiple Strategies

Any combination of the above

Average  Savings

24%

31%

28%

36%

38%

Data source: Alison Williams, Barbara Atkinson PE, Karina Garbesi PhD, Erik Page PE & Francis Rubinstein FIES (2012) Lighting Controls  in Commercial Buildings, LEUKOS: The Journal of the Illuminating Engineering Society of North America, 8:3, 161‐180

89

Course Outline 1. LED Technology – Where are we? 2 Color and the Eye  2. Color and the Eye – How the optic system senses  How the optic system senses color 3. LEDs & Lighting Control  LEDs & Lighting Control – A natural synergy A natural synergy 4. Lighting Control Systems – LED light, data and  communications 5. The Future – LEDs, OLEDs and the definition of a  "luminaire" 6. Preparing for the Future – What                                            businesses should be doing now 90

OLEDs What are they? OLEDs – Wh t th ? • An OLED or organic light‐emitting  diode is a semiconductor device which  consists of an electroluminescent  Reflective cathode organic layer(s) sandwiched between  two electrodes, one of which is  transparent transparent. • The device is fabricated by  sequentially depositing organic layers  on a conducting substrate followed by  another conducting electrode. • A common device structure  comprises a glass substrate coated  with indium tin oxide (ITO) as with indium tin oxide (ITO) as  transparent anode and a thin, opaque  metal film as cathode. • Typical separation between layers is  Transparent anode 100 nm or less

The Future

Organic layer(s)

Direction of light output g p

91

OLEDs What are they? OLEDs – Wh t th ?

The Future

Electron Transport Layer Hole Blocking Layer Emission Layers

{

Electron Blocking Layer Hole Transport Layer

92

OLEDs Comparison of the two SSL technologies OLEDs – C i f th t SSL t h l i

The Future

OLED efficacy projections OLED efficacy projections

LED efficacy projections

SSL R&D Multi SSL R&D Multi‐Year Year Program  Program Plan, May 2014

93

OLEDs Comparison of the two SSL technologies OLEDs – C i f th t SSL t h l i

The Future

Comparison of present state of LED versus OLED technologies Device efficacy (lumens/watt)

LED

OLED

120 ‐ 180

60 ‐ 80

Luminaire efficacy

60 ‐ 80

CRI

70 ‐ 90

80 ‐ 90

CCT

2200 ‐ 7000

1500 ‐ 10,000

Heat sink required Heat sink required

Yes

No

Cost ($/klumen)

$10

$200

50 ‐ 100+

30 ‐ 50

Configuration fi i

i Point source

Area source

Market Applications

Replacement

Unique

***

5 ‐ 7 years behind

Lifetime (in 1000 hrs)

Development Stage Compared to LEDs

94

The Future

OLED Unique Features Flexibility OLED Unique Features – Fl ibilit

Source:  Michael Hack, Universal Display Corporation

95

OLED Unique Features Transparency OLED Unique Features – T

The Future

Source: Universal Display Corporation Source:  Universal Display Corporation Source:  Yuan‐Sheng Tyan, Kodak

96

Niche Products New form factors but high cost Niche Products – N f f t b t hi h t

The Future

Source:  Universal Display Corporation

Source:  Philips Lumiblade

Source:  Osram

97

The Future

The Major Issues Lots of problems remain to be solved The Major Issues – L t f bl i t b l d Issue

Efficacy

Lifetime

Problem

Solution

Some lab devices can compete  with conventional technologies, early products have low efficacy

Work needed to develop efficient,  Work needed to develop efficient long‐lasting blue emitter; next  generation products reaching levels  that compete with conventional  lighting sources

Work needed on high current density,  Short lifetimes for blue materials;  more stable materials, better and low  susceptibility to moisture intrusion cost encapsulation

Light  Output

Current OLED packages produce  “dim” light

Work needed to improve light  extraction, high current density 

C Cost

Too high; lower cost device and  Too high; lower cost device and luminaire materials are needed 

Infrastructure investment needed to  Infrastructure investment needed to develop commercial OLED products 

Testing  Standards

Need for reliable test methods  No standards presently available  standards to establish consistency and  for testing OLED products for testing OLED products reduce uncertainty 

OLED defects caused  by moisture1

1Source: Yuan Source: Yuan‐Sheng Sheng Tyan,  Tyan

Kodak

98

The Future

Personal Lighting Control It is here with much more to come Personal Lighting Control – It i h ith h t Comcast/Sylvania

Control your home  lighting from  anywhere in the world

Color to suit your  mood and your  wardrobe

Philips Hue 99

©  2014 LED Transformations, LLC

TheThe Future Future

Personal Lighting Control Illumination and notification combined Personal Lighting Control – Ill i ti d tifi ti bi d Lighting Control Systems interfaced with internet, WiFi, etc. Warnings:  Fire, tornados, storms d Alarms:  Appointments, Chores,  TV shows Other activities TV shows, Other activities Notifications:  Critical emails,     Bills due Bills due, Security:  Intruders, unset alarm  systems Convenience:  Move laundry to  dryer; Appliance malfunctions

100

Personal Lighting Lighting for activities Personal Lighting – Li hti f ti iti

TheThe Future Future

Lighting Scenes from the Boeing 787 Dreamliner B di Boarding

C i Cruise

R l Relaxation i

M lS i Meal Service

Sl Sleep

P l di Prelanding

Source:  Boeing

101

TheThe Future Future

Lighting For Safety Providing visual orientation clues for seniors Lighting For Safety – P idi i l i t ti l f i

Visual and perceptual systems intercept cues  from the environment that affect postural control  from the environment that affect postural control and stability 

Source:  Mariana G. Figueiro, LRC

102

TheThe Future Future

New Rules for Lighting What is a luminaire? New Rules for Lighting – Wh t i l i i ? • Spectral tunability l b l of LEDs will  f ll allow lighting systems to adapt  to the natural light available or  g user preference • Tunable Tunable spectrums will enable  spectrums will enable fewer SKUs, less binning and  less inventory—all of which  enable lower cost bl l

Source:  Fraunhofer Institute for Industrial Engineering IAO

103

New Rules for Lighting What is a luminaire? New Rules for Lighting – Wh t i l i i ?

The Future

• New and innovative product  designs will redefine the designs will redefine the  traditional luminaire, and in some  cases, the look and purpose of  lighting • Flexibility in form will allow  designs based on user’s needs  rather than being limited by  mechanical constraints • Color requirements will become  more critical as new types of  luminaires that take advantage of  LED i LED unique characteristics  h t i ti become more common 104

New Rules for Lighting What is a luminaire? New Rules for Lighting – Wh t i l i i ?

The Future

The future of office lighting? The future of office lighting?

Source:  GE

105

Course Outline 1. LED Technology – Where are we? 2 Color and the Eye  2. Color and the Eye – How the optic system senses  How the optic system senses color 3. LEDs & Lighting Control  LEDs & Lighting Control – A natural synergy A natural synergy 4. Lighting Control Systems – LED light, data and  communications 5. The Future – LEDs, OLEDs and the definition of a  "luminaire" 6. Preparing for the Future – What                                           businesses should be doing now 106

Preparing for the Future

Facing Reality LEDs are here to stay Facing Reality – LED h t t

• Lamp replacement and servicing business will decrease as  p p g LEDs become the predominant light source • LED lamps reach commodity pricing status • Ballast replacement business will transition to driver  replacement business • Recycling transitions from fluorescent tubes to LED heat sinks Recycling transitions from fluorescent tubes to LED heat sinks – Growth will taper as LED efficacy improves

• Daylight harvesting techniques combine more often with LEDs

107

Preparing for the Future

Lighting Controls Lighting run by IT departments Lighting Controls – Li hti b IT d t t

• Lighting Control Systems become ubiquitous g g y q • Every lamp and luminaire have controls and/or  communications built in • Digital control becomes the norm and wiring architectures  take on the characteristics of computer network systems • The Internet of Everything captures lighting as well The Internet of Everything captures lighting as well • Programming and commissioning of the lighting control  system becomes a more important and more complex task – California is requiring certification of those responsible for  commissioning

108

Preparing for the Future

Personal Lighting Having it your way Personal Lighting – H i it

• Individuals gain much more control on lighting environments g g g – Having control provides a less stressful atmosphere for employees

• Seamless integration between lighting control systems and  HVAC b ildi HVAC, building automation and security systems t ti d it t • Use of smartphone technology to allow lighting control  systems to recognize who is entering an area and what their  y g g lighting level and color pallet preferences are • Ability to match color with activities • Much more emphasis on health and light characteristic for the   environment

109

Preparing for the Future

Lighting and Health Use of lighting to improve well being Lighting and Health – U f li hti t i ll b i

• Blue wavelength light and its affect on melatonin levels – g g circadian rhythms – Many research programs underway to understand the phenomenon

• Lighting to affect moods and performance Li hti t ff t d d f – Calming influences – Alertness influences – Rest inducing

• Lighting to assist with vision impaired seniors – Compensating for reduced visual acuity C ti f d d i l it

• More use of natural light (e.g. daylight harvesting) combined  with LED technology to provide consistent illumination 110

Preparing for the Future

Specialty Lighting Non‐conventional uses of light Specialty Lighting – N ti l f li ht

• Architainment – using the color capabilities of LED and OLED  g p technologies to provide new and unique lighting environments • Plant growth – tailoring light spectra to plant needs at various  stages of growth t f th • Productivity of farm animals – improving milk and egg  p production  • Combining photovoltaic and LED lighting for off‐grid systems

111

Preparing for the Future

Changing Roles Across many aspects of the lighting markeplace Changing Roles – A t f th li hti k l

• The use of color – in new and unanticipated ways • Data communications – understanding protocol layers • Distribution channels – which player in the lighting market has  the largest market cap? the largest market cap? • Service and troubleshooting – diagnostic subroutines replacing  continuity checkers • Programming  • Human psychology – becomes a necessary lighting specifier skill • Changing building codes  Changing building codes – continuous push for lower energy  continuous push for lower energy usage per square foot while requiring adequate illumination  levels will present increasing challenges to the lighting designer

112

Preparing for the Future

Tomorrow'ss Lighting System – Tomorrow Lighting System Could be like this C ld b lik thi

113

Acknowledgements

Support for the development  and presentation of this  educational seminar was  provided by the US Department of Energy                     f and NETL Morgantown

114

Thank You Contact Information: Dr. John (Jack) W. Curran President, LED Transformations, LLC PO Box 224, Stanton, NJ  08885 (908) 437‐6007 [email protected] www.ledtransformations.com 

US Department of Energy www.ssl.energy.gov 

115