Lecture 6: Entropy Rules! (contd.) Lecturer: Brigita Urbanc Office: 12-909 (E-mail: [email protected]) Course website: www.physics.drexel.edu/~brigita/COURSES/BIOPHYS_2011-2012/ 10/11/2011

PHYS 461 & 561, Fall 2011-2012

1

Boltzmann distribution (by counting: Textbook, pages 230-231) Information theory: based on the constraints (for example the total energy) derive the least biased probability distribution Shannon entropy:

S(p1, p2, p3 ..., pN)  ∑i=1

N

pi ln pi

where p is the probability of the system to be in the i-th microstate. i

For example, if nothing is known about the system except that there is N microstates, then for all p = 1/N and S = ln N (the maximal value).

i

How do we formally derive this result? 10/11/2011

PHYS 461 & 561, Fall 2011-2012

2

Maximize Shannon entropy S' using Lagrange multiplier method for each constraint:

S'  ∑i=1 N pi ln pi [ ∑i=1 N pi  1] Maximization equations:

∂S'/∂ → ∑i=1 N pi  1  ∂S'/∂pi → lnpi  1   pi  exp(1 Note that the probabilities p do not depend on i! i ∑i=1 N pi  1 → ∑i=1 N exp(1  1 → exp(1

pi   10/11/2011

PHYS 461 & 561, Fall 2011-2012

3

Boltzmann distribution is a maximum entropy distribution with a fixed average energy:

S' ∑i pi ln pi [ ∑i pi –1] [ ∑i pi Ei – ‹E›] lnpi1 –  Ei→pi exp(1exp(Ei ∑i pi 1 →exp(1+∑i exp(EiZ pi  exp(Ei∑i exp(Ei

10/11/2011

PHYS 461 & 561, Fall 2011-2012

4

Ideal gas approximation: the interaction range is small in comparison to the mean spacing between molecules For a system with N independent variables (x the probability distribution can be factorized:

, x , … x ) 1 2 N

P(x1, x2, … xN) = P(x1) P(x2) … P(xN)

– uniform spatial distribution of ideal gas molecules.

Microscopic state of the system is described by (x, p ) so the key x

information that we need to derive is P(p ) knowing the kinetic x

energy of E 10/11/2011

2 x

= p /(2m). PHYS 461 & 561, Fall 2011-2012

5

Probability distribution for a system with average energy is:

exp[-px2/(2m)] P(px) = ∑states exp[-px2/(2m)] Instead of a sum, we use an integral over a continuous variable p

:

x

∑states → ∫-∞ ∞ dpx where we will use the integral:

∫-∞ ∞ exp(-px2) dpx = √ 10/11/2011

PHYS 461 & 561, Fall 2011-2012

6

According to the equipartition theorem, each degree of freedom is associated with :

‹E› = ½ kBT Calculate ‹E› using the Boltzmann distribution: ∞

2 x

Z = ∫-∞ exp[-p /(2m)] dpx = √2m ‹› ∫-∞ ∞ px2/(2m) exp[-px2/(2m)] dpx

We use the following trick:

‹›  ∂Z∂½    so we showed that the Lagrange multiplier (k T) . B 10/11/2011

PHYS 461 & 561, Fall 2011-2012

7

Free energy and chemical potential of a dilute solution: Application of a lattice model (and ideal gas approx.)

10/11/2011

PHYS 461 & 561, Fall 2011-2012

8

Configurational entropy of N objects placed into W available spots:

!

W(N,) =

S = kB lnW N! (– N)!

How to calculate the chemical potential of a dilute solutions?

 SOLUTE

= (∂GTOT /∂NS)T,p

GTOT = NW  0W + NS  S – T SMIX

water G + solute energy + mixing entropy contribution Mixing entropy contribution: -independent solute molecules (ideal gas) -lattice model: N + N is a total number of lattice sites W

S

W(NW,NS) = (NW + NS)! / (NW! NS!) 10/11/2011

PHYS 461 & 561, Fall 2011-2012

9

S = kB lnW = ln[(NW + NS)! / (NW! NS!)] ≈  kB {NW ln[NW/(NW + NS)] + NS ln[NS/(NW + NS)]} =  kB [NW ln(1 - NS/NW) + NS ln(NS/NW)] Taking into account the Taylor expansion of ln(1+x) ≈ x, we get:

SMIX =  kB [NS ln(NS/NW) – NS]

GTOT (T,p,NW,NS) = NW  W0 + NS  S(T,p) + kBT(NS ln(NS/NW) – NS)  S(T,p) =  S(T,p) + kBT ln(c/c0)

or in a general form expressed in concentration c=N/V:

 i =  i0 + kBT ln(ci/ci0 ) 10/11/2011

PHYS 461 & 561, Fall 2011-2012

10

Osmotic pressure Is an Entropic Effect ➔



consider a cell in an aqueous environment exchanging material with a solution (intake of food, excretion of waste) chemical potential difference proportional to G:

G = ( 1  2) dN ≤ 0 (spontaneous) ➔

cell with a crowded environment of biomolecules: tendency of almost all components to move out causes a mechanical pressure called osmotic pressure



lipid membranes with ion channels to regulate ion concentration



calculate osmotic pressure due to a dilute solution of NS molecules

10/11/2011

PHYS 461 & 561, Fall 2011-2012

11

Osmotic pressure on a semipermeable membrane, which only allows water molecules through

10/11/2011

PHYS 461 & 561, Fall 2011-2012

12

 W(T,p) = ∂G ∂ W  p  W (T,p)  kBT NS/NW 0

For both sides of the membrane in equilibrium:

 W (T,p1)   W (T,p2)  kBT NS/NW 0

0

Expand the chemical potential at p around the p value: 2

1

 W (T,p2) ≈  W (T,p1)  (∂ W /∂p) (p2 – p1) 0

and consider that

0

0

(∂ W0/∂p) = v = NW/V is volume per

water molecule so that

(p2 – p1) = kBT NS/V 10/11/2011

PHYS 461 & 561, Fall 2011-2012

13

Measuring interstrand interactions in DNA using osmotic pressure

p(dS) = F0 exp(-dS/c) dS … interstrand spacing; F0 depends on the ionic solution pressure:

10/11/2011

PHYS 461 & 561, Fall 2011-2012

14

Law of Mass Action and Equilibrium Constants (Chemical Reactions) ➔

chemical equilibrium between A, B and their complex AB:

A + B  AB



final equilibrium independent of whether we start with only A and B, or with a high concentration of AB and no A or B



NA, NB, NAB



In equilibrium: dG = 0

… number of A, B, and AB molecules

0 = (∂G/∂NA) dNA + (∂G/∂NB) dNB + (∂G/∂NAB ) dNAB ➔

A more convenient and general expression:

∑i=1 N  i dNi  0

10/11/2011

PHYS 461 & 561, Fall 2011-2012

15

Stoichiometric coefficients for each of the reactants are defined as:

 i  ±1

depending on whether the number of particles of the i-th type increases or decreases during the reaction:

∑i=1 or or

N

i i  0

∑i=1 N  i0  i  kBT ∑i=1 N ln(ci/ci0 )i ∑i=1 N  i0  i ln[∏i=1 N (ci/ci0 )i]

∏i=1 N cii = (∏i=1 N ci0 i) exp(∑i=1 N  i0  i) where we define the equilibrium constant K : eq Keq = (∏i=1 N ci0 i) exp(∑i=1 N  i0  i) 10/11/2011

PHYS 461 & 561, Fall 2011-2012

16

Kd = 1/Keq … dissociation constant In our case of the reaction A

+ B  AB, we can express Kd as:

Kd = ∏i=1 N ci i = cA cB / cAB

Example: total concentration: 50 M

10/11/2011

PHYS 461 & 561, Fall 2011-2012

17

Application to Ligand-Receptor Binding:

L + R  LR Kd = [L][R]/[LR] or [LR] = [L] [R]/Kd Binding probability:

[LR] [L]/Kd pbound = --------------- = -------------[LR] + [R] 1 + [L]/Kd A natural interpretation of K : K is the concentration at which d d the receptor has a probability of ½ of being occupied by a ligand. Based on out prior result, we can express it in terms of lattice model parameters as: K 10/11/2011

 =  exp() d

PHYS 461 & 561, Fall 2011-2012

18

Important: K depends on the concentration of free ligands not d

their total concentration!

(1) (2)

10/11/2011

PHYS 461 & 561, Fall 2011-2012

19

(C)

(D)

10/11/2011

PHYS 461 & 561, Fall 2011-2012

20

Cooperative Ligand-Receptor Binding: The Hill Function Biological function: an on-off switch behavior triggered by Binding of a ligand to a receptor involves a cooperative (all-or-none) mechanism:

L + L + R  L2R 2 2 Kd = [L] [R]/[L2R] pbound

10/11/2011

([L]/Kd)2 ([L]/Kd)n = ---------------- = -------------------2 n 1 + ([L]/Kd) 1 + ([L]/Kd)

PHYS 461 & 561, Fall 2011-2012

21

The larger the n, the sharper the binding curve (probability of binding versus ligand concentration)

10/11/2011

PHYS 461 & 561, Fall 2011-2012

22