Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (RAP)

University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2004 Laboratory Study of Fatig...
Author: Denis Cain
6 downloads 0 Views 6MB Size
University of Tennessee, Knoxville

Trace: Tennessee Research and Creative Exchange Masters Theses

Graduate School

5-2004

Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (RAP) William R. Kingery University of Tennessee - Knoxville

Recommended Citation Kingery, William R., "Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (RAP). " Master's Thesis, University of Tennessee, 2004. http://trace.tennessee.edu/utk_gradthes/2271

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected].

To the Graduate Council: I am submitting herewith a thesis written by William R. Kingery entitled "Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (RAP)." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering. Baoshan Huang, Major Professor We have read this thesis and recommend its acceptance: Eric C. Drumm, J. Hal Deathrage Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.)

To the Graduate Council: I am submitting herewith a thesis written by William R. Kingery, III entitled “Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (RAP)”. I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering.

Dr. Baoshan Huang Major Professor

We have read this thesis And recommend its acceptance:

Dr. Eric C. Drumm

Dr. J. Hal Deatherage

Accepted for the Council:

Anne Mayhew Vice Chancellor and Dean of Graduate Studies

(Original signatures are on file with official student records.)

Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing Recycled Asphalt Pavement (RAP)

A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville

William R. Kingery, III May 2004

Acknowledgements I would like to begin by thanking all the people who provided time, assistance and direction in order for me to complete my master’s degree. I would especially like to thank Tennessee Department of Transportation for funding and providing their invaluable time during this research project with the University of Tennessee. I would like to thank Dr. Baoshan Huang for giving me the opportunity to attend graduate school and providing support throughout this journey. I would like to thank N. Randy Rainwater for giving me confidence and assistance in keeping a functional laboratory. I would also like to thank Dr. Eric Drumm and Dr. Hal Deatherage for their assistance as members of my graduate committee.

I would like to thank Zhixiang Zhang, a visiting scholar from China, for his input and help during the preliminary stages of this project. Also thanks goes to Dragon Vukosavljevic, Michael Cloud and Mason Pitt for their help in the lab during sample preparation and testing. I would also like to thank Ken Thomas and Larry Roberts for their craftsmanship and ideas.

Lastly, I would like to thank my family and friends for their love and support throughout my entire college career, especially my parents Mr. Billy and Betty Kingery. I would also like to thank my beautiful fiancé for her love and support during crunch time.

ii

Abstract Reclaimed asphalt pavement (RAP) has been used in the construction of asphalt pavements since the 1930’s. Conversely the use of RAP in load carrying layers has always been a sensitive issue due to the uniformity and rheological properties of the blended asphalt mixtures. Typically the inclusion of RAP will blend the long-term aged asphalt binder in the RAP with the fresh asphalt binder resulting in a stiffer mixture. Generally rutting will less likely be a problem with the inclusion of RAP. However, the fatigue crack resistance of the HMA mixtures containing RAP has been a key interest to designers and engineers. This thesis presents the results of a laboratory study, in which the laboratory fatigue characteristics of asphalt mixtures containing RAP were evaluated.

A typical surface mixture meeting the state of Tennessee “D” mix criteria was evaluated at 0, 10, 20 and 30 percent of screened RAP materials. Two types of aggregates (limestone and gravel) and two types of binder (PG 64-22 and PG 76-22) were used for this study. Fatigue characteristics were evaluated through indirect tensile strength, semi-circular bending and beam fatigue tests.

The results from this study indicated that laboratory long-term aging and the inclusion of RAP generally increased the stiffness and laboratory fatigue resistance for the mixtures studied. For the mixtures studied, the inclusion of 30 percent RAP for both binder types significantly changed the fatigue characteristics as compared to 0, 10 and 20 percent RAP. Increasing the percentage of RAP increased the fatigue resistance, however at higher percentages of RAP the mixture becomes stiffer and some fatigue iii

characteristics are compromised by adding RAP. Based on the workability and performance in the lab, 20 percent RAP would be recommended for use in Tennessee surface mixtures. Field validations are recommended to compare laboratory performance to field performance to verify the optimum percentage of RAP to be used during pavement construction.

iv

Table of Contents 1.0 Introduction........................................................................................................1 1.1. Problem Statement......................................................................................1 1.2. Objective.....................................................................................................3 1.3. Scope...........................................................................................................3 1.4. Background.................................................................................................4 1.5. Literature Review .......................................................................................8 2.0 Research Methodology ....................................................................................15 2.1. Materials ...................................................................................................15 2.2. Mixture Design .........................................................................................17 2.3. Aging Experiment.....................................................................................20 2.4. Specimen Preparation ...............................................................................21 2.5. Test Methods ............................................................................................22 2.5.1. Indirect Tensile Strength and Strain Test (IDT) ..............................22 2.5.2. Semi-Circular Bending (SCB) Test .................................................24 SCB Frequency Sweep Test...............................................26 SCB Tensile Strength Test.................................................27 SCB Fatigue Test ...............................................................29 SCB Notched Fracture Test ...............................................30 2.5.3. Flexural Beam Fatigue Test.............................................................32 2.5.4. Asphalt Binder Testing ....................................................................36 3.0 Discussion of Results.......................................................................................38 3.1. Indirect Tensile Strength Test Results......................................................38 v

3.2. Semi-Circular Bending (SCB) Test Results .............................................45 3.2.1. SCB Frequency Sweep Test ............................................................45 3.2.2. SCB Tensile Strength Test...............................................................45 3.2.3. SCB Fatigue Test .............................................................................47 3.2.4. SCB Notched Fracture Resistance Test ...........................................53 3.3. Flexural Beam Fatigue Test Results .........................................................55 3.4. Asphalt Binder Testing Results ................................................................61 3.5. Statistical Analysis of Laboratory Test.....................................................64 3.6. Test Variability .........................................................................................70 4.0 Conclusions......................................................................................................73 References..............................................................................................................77 Appendices.............................................................................................................83 Appendix A. Job Mix Formulas ...............................................................84 Appendix B. Indirect Tensile Strength Test Data ..................................101 Appendix C. Semi-Circular Bending Test Data.....................................120 Appendix D. Flexural Beam Fatigue Test Data .....................................171 Appendix E. MTS Test Templates .........................................................207 Vita.......................................................................................................................225

vi

List of Tables Table 1. Test Factorial .............................................................................................5 Table 2. Cost Comparison of Different Percentages of RAP ..................................7 Table 3. Savings Generated by Using RAP .............................................................8 Table 4. Limestone Job Mix Formula....................................................................18 Table 5. Gravel Job Mix Formula..........................................................................18 Table 6. IDT Results, Limestone Mixtures............................................................38 Table 7. Percent Change of IDT Properties, Limestone Mixtures.........................41 Table 8. IDT Results, Gravel Mixtures..................................................................42 Table 9. Percent Change of IDT Properties, Gravel Mixtures...............................44 Table 10. SCB Tensile Strength Test Results........................................................47 Table 11. Percent Change in SCB Strength ...........................................................48 Table 12. Comparison of Fatigue Life Relative to Slope ......................................51 Table 13. Beam Fatigue Test Results, Limestone Mixtures ..................................56 Table 14. Beam Fatigue Test Results, Gravel Mixtures ........................................59 Table 15. DSR Test Results ...................................................................................61 Table 16. Test Comparison ....................................................................................72

vii

List of Figures Figure 1. Gradations of Stockpiles and RAP, Limestone Mix ..............................16 Figure 2. Gradations of Stockpiles and RAP, Gravel Mix ....................................17 Figure 3. Limestone Mixture Gradations...............................................................19 Figure 4. Gravel Mixture Gradations.....................................................................19 Figure 5. Prepared Test Specimens........................................................................22 Figure 6. Normalized IDT Curve for TI Calculation.............................................24 Figure 7. Typical SCB Test Setup .........................................................................25 Figure 8. SCB Frequency Sweep Test ...................................................................27 Figure 9. Typical SCB Tensile Strength Test ........................................................28 Figure 10. Load and Deformations in SCB Fatigue Test.......................................30 Figure 11. SCB Notched Fracture Test Setup........................................................31 Figure 12. J-Integral for Different Notch Depths ..................................................32 Figure 13. Beam Fatigue Fixture ...........................................................................33 Figure 14. Flexural Stiffness vs. Load Cycles (Automated Software) ..................35 Figure 15. IDT Test Results, Limestone Mixtures ................................................39 Figure 16. Percent Change in IDT Properties, Limestone Mixtures......................41 Figure 17. IDT Test Results, Gravel Mixtures ......................................................43 Figure 18. Percent Change in IDT Properties, Gravel Mixtures............................44 Figure 19. SCB Frequency Sweep Test .................................................................46 Figure 20. SCB Composite Modulus and Phase Angle .........................................46 Figure 21. SCB Tensile Strength Test Results.......................................................48 Figure 22. SCB Fatigue Test Results.....................................................................49 viii

Figure 23. SCB Fatigue Test Log-Log Scale.........................................................50 Figure 24. Change in SCB Fatigue Slope Relative to 0% RAP.............................51 Figure 25. SCB Fatigue Dissipated Energy ...........................................................52 Figure 26. SCB Notched Fracture Energy .............................................................53 Figure 27. J-Integral from Semi-Circular Notched Fracture Test..........................54 Figure 28. Beam Fatigue Summary, Limestone Mixtures.....................................56 Figure 29. Flexural Stiffness vs. Loading Cycles, Limestone Mixtures................57 Figure 30. Beam Fatigue Summary, Gravel Mixtures...........................................59 Figure 31. Flexural Stiffness vs. Loading Cycles, Gravel Mixtures......................60 Figure 32. DSR Test Results, Limestone PG 76-22 ..............................................62 Figure 33. BBR Test Results, Limestone PG 76-22 ..............................................63 Figure 34. ANOVA Analysis, Limestone IDT Test ..............................................66 Figure 35. ANOVA Analysis, Gravel IDT Test ....................................................66 Figure 36. ANOVA Analysis, Limestone SCB IDT Test......................................67 Figure 37. ANOVA Analysis, Limestone Beam Fatigue Test...............................68 Figure 38. ANOVA Analysis, Gravel Beam Fatigue Test.....................................69

ix

1.0 Introduction 1.1 Problem Statement With the increasing cost of construction and pavement rehabilitation programs, recycled asphalt pavement has proven to be a valuable and economical resource. Recycled asphalt pavements (RAP) have been used in construction as early as the 1930s (Taylor, 1977) and millions of tons have been used since the 1970s. Oil embargos of the 1970s forced the asphalt industry into pavement recycling due to the increased cost of crude oil, and the practice has increased due to the environmental risk associated with material disposal. Due to the increased cost of construction, the asphalt industry has been forced to seek alternatives anytime pavement rehabilitation is needed. The recycling of existing pavements and mixing with virgin materials has proven to produce pavments that perform as well or even better than asphalt pavements constructed of properly designed virgin materials and result in substantial savings of material cost and environmental concerns.

With the increasing use of RAP materials today, the addition of RAP in major load carrying and surface layers of asphalt pavements has always been a sensitive issue. The main concerns about the use of RAP (especially in significant quantity) in surface or load carrying layers are the durability and long-term fatigue resistance of the HMA mixtures containing RAP materials. Generally, the addition of RAP in HMA mixtures will blend the long-term aged asphalt cement in the RAP with the fresh asphalt binder. After blending the long-term aged asphalt cement in the RAP, the result will be a stiffer

1

mixture. With an increase in stiffness, rutting generally will not be a problem for such mixtures. The main concerns for such mixtures are their resistance to long-term fatigue cracking and moisture susceptibility. For this reason, many state DOTs limit or restrict the use of RAP on the surface layer and limit the percentage of RAP used in structural layers.

The current Tennessee Department of Transportation (TDOT) specification allows the use of up to 15 percent of RAP on the Type “A”, 20 percent on Type “B”, “BM”, “B-M2”, “C-W” and “C” mixtures (TDOT 1995). Currently there are no specifications that allow the use of RAP in TDOT type “D” surface mixtures. All state highway agencies permit the use of RAP at a specified percentage in base and binder courses (Banasiak 1996). Although Tennessee doesn’t allow the inclusion of RAP in surface mixtures, surrounding states such as Alabama, Georgia, Kentucky and Virginia generally permit 10 to 30 percent RAP in their surface mixtures.

According to TDOT, approximately 4.96 million tons of hot mix asphalt was used in 2002 to resurface 1,990 lanes miles of road during the construction season (TDOT 2002). Of the 4.96 million tons of HMA laid in 2002, approximately 1.32 million tons met the Mix type “D” grading. Permitting the use of RAP in surface mixtures would generate savings associated with material and disposal cost. With the increasing trend of incorporating RAP into surface mixtures, many states are generating tremendous savings in construction cost. Florida reported that recycled mixtures have had good performance history and cost generally 25 percent less per ton of mix as compared to conventional 2

mixtures with virgin aggregates (Choubane et al. 1998). A study conducted by the University of New Hampshire indicated that the New Hampshire DOT currently allows up 15% RAP in surface mixtures resulting in 10 percent savings in material cost (Daniel and Lachance, 2003).

1.2 Objective The objective of this document was to evaluate the laboratory fatigue characteristics of Tennessee surface mixtures containing different percentages of No. 4 sieve screened RAP that meet the TDOT specifications for “D” mix. Fatigue characteristics were determined through laboratory mixture performance test. Two types of aggregates (Limestone and Gravel) and two types of asphalt binder (PG 64-22 and PG 76-22) were used to evaluate typical Tennessee surface mixtures containing 0, 10, 20 and 30 percent RAP.

1.3 Scope The scope of this document was intended to employ an experimental approach to evaluate the fatigue crack resistance of surface mixtures containing RAP. Two different types of aggregates, Limestone and Gravel, were chosen for this study. For each aggregate, two types of asphalt cement, PG 64-22 and PG 76-22 were used to evaluate the affects of RAP on different binder types. Prior to testing, each mix was subject to laboratory long-term aging in a forced draft oven at 100°C for a period of 3-days. In addition to long-term aging, a portion of the samples were conditioned by one freeze thaw cycle to examine the potential for moisture induced damage. The testing matrix 3

was designed to compare the control mixture containing 0 percent RAP to mixtures containing 10, 20 and 30 percent RAP. As shown in Table 1, the test used to evaluate the fatigue resistance of mixtures containing RAP include indirect tensile strength test (IDT), semi-circular bending test (SCB), SCB fatigue test, Semi-circular notched fracture test and four-point beam (flexural beam) fatigue test.

1.4 Background The National Asphalt Paving Association (NAPA) indicated that approximately 70 million tons of asphalt pavements are recycled each year, which is almost twice the amount of combining recycled paper, glass, plastic and rubber. The Federal Highway Administration (FHWA) indicated that 80 percent of the asphalt pavement is removed each year during widening and resurfacing projects is re-used. This number is substantially higher than any other recyclable bi-product recorded by the U.S. Environmental Protection. Prior to recycling, much of the asphalt waste was removed and disposed of in landfills. As landfills started to fill up and knowledge of recycling became available, the concept of pavement recycling gained a large amount of interest.

With the increasing demand on our national highway system, pavements that have aged in place and undergone physical distresses such as rutting and fatigue cracking during their service life are ideal candidate for recycling. Reprocessing the salvaged materials, plus the addition of virgin asphalt, is done through several processes which include the following: (1) hot mix recycling, (2) hot in-place recycling (3) cold in place recycling and (4) full depth reclamation (ARRA 1992). 4

Table 1. Test Factorial 411-D Surface Mixtures Performance Test Asphalt SCB SCB Notched Fracture Aggregate RAP (%) IDT SCB IDT 0.5" 1.0" 1.5" Cement Fatigue 0 x,y x,y x,y x,y x,y x,y 10 x,y x,y x,y x,y x,y x,y PG 64-22 20 x,y x,y x,y x,y x,y x,y 30 x,y x,y x,y x,y x,y x,y Limestone 0 x,y x,y x,y x,y x,y x,y 10 x,y x,y x,y x,y x,y x,y PG 76-22 20 x,y x,y x,y x,y x,y x,y 30 x,y x,y x,y x,y x,y x,y 0 y,z y,z 10 y,z y,z PG 64-22 20 y,z y,z 30 y,z y,z Gravel 0 y,z y,z 10 y,z y,z PG 76-22 20 y,z y,z 30 y,z y,z Note: Each Test will be conducted on triplicate samples IDT - Indirect Tensile Strength SCB - Semi-circular Bending x - un-aged y - long-term aged z - long-term aged Freeze Thaw cycle not part of this research report

Flexural Beam x,y x,y x,y x,y x,y x,y x,y x,y y,z y,z y,z y,z y,z y,z y,z y,z

Hot mix asphalt recycling is a process where the RAP is blended with new materials through conventional HMA production. Similar to conventional HMA production, the RAP is handled and stored in stockpiles and used as needed. Both batch plants and drum plants are capable of producing HMA containing recycled pavements with minor modifications. Hot in-place recycling is a process that heats and softens the existing surface by a milling machine that is capable of blending raw materials with the RAP, placing the blended mixture and compacting in a single pass. Cold in place recycling is similar to hot in-place recycling with exception of heat. Cold in-place recycling uses rejuvenators or recycling agents (emulsifiers) that are remixed with the pulverized pavement and blended with new materials. This process involves very little energy and 5

can be done very efficiently to correct minor pavement distresses. Full depth reclamation is a process in which the entire pavement structure is pulverized and reused as a base material. The five main steps in this process are pulverization, introduction of additive, compaction, and application of a surface or wearing coarse (Kandhal 1997). These are some of the most common methods of recycling; however it is important to observe the existing pavement conditions prior to choosing which alternative is best.

Prior to pavement recycling, poor pavements were torn up by removing the entire pavement structure and discarding the waste in landfills. The cost to rebuild the existing roadway put major burdens on both the contractor and highway user. As these concerns increased along with the cost of energy, the asphalt industry has been forced to seek alternatives anytime pavement rehabilitation is required. As the demand on our national highway system increases, pavement recycling has proven to be a cost effective method of rehabilitation. When properly designed, the use of RAP during pavement rehabilitation has proven to be more economical than conventional HMA rehabilitation methods.

The cost associated by using RAP is typically evaluated on both a construction cost and a material cost basis. The variables associated with construction cost will be dependent on the location and the type of milling operation required. In this research, material cost was evaluated with the inclusion of 10, 20 and 30 percent RAP. Tennessee reported in 2002 that approximately 1.32 million tons of asphalt meeting the “D” mix criteria was placed throughout the state. A detailed material cost analysis was performed 6

for a typical Tennessee surface mix containing 5.7 percent liquid asphalt. Vulcan Materials Company and Marathon Ashland provided the average prices for the aggregates and liquid asphalt respectively. Considering $8.00 per ton for aggregate and $170.00 per ton for liquid asphalt, the cost to produce one ton of HMA with 5.7 percent asphalt comes out to be $17.80. If you consider the cost associated with handling the RAP to be $5.00 per ton, the cost of a mixture containing 30 percent RAP would be $14.17. The savings generated are $3.63 per ton or 20 percent for a mixture containing 30 percent RAP. Tables 2 and 3 represent a cost comparison based on tons of asphalt used in Tennessee during the 2002 paving season.

Table 2. Cost Comparison of Different Percentages of RAP 0% RAP Material Price ($/ton) Used (%) Cost ($/ton) D-Rock $8.45 50 $4.23 #10 Screenings $8.45 15 $1.27 Natural Sand $6.00 25 $1.50 Manufactured Sand $9.95 10 $1.00 *RAP $5.00 PG 64-22 $170.00 5.7 $9.81

Material D-Rock #10 Screenings Natural Sand Manufactured Sand *RAP PG 64-22

Cost

Cost

$17.80 20% RAP Material Price ($/ton) Used (%) Cost ($/ton) D-Rock $8.45 50 $4.23 #10 Screenings $8.45 0 $0.00 Natural Sand $6.00 20 $1.20 Manufactured Sand $9.95 10 $1.00 *RAP $5.00 20 $1.00 PG 64-22 $170.00 4.5 $7.72 Cost *Average cost of processing RAP

$15.14

Material D-Rock #10 Screenings Natural Sand Manufactured Sand *RAP PG 64-22 Cost

7

10% RAP Price ($/ton) $8.45 $8.45 $6.00 $9.95 $5.00 $170.00

Used (%) Cost ($/ton) 50 $4.23 10 $0.85 20 $1.20 10 $1.00 10 $0.50 5.1 $8.67 $16.44

30% RAP Price ($/ton) $8.45 $8.45 $6.00 $9.95 $5.00 $170.00

Used (%) Cost ($/ton) 50 $4.23 0 $0.00 10 $0.60 10 $1.00 30 $1.50 4 $6.85 $14.17

Table 3. Savings Generated by Using RAP

Percent RAP Cost ($/ton) Savings ($/ton) Savings (%) D-Mix $17.80 10% $16.44 $1.36 8 20% $15.14 $2.66 15 30% $14.17 $3.63 20

1.5 Literature Review Pavement damage is often hard to characterize because of the unpredictable distresses the pavement has experienced during its life. Roberts et al. 1997, noted that asphalt distresses should not be viewed with surprise unless the pavement experiences these distresses early in the design life. Similar to other materials, as asphalt pavements reach their design life, distresses are expected to occur as a result of the environment and repeated traffic loads (Roberts et al. 1997). Four of the most common types of distresses for asphalt pavements are rutting, moisture damage, thermal cracking and fatigue cracking. Generally rutting will not be a problem when designing asphalt mixtures with RAP because the aged binder from the RAP will blend with the virgin binder resulting in a stiffer mixture. The main concern when designing asphalt pavement with the inclusion of RAP is its resistance to fatigue cracking. Fatigue cracking often occurs when the asphalt experiences excessive loads during its design life or has been stressed to the limit of its fatigue life by repetitive loading. For this study, attention was only given to the fatigue characteristics of asphalt pavement containing RAP, because the blended asphalt mixture will tend to be stiffer resulting in a more brittle material. 8

Typically fatigue cracking occurs due to aging, repetitive stresses from axle loads, temperature changes and or inadequate drainage. The aging process begins during the production and construction process starting at the asphalt plant. During plant mixing, the asphalt cement experiences oxidation from the exposure of air and high temperatures. After the initial oxidation, the rate of aging decreases at a much slower rate when compacted and placed. The rate of aging or any other factors affecting the process are extremely complicated and have troubled the industry for a long time. Researchers suggest that each reaction seems to lead to an undesirable change or embrittlement of the asphalt, which in turn has been associated with HMA of poor durability properties (Finn 1967).

In addition to aging, fatigue cracking due to repeated loading or temperature change induces undesirable tensile stress and strain in the pavement layers that initiate microcracks. These stresses propagate and densify, leading to the formation of macrocracks and further damage to the pavement. Past research has indicated that fatigue cracking is thought to initiate from the bottom of the asphalt layer where tensile stresses are most notable and progress up to the surface. However, recent research has indicated that cracks most often initiate longitudinally in wheel paths and propagate downward (i.e., top-down cracking) through the HMA layer (Myers and Roque, 2001). Typically top-down cracking occurs after the surface layer has experienced high stresses from repetitive traffic loading and high thermal stresses leading to surface age hardening. As the pavement becomes more brittle, the initiation of top-down cracking leads to further pavement distresses that permanently damage the pavement structure. In order to 9

address the concerns of how aging and fatigue are related, it is important to have a controlled environment in the laboratory to characterize the behavior of pavements under repeated stress or strain cycles.

Tangella et al. 1990, conducted NCHRP A-003A research project entitled “Fatigue Response of Asphalt-Aggregate Mixtures” to evaluate test procedures for measuring the fatigue response of asphalt paving mixtures and to summarize what is known about the factors that influence pavement life. Mode of loading, typically either controlled-stress or controlled-strain laboratory testing, was identified as one of the primary factors affecting fatigue response (Tangella et al. 1990). They also believed that the controlled-stress test essentially measures the loading necessary for crack initiation; longer fatigue lives are recorded in controlled-strain test because crack propagation is also included. Many types of fatigue testing were analyzed to come up with simple fatigue test that would help characterize the fatigue life of pavements. Tengella et al. 1990, believed that the three most promising test methods were flexural fatigue test, diametral fatigue, and tests employing fracture mechanics principals.

Flexural fatigue testing is used to estimate the fatigue life of flexible pavements under repeated flexural bending. The flexural fatigue test consists of a rectangular shaped asphalt beam cut from laboratory compacted samples and subjected to a user defined cyclic stress or strain controlled load to the center of the beam until failure. Constant stresses applied continuously to the beam create a negative bending moment about the center point of the beam causing the beam to return to its original position 10

between each loading cycle. A cyclic load with a chosen amplitude to create a positive moment equal in magnitude to the continuous negative moment is applied to the center point of the beam until failure occurs. For strain-controlled test, a strain is applied continuously to the center of the beam during each load cycle. Stiffness is measured from the center point of the beam after the 50th load cycle to determine the initial flexural stiffness, and failure is defined as 50 percent reduction in initial stiffness. Experience has shown that thick asphalt pavements (greater than 5 inches (130-mm)) generally perform close to constant stress mode of loading while thin asphalt pavements perform close to the constant strain mode of loading (Roberts et al. 1991).

The diametral fatigue test is an indirect tensile test that applies repetitive or continuous loading to a cylindrical sample with a compressive load which acts parallel to and along the vertical diametral plane (Kennedy 1977). This loading configuration develops a relatively uniform tensile stress perpendicular to the direction of the applied load and along the vertical diametral plane. According to Kennedy and Hudson (1968), under a line load of sufficient magnitude, the diametral specimen would fail near the load line due to compression. The compressive stresses are greatly reduced by distributing the load through a loading strip, however, and a sufficiently large load will actually induce tensile failure along the vertical diameter. The biaxial state of stress which exists during diametral testing is due to compressive and vertical stresses at the center of the specimen, where the vertical compressive stress is three times the horizontal tensile stress (Tangella et al. 1990). While diametral testing is a stress controlled test, Roberts et al. (1991)

11

believe that the second property determined from the indirect tensile test, which is tensile strain at failure, is more useful for predicting cracking potential.

Similar to indirect tensile testing, European and South African researchers have investigated the usefulness of the semi-circular bending test as a simple test which gives decisive answers on the material characteristics needed for pavement design (Molenaar et al. 2002). Test specimens are made by a gyratory compactor and cut into equal disk typically 1-inch in thickness or cut from field cores. Molenaar et al. (2002) used this test as a simple tool to obtain information of the modulus and the tensile characteristics of asphalt mixtures. During this study, researchers investigated the advantages of using the semi-circular bending test versus the indirect tensile test and discovered that a crack would develop along the bottom of the semi-circular disk and cause the sample to fail in tension. When comparing this with indirect tensile testing, indirect tensile specimens most typically fail under compression near the loading strips by wedging or shear failure. Although not a standard test method to characterize the pavements material behavior, utilizing the basic principals of the semi-circular bending test can provide researchers with a way to evaluate the tensile characteristics of the mixture tested.

Another approach for characterizing the fatigue response of asphalt concrete makes use of the principals of fracture mechanics (Majidsadeh et al., 1971; Salam, 1971; and Monismith et al., 1973), where fatigue is considered to develop in three phases: (1) crack initiation, (2) stable crack growth, and (3) unstable crack propagation with the second phase consuming most of the fatigue life (Tangella et al. 1990). This method of 12

evaluation has become a useful tool to characterize both fracture resistance and fatigue properties through crack propagation.

Distresses such as cracking have been recognized by designers as a weak or unrecoverable (plastic) zone that contributes to further failure of the pavement structure. Repetitive loading experienced by pavements over time make them ideal candidates for the application of fracture mechanics (Sulaiman and Stock, 1995). Initial solutions to fracture mechanics assumed the pavements to be linear elastic for brittle materials, but once the crack was initiated the assumption was no longer valid for fracture mechanic analysis. Once stable crack growth has propagated, research suggests that the pavement must be modeled using linear elastic fracture mechanics (LEFM) that describe the stresses present around the crack. As solutions became available for situations in which the crack tip was preceded by the development of a significant plastic zone, the J-integral approach has become widely accepted as a solution for this situation (Sulaiman and Stock, 1995). This concept was first introduced by Rice in 1968 as a path independent integration of strain energy around the crack (Rice 1968).

Mull et al. 2002, used the J-integral concept on semi-circular specimens with various notch-depths ratios subject to three-point bending to characterize fracture resistance of different asphalt mixtures. The J-integral was determined by monotonically loading the notched specimens at a rate of 0.02 in./min. until failure. According to Mull’s research, a relationship between the total strain energy to failure and the notch depth were very linear. From this linear relationship between strain energy and notch 13

depth, fracture resistance of the mixture can be determined by taking the slope of the fracture energy versus various crack lengths.

Kim and Wen (2002), used the concept of fracture mechanics from the indirect tension test (IDT) as a simple performance indicator for fatigue cracking. During their study, they defined fracture energy as the area under the stress-strain curve in the loading portion, which was the sum of the strain energy and the dissipated energy due to structural changes (such as micro-cracking). Materials that are highly elastic require tremendous amounts of work to permanently deform the material. From their observation, they suggest that from the IDT that fracture energy and the sum of strain energy may be the proper indicator for the resistance of asphalt concrete fatigue cracking.

14

2.0 Research Methodology The purpose of this laboratory study was to provide an understanding of how the inclusion of RAP would affect the fatigue characteristics of a standard surface mixture used in Tennessee. This section gives a detailed description of the test methodology used to evaluate the fatigue characteristics of the laboratory compacted specimens.

2.1 Materials The aggregates and asphalt binder were conventional for HMA surface mixtures used in Tennessee. An aggregate structure meeting TDOT Specifications for 411-D mixtures was used as a design basis. Two types of coarse aggregates (D-rock) were used: Limestone and Gravel, both with a maximum aggregate size of ¾-inch. The fine aggregates consisted of No. 10 screenings, natural sand, manufactured sand, agricultural lime and screened RAP from both from limestone and gravel sources.

For each mixture, the RAP material used in the mix design process as a substitute for sand or screenings was originally designed as a limestone or gravel D-mix. To maintain consistent aggregate types, RAP materials were only used in mixtures similar to their original design. Both RAP materials were processed during a typical milling operation and were stored and sampled similar to virgin aggregates. To preserve material uniformity, all RAP materials were screened through the No. 4 sieve to acquire a consistent gradation that was comparable to the fine aggregates used in this study. All RAP material retained on the No. 4 sieve were discarded and not used as part of the

15

design. Gradations were determined on the bare aggregate after the binder was extracted from the RAP material. The verified asphalt content of the RAP materials was 5.5 percent for limestone mixtures and 5.7 percent for gravel mixtures.

Two types of asphalt binder were used in the study, unmodified asphalt meeting Superpave specifications for PG 64-22 and polymer modified asphalt meeting the specification as PG 76-22. Figures 1 and 2 represent stockpile gradations for the materials used in this study.

100 90

D-Rock #10 Soft Na. Sand Man. Sand RAP

Percent Passing, %

80 70 60 50 40 30 20 10 0

0

0.5

1

No.200 No.100 No.50 No.30

No.8 1.5

No.4 2

2.5

3/8''

3

1/2''

3.5

3/4''

Sieve Size, in.

Figure 1. Gradations of Stockpiles and RAP, Limestone Mix.

16

100 D-Rock Ag. Lime #10 Soft Nat. Sand RAP

90

Percent Passing, %

80 70 60 50 40 30 20 10 0

0

0.5

No.200 No.100 No.50

1No.30

No.8 1.5

No.4 2

2.5

3/8''

3

1/2''

3.5

3/4''

Sieve Size, in.

Figure 2. Gradations of Stockpiles and RAP, Gravel Mix.

2.2 Mixture Design Standard Marshall mix design procedures were used to determine the volumetric proportions for the mix used in this study. Prior to designing any mixtures with the inclusion of RAP, a control mix was first designed as a guide to follow during RAP mix design. TDOT provided a job mix formula (JMF) for typical 411-D surface mixtures used in Tennessee to represent our control mix. Asphalt contents for limestone mixtures were designed at 5.0 percent and gravel mixtures were designed at 5.8 percent asphalt. Tables 4 and 5 represent the job mix formulas for both limestone and gravel control mixtures. For Limestone and Gravel mixtures, screened RAP was substituted in equal proportions for the fine aggregate. As shown in Figures 3 and 4, the gradations of the blended mixtures were kept in a very narrow band so that all the mixtures resulted in similar aggregate structures. 17

Table 4. Limestone Job Mix Formula

Sieve Size Percent Used 5/8" 1/2" 3/8" #4 #8 #30 #50 #100 #200 Asphalt Content 5.0

Design Natural Manufactured Limestone DNo. 10 Sand Range Sand Rock Screenings JMF 50% 15% 25% 10% 100 100 100 100 100 100 100 100 97 100 100 100 99 95-100 70 100 100 100 85 80-93 21 92 98 99 59 54-76 7 61 93 82 44 35-57 4 29 63 28 25 17-29 3 21 13 17 10 10-18 2.0 20.0 2.0 9.0 5.4 3-10 1.8 16.0 1.0 5.0 4.1 0-6.5 Gmm Gmb Air Voids VMA Stability (lbs) Flow (.01") 2.456 2.356 4.0 16 2607 9.7

Table 5. Gravel Job Mix Formula Sieve Size Percent Used 5/8" 1/2" 3/8" #4 #8 #30 #50 #100 #200 Asphalt Content 5.8

Gravel DRock 55% 100 95 77 40 22 8 5 3.0 2.0 Gmm 2.360

No. 10 Soft Natural Screenings Sand 10% 25% 100 100 100 100 100 100 91 96 60 84 30 60 21 8 16.0 1.0 14.0 Gmb Air Voids 2.265 4.0

18

Ag. Lime 10% 100 100 100 98 92 64 52 41.0 34.0 VMA 17

Design Range JMF 100 100 100 100 97 95-100 87 80-93 65 54-76 48 35-57 29 17-29 12 10-18 7.6 3-10 5.9 0-6.5 Stability (lbs) Flow (.01") 2972 10.9

100.0 Control Gradation

90.0 Percent Passing, %

80.0

Upper Limit

70.0 Lower Limit

60.0 50.0

10% RAP

40.0 20% RAP

30.0 20.0

30% RAP

10.0 0.0 No.200 No.100 No.50 No.30 No.8 No.4 0.000 0.500 1.000 1.500 2.000 2.5003/8''3.0001/2”3.5003/4” Sieve Size, in.

Figure 3. Limestone Mixture Gradations.

100.0 90.0

Control Gradation

Percent Passing, %

80.0

Upper Limit

70.0 Lower Limit

60.0 10% RAP

50.0

20% RAP

40.0

30% RAP

30.0 20.0 10.0 0.0 No.1001.000 No.50 No.30 No.8 2.000 No.4 0.000No.200 0.500 1.500 2.5003/8''3.0001/2''3.5003/4” Sieve Size, in.

Figure 4. Gravel Mixture Gradations.

19

2.3 Aging Experiment A separate laboratory experiment was conducted to determine which aging method would best simulate long-term aging of the mixtures. Both loose and compacted mixtures were used to evaluate different laboratory aging methods to determine how pressure, temperature and time affected the characteristics of the mixtures. The compacted mixtures were laboratory aged to determine which laboratory aging method would best represented long-term aging.

The aging procedure included both loose and compacted specimens that were aged in a pressure aging vessel (PAV) at 100°C for 1-day, 2-days and 3-days. The size of the samples would make it difficult to long-term age a significant amount of specimens in the PAV so a portion of the samples were long-term aged in a forced draft oven at 85°C for 5-days and at 100°C for 3-days to compare with the PAV.

To compare the rheological properties of the aged mixtures, the binder was extracted and recovered from each aging protocol. Binder properties from each method of aging were then compared to an un-aged sample with the same mixture properties using the Dynamic Shear Rheometer (DSR). After comparing the rheological properties of the extracted asphalt binders from the mixtures with different aging protocols, the 3day oven aging at 100°C was found to give similar results to the standard loose mixture oven aging at 85°C for 5-days. Based on the rheological properties of the extracted binder and investigating each aging method, half the test specimens were subjected to oven aging at 100°C for a period of 3-days (72-hours). 20

2.4 Specimen Preparation To ensure the quality of each mixture, each stockpile was oven dried and broken down into separate sieve sizes. By breaking the aggregate down into separate sieve sizes, it reduced the variability of having inconsistent gradations. Prior to mixing, each mixture was batched into 6000-8000 gram batches. Each batch was then superheated in a forced draft oven prior to being mixed in the laboratory using a mechanical mixer. After mixing, each mixture was subject to short-term aging for a period of 2-4 hours at 300°F (150°C) prior to compaction. Two different methods of compactions were used in this study. The Superpave Gyratory Compacter (SGC) was used to compact 4 – 6 inch circular specimens and the vibratory compactor was used to compact beam specimens. All circular specimens were compacted to 5±0.5 percent air voids and all beam samples were compacted to 6±1 percent air voids.

Prior to testing, all samples were checked for air voids in accordance with AASHTO T-269, Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures, to validate proper air void requirements. If any specimen was outside the specified air void range, the specimen was discarded. Specimens suitable for testing (Figure 5) were then cut using a wet blade saw into their respective sizes for each test. After the specimens were cut they were stored at 77°F (25°C) for a minimum of two hours prior to testing. All test were conducted at 77°F (25°C) throughout the study.

21

Figure 5. Prepared Test Specimens.

2.5 Test Methods 2.5.1 Indirect Tensile Strength and Strain Test (IDT) The indirect tensile test (IDT) was used to determine the tensile strength and strain of 4-inch (100-mm) diameter and 2.5-inch (37-mm) thick cylindrical samples. Testing was done in triplicates on both un-aged and long-term aged specimens. Each cylindrical sample was loaded along the diametral axis at a rate of 2 in./min. (50.8 mm/min.). This loading configuration develops a relatively uniform tensile stress perpendicular to the direction of the applied load and along the vertical diametral plane, which ultimately causes the specimen to fail by splitting along the vertical diameter (Roberts et al. 1991). The load and deformations were continuously recorded and indirect tensile strength and strain are computed as follows: 22

ST =

2 ⋅ Pult

(1)

π ⋅t ⋅ D

ε T = 0.52H T

(2)

where ST – Tensile strength, Pult – Peak load, t

– thickness of the specimen,

D – Diameter of the specimen, εT – Horizontal tensile strain at failure, and HT – Horizontal deformation at peak load, in.

Toughness index (TI), a parameter describing the toughening characteristics in the post-peak region, was also calculated from the indirect tensile test results. Figure 6 presents a typical normalized indirect tensile stress and strain curve. A dimensionless indirect tensile toughness index, TI is defined as follows (Sobhan and Mashnad, 2002): TI =

Aε − Ap

ε −εp

where TI – Toughness index, Aε – Area under the normalized stress-strain curve up to strain ε, Ap – Area under the normalized stress-strain curve up to strain εp ε – Strain at the point of interest, and εp – Strain corresponding to the peak stress.

23

(3)

1.2

IDT Normalized

1

0.8

0.6 Ap



0.4

0.2

0 0

0.1

0.2

0.3

0.4

εp

0.5

0.6

Strain, %

0.7

0.8

0.9

1

1.1

ε

Figure 6. Normalized IDT Curve for TI Calculation.

This toughness index compares the performance of a specimen with that of an elastic perfectly plastic reference material, for which the TI remains constant at 1. For an ideal brittle material with no post-peak load carrying capacity, the value of TI equals zero. In this study, the values of indirect tensile toughness index were calculated up to tensile strain of one percent. This strain level can be any strain greater than the strain corresponding to the peak stress. The IDT test and TI calculation were used as a simple performance test to understand how the RAP would affect the fatigue characteristics of mixtures containing RAP.

2.5.2 Semi-Circular Bending (SCB) Test The semi-circular bending (SCB) test for asphalt mixtures is more often reported in Europe and South Africa (Molenarr et al 2002 and van de Ven et al 1997).

24

Researchers have used this test to evaluate the tensile strength characteristics and fracture resistance of asphalt mixtures. The test set up is very simple, any loading frame that can apply monotonic or dynamic loading can be used. Figure 7 illustrates a typical SCB test set up. The SCB test fixture consists of a three-point bending setup that is fabricated so it can be attached to both the load frame and a load cell. The distance between the two supports at the bottom is 4-inches (100-mm). A small hole was drilled through the bottom of the fixture so an LVDT could be mounted to the bottom of the specimen to measure the deflection on the bottom flat surface.

p

ax ¦ t mÒ

2a D

Figure 7. Typical SCB Test Setup.

25

SCB specimens were prepared using the SGC. After compaction, semi-circular disks were cut in half from 6-inch (150-mm) diameter cylindrical SGC specimens and then sliced into 1.0-inch (25-mm) thick specimens for testing. SCB testing was done in triplicate samples for both short-term and long-term aged specimens. Specimens subject to long-term aging were placed in a forced draft oven at 100°C for three days.

During this study, the SCB test was used to characterize the various properties of asphalt mixtures containing RAP. By using the SCB setup, mixture properties were determined using both dynamic and monotonic loading. Dynamic loading consist of applying cyclic loads at different frequencies to obtain viscoelastic properties, or by applying continuous sinusoidal loading to the specimen until failure to determine fatigue characteristics of different mixtures. Similar to the traditional indirect tensile strength test, the SCB setup was used to apply monotonic loading to determine tensile strength characteristics for different mixtures containing RAP.

SCB Frequency Sweep Test A stress controlled frequency sweep test was conducted at 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 10 Hz with a 100 second resting period between each frequency to allow for elastic recovery. During the frequency sweep test, a sinusoidal stress with amplitude of 200 lbs. (0.89 kN) was applied to the specimen. Mixture composite modulus (E*) and phase angle (δ) were calculated from the load and measured deflection. Figure 8 represents a graphical illustration of the SCB frequency sweep test. The time

26

250

Load, lbs. & Vert. Defl., in.

200

150 Load Deflection 100

50

0 0

200

400

600

800

1000

1200

1400

Time, sec.

Figure 8. SCB Frequency Sweep Test.

lag between peak load and vertical deflection gives us a good understanding of how the material behaves under cyclic loading and can be used as a tool for evaluating fatigue properties of mixtures containing RAP.

SCB Tensile Strength Test A semi-circular bending test was conducted at a constant displacement similar to the IDT test. VenderVan 1997, believes that this test is a simple tool to obtain information on the modulus and tensile characteristics for HMA mixtures. The reasoning for this test is that a crack will develop along the bottom of the specimen that helps characterize the tensile characteristics of the mixture. The specimen is loaded monotonically at a loading rate of 2 in./min. (50 mm./min.) until failure occurs. As shown in Figure 9, load and deformation are continuously recorded until failure. 27

4000 3500 3000

Load, lbs.

2500 2000 1500 1000 500 0 0

0.05

0.1

0.15

0.2

Vert. Defl., in.

Figure 9. Typical SCB Tensile Strength Test.

Analytical solutions for the SCB test can be achieved with proper application of loading and supporting conditions to the constitutive equations of the asphalt mixture. However, even the linear elastic solution between the load and bottom deflection requires complicated mathematical derivation. Molenaar et al. 2002, reported a specific solution between the top deflection and applied load as follows. σ t = 4.8

P D

(4)

δ v = 1.84

P Mr

(5)

Where: σt – maximum tensile stress at the bottom of the specimen, P – load per unit width of the specimen, D – diameter of specimen, 28

δv - vertical displacement at the top of the specimen, and Mr – resilient modulus.

Equations (4) and (5) are only valid when the distance between the two bottomsupports equals 0.8 times of the diameter. Huang et al. 2003, used finite element analyses to back-calculate the composite moduli of the specimens based on the recorded loads and deflections.

SCB Fatigue Test To characterize the material properties under dynamic loading, a continuous sinusoidal load was applied to a semi-circular disk until failure. The semi-circular fatigue test is similar to the stress controlled frequency sweep test except the specimen was loaded at a constant frequency of 5-hz. The load amplitude for each mixture was a fraction of the ultimate bearing capacity from the SCB tensile strength test. An LVDT was mounted on the bottom center of the specimen to measure vertical deformation. Load and deformation were continuously recorded to evaluate the fatigue characteristics for each mixture. Figure 10 illustrates the load and deformation response from the SCB fatigue test. By applying different load magnitudes at different percentages of the SCB tensile strength, the effect of RAP on the mixture during dynamic loading can be demonstrated.

29

0.0012

600 0.001

500 400 Stress, lbs.

Load & Defl.

0.0008 deflection load

0.0006

300

0.0004

200

0.0002

100

0

0

0.5

1

1. 5

2

0 0.057

2.5

Time

0.0572

0.0574

0.0576

0.0578

0.058

0.0582

0.0584

0.0586

Strain, in./in.

Figure 10. Load and Deformations in SCB Fatigue Test.

SCB Notched Fracture Test Similar to SCB test setup, the semi-circular notched fracture test applies a constant rate of deformation to a notched specimen. Researchers have been using this test to evaluate the fracture resistance of asphalt mixtures through the J-integral (Mull et al. 2002). The J-integral concept was first proposed by Rice in 1968 as a path independent integration of strain energy, density, traction and displacement along an arbitrary counter-clockwise path around the crack (Rice 1968). According to Mull et al. 2002, the J-integral concept is a method to characterize fracture resistance of asphalt mixtures having different notch-depths. To calculate Jc, which is the slope between the fracture energies of different notch depths, at least two different notch depths need to be considered. In this study three notch depths were used, 0.5 in. (12.5-mm), 1.0 in. (25.4mm) and 1.5 in. (38-mm). Figure 11, illustrates the test configuration for a typical semicircular notched fracture test.

30

Figure 11. SCB Notched Fracture Test Setup.

The loading rate for the notched fracture test was 0.02 in/min. at the temperature of 25 oC. This rate was chosen according to Mull et al 2002. The J-integral can be calculated through the following equation. ⎛U U ⎞ 1 J c = ⎜⎜ 1 − 2 ⎟⎟ ⋅ ⎝ b1 b2 ⎠ a 2 − a1

(6)

Where U is the strain energy to failure which equals to the area underneath the loaddeformation curve up to the peak load; b is the specimen thickness; and a represents the notch depth. The diameter of the specimen (2rd) was 6-inches (150-mm), the specimen thickness was approximately 1-inch (25.4-mm), and the spacing between the two supports (2s) was 4-inches (100-mm).

Figure 12 illustrates fracture energy versus notch depth. The slope of the curve between fracture energy and notch depth represents J-integral. Stiff mixtures that require additional energy to initiate failure will have a higher J-integral (slope). The higher the J31

30.000

Fracture Energy, psi.

25.000

20.000

15.000

10.000

5.000

0.000 0

0.5

1

1.5

2

Notch Depth, (in.)

Figure 12. J-Integral for Different Notch Depths.

integral for a mixture during a semi-circular notched test, the stronger the fracture resistance.

2.5.3 Flexural Beam Fatigue Test This test was developed under SHRP A-003A to evaluate the fatigue response of asphalt paving mixtures and to summarize what is known about the factors that influence pavement life using third point loading. The flexural beam fatigue test was later modified in SHRP-A-404 to improve the simplicity and reliability of the fatigue test.

The Flexural Beam Fatigue test is a strain controlled test to determine the fatigue life of 15 in. long by 2 in. thick by 2.5 in. wide beam specimens cut from laboratory

32

compacted samples subjected to repeated flexural bending until failure (AASHTO TP894).

Beam specimens were compacted using the vibratory compactor to 6±1 percent air voids and tested at 20°C according to AASHTO TP8-94, Standard Test Method for Determining the Fatigue Life of Compacted Hot Mix Asphalt (HMA) Subjected to Repeated Flexural Bending. Specimens were placed in a beam fatigue fixture (Figure 13) that would allow 4-point bending with free rotation and horizontal translation at all load and reaction points. An MTS closed loop computer controlled data acquisition system was used to apply the load.

Load

Specimen Clamp

Reaction

Load

Deflection

Reaction

Return to Original Postion

Figure 13. Beam Fatigue Fixture.

33

A user defined strain level was applied to the beam at a frequency of 10 Hz such that the specimen will undergo a minimum of 10,000 load cycles. During each load cycle beam deflections were measured at the center of the beam to calculate maximum tensile stress, maximum tensile strain, phase angle, stiffness, dissipated energy, and cumulative dissipated energy. Fatigue life is defined as the number of cycles corresponding to a 50 percent reduction in initial stiffness; initial stiffness was measured at the 50th load cycle (AASHTO TP8-94). Data was analyzed using automated fatigue software developed as a part of NCHRP A-003A by Tsai and Tayebali (1992). Figure 14 represents a typical stiffness versus load cycle plot using automated fatigue software. The cycles and beam deflections were continuously recorded and the above parameters were computed as follows:

Maximum Tensile Stress, psi: σ=

3aP wh 2

(7)

P = load applied by actuator, lbs. w = width of beam, in. h = specimen height, in. Maximum Tensile Strain, psi: ε=

12hδ 3L2 − 4a 2

(8)

δ = maximum deflection at center of beam, in. a = space between inside clamps, 4.684 in. L = length of beam between outside clamps, 14.055 in.

34

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 5.000E+05 4.000E+05 3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100

150,100

200,100

250,100

Loading Cycles

Figure 14. Flexural Stiffness vs. Load Cycles (Automated Software).

Flexural Stiffness, psi: S =

σ ε

(9)

Phase Angle, deg: Φ = 360fs

(10)

f = load frequency, Hz s = time lag between Pmax and δ max, sec. Dissipated Energy (psi) per cycle: wi = 0.25 π ε2 S sin(Φ)

(11)

wi = energy dissipated at load cycle I, εi = strain at load cycle I, Si = stiffness at load cycle I, Φi = phase angle between stress and strain at load cycle i.

35

2.5.4 Asphalt Binder Testing

Binder testing was completed to investigate the effect of different percentages of RAP on the mixtures performance. When the aged binder from RAP is combined with the new binder, it will have some effect on the resultant binder grade (McDaniel et al. 2000). To evaluate the effects of incorporating different percentages of RAP binder on the mechanical properties of different mixtures, the binder from each mixture with the inclusion of RAP must be extracted and recovered in accordance with AASHTO standards T164-01 and T 170-00. The recovered binder must then be tested to evaluate the effects of RAP on the rheological properties of PG binders used in the Superpave system. Binder test were conducted on blended PG 76-22 mixtures containing 10, 20 and 30 percent RAP.

Binder from each mixture was tested as original binder (un-aged) at the high temperature range as well as short-term aged binder and long-term aged binder at high, low and intermediate temperature ranges. To simulate short-term aging, the Rolling Thin Film Oven (RTFO) was used to represent aging during HMA production and construction. To represent long-term aging, the Pressure Aging Vessel (PAV) was used to simulate aging in the first 5 to 10 years of the pavements service life. The binder test conducted to determine the rheological properties of the RAP mixtures included the Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR).

The DSR was used to characterize the viscous and elastic behavior of the blended binders containing RAP. The DSR test measures the high and intermediate temperature 36

complex modulus (G*) and phase angle (δ) in accordance with AASHTO TP5-98 to determine its resistance to rutting and fatigue cracking. The rutting parameter, G*/sin δ, which represents the high temperature performance grade was determined on the un-aged mixtures as well as RTFO aged residue. The fatigue parameter, G*sin δ, which represents the blended asphalt at intermediate temperatures was measured using PAV aged binder.

The (BBR) was used to characterize the low temperature creep stiffness of the blended asphalt mixtures containing RAP. To evaluate the low temperature performance grade, PAV aged binder was placed in the BBR to measure the low-temperature creep stiffness and creep rate. BBR specimens were tested in accordance with AASHTO TP198 for the mixtures studied.

37

3.0 Discussion of Results The results of the laboratory fatigue testing for (1) indirect tensile strength (2) semi-circular bending and (3) flexural beam fatigue tests are discussed in this chapter. Data was taken from the test matrix discussed in Chapter 1 for both types of aggregates, two types of binder and varying amounts of RAP ranging from 0 to 30 percent.

3.1 Indirect Tensile Strength Test Results Table 6 summarizes the results from IDT testing for limestone mixtures. Indirect tensile strength (ITS) was evaluated for both types of binder with the inclusion of RAP. Mixtures subject to long-term aging had higher tensile strengths, lower strain at peak load and lower toughness indices than un-aged mixtures. As shown in Figure 15, the addition of screened RAP increased the tensile strength but significantly changed the post failure characteristics for un-aged and long-term aged mixtures. As expected, mixtures containing polymer modified asphalt PG 76-22 had higher tensile strengths and similar post failure characteristics when compared to non-modified mixtures (PG 64-22).

Table 6. IDT Results, Limestone Mixtures PG 64-22 % RAP

UA

Control 10 20 30

198 202 226 261

PG 76-22 % RAP

UA

Indirect Tensile Coef. Of Var. (%) 3.6 1.4 0.6 6.5

Strength, psi. Coef. Of LT-A Var. (%) 216 4.7 243 4.6 261 4.8 304 1.9

Indirect Tensile Coef. Of Var. (%) 2.0 4.3 2.5 4.2

Strength, psi. Coef. Of LT-A Var. (%) 270 3.6 284 2.3 318 1.9 332 3.0

234 Control 249 10 278 20 299 30 UA - un-aged LT-A - long-term aged

UA 0.0036 0.0034 0.0031 0.0029

UA 0.0037 0.0037 0.0032 0.0028

Strain at Failure, in./in. Coef. Of Coef. Of LT-A Var. (%) Var. (%) 8.9 0.0027 10.9 8.9 0.0030 14.3 0.4 0.0028 10.9 6.9 0.0024 6.9 Strain at Failure, in./in. Coef. Of Coef. Of LT-A Var. (%) Var. (%) 9.9 0.0029 4.3 4.8 0.0030 8.9 9.9 0.0027 8.1 9.7 0.0026 4.9

38

UA 0.612 0.574 0.469 0.469

UA 0.670 0.571 0.482 0.460

Toughness Index Coef. Of LT-A Var. (%) 7.0 0.481 6.9 0.464 3.4 0.430 4.4 0.399

Coef. Of Var. (%) 19.4 2.8 9.9 7.3

Toughness Index Coef. Of LT-A Var. (%) 5.9 0.537 6.3 0.473 11.8 0.399 6.7 0.370

Coef. Of Var. (%) 3.8 1.2 5.8 15.3

Indirect Tensile Strength (psi): PG 76-22

Indirect Tensile Strength (psi): PG 64-22 400.00

400.00

350.00

350.00

300.00

300.00

250.00

0% RAP 10% RAP 20% RAP 30% RAP

200.00 150.00

250.00

0% RAP 10% RAP 20% RAP 30% RAP

200.00 150.00

100.00

100.00

50.00

50.00 0.00

0.00 unaged

unaged

long-term aged

long-term aged

Diametric Strain at Peak Load (%): PG 76-22

Diametric Strain at Peak Load (%): PG 64-22 0.50

0.50

0.45

0.45

0.40

0.40 0.35

0.35 0.30

0.30

0% RAP 10% RAP 20% RAP 30% RAP

0.25 0.20

0% RAP 10% RAP 20% RAP 30% RAP

0.25 0.20

0.15

0.15

0.10

0.10

0.05

0.05 0.00

0.00 unaged

unaged

long-term aged

Indirect Tensile Toughness Index: PG 76-22

Indirect Tensile Toughness Index: PG 64-22 0.80

0.80

0.70

0.70

0.60

0.60

0.50

0% RAP 10% RAP 20% RAP 30% RAP

0.40 0.30

long-term aged

0.50

0% RAP 10% RAP 20% RAP 30% RAP

0.40 0.30

0.20

0.20

0.10

0.10 0.00

0.00 unaged

unaged

long-term aged

Indirect Tensile Strength (psi): Unaged Mixtures

Indirect Tensile Strength (psi): Long-term aged Mixtures

400.00

400.00

350.00

350.00

300.00

300.00

250.00

0% RAP 10% RAP 20% RAP 30% RAP

200.00 150.00

250.00

0% RAP 10% RAP 20% RAP 30% RAP

200.00 150.00

100.00

100.00

50.00

50.00

0.00

long-term aged

0.00

PG 64-22

PG 76-22

PG 64-22

Figure 15. IDT Test Results, Limestone Mixtures.

39

PG 76-22

Table 7 presents the differences in IDT characteristics for both binder types in addition to un-aged and long-term aged mixtures containing RAP. For both binder types, mixtures containing 0 to 10 percent RAP displayed little difference between ITS, diametric strain and post failure tenacity for un-aged and long-term aged mixtures. However the addition of RAP at higher percentages (20-30 percent) resulted in significant differences in tensile strength and post failure characteristics when compared to the control mixture, Figure 16. This indicates increasing the percentage of RAP significantly increases the tensile strength, lowers the strain at failure and lowers toughness indices. At higher RAP percentages the change in IDT properties for PG 6422 had significantly different effects than those with PG 76-22. This affect is most notable for PG 64-22 mixtures with high RAP contents subject to long-term aging. Mixtures with PG 64-22 type binder gained significantly higher strengths after long-term aging but saw little differences in strain at failure and toughness indices when compared to long-term aged PG 76-22 mixtures. Conversely post peak characteristics, from both types of binder, such as toughness indices were most notable for un-aged mixtures. The reason for this phenomenon is believed to be mainly influenced by the aged binder blending with the virgin binder resulting in a stiffer mixture.

Table 8 summarizes the results from IDT testing for gravel mixtures. Indirect tensile strength was evaluated for both types of binder with the inclusion of RAP. To evaluate the affects of moisture damage in addition to long-term aging, half the specimens were subject to one freeze thaw cycle. The addition of screened RAP increased the tensile strength when compared to control mixtures. 40

Table 7. Percent Change of IDT Properties, Limestone Mixtures Indirect Tensile Strength Strain at Failure Toughness Index PG 64-22 PG 76-22 PG 64-22 PG 76-22 PG 64-22 PG 76-22 %RAP UA LT-A UA LT-A UA LT-A UA LT-A UA LT-A UA LT-A 10 2 11 6 5 -6 10 0 3 -7 -4 -17 -14 20 12 17 16 15 -16 4 -16 -7 -30 -12 -39 -35 30 24 29 22 19 -24 -13 -32 -12 -30 -21 -46 -45 Note: The values in the Table indicated the increase or decrease of properties relative to the control mix (0% RAP) %IDT ±

Change in IDT relative to Control (0% RAP): Long-term aged Mixtures

Change in IDT relative to Control (0% RAP): Unaged Mixtures

35.00

30.00

30.00

25.00

25.00 10% RAP 20% RAP 30% RAP

15.00

% Change

10.00

20.00

10.00

5.00

5.00 0.00

0.00 PG 64-22

PG 64-22

PG 76-22

0.00 1

PG 76-22

PG 64-22

-5.00

-5.00 -10.00 -15.00

-20.00

10% RAP 20% RAP 30% RAP

-25.00 -30.00

% Change

-15.00 % Change

PG 76-22

Change in TI relative to Control (0% RAP): Long-term aged Mixtures

Change in TI relative to Control (0% RAP): Unaged Mixtures 0.00

-10.00

10% RAP 20% RAP 30% RAP

15.00

2

% Change

20.00

-20.00

10% RAP 20% RAP 30% RAP

-25.00 -30.00

-35.00

-35.00

-40.00

-40.00

-45.00

-45.00 -50.00

-50.00

PG 64-22

PG 64-22

PG 76-22

PG 76-22

Figure 16. Percent Change in IDT Properties, Limestone Mixtures.

41

Table 8. IDT Results, Gravel Mixtures PG 64-22 % RAP

LT-A

Control 10 20 30

206 226 263 291

Indirect Tensile Strength, psi. Coef. Of Coef. Of LT-A FT Var. (%) Var. (%) 8 201 13.7 8.1 222 1.2 2.7 252 7.6 1.8 272 1.3

LT-A 0.0025 0.0024 0.0022 0.0022

PG 76-22

Indirect Tensile Strength, psi. Coef. Of Coef. Of LT-A FT Var. (%) Var. (%) 233 3.2 229 4.3 Control 260 3.1 250 5.4 10 272 4.6 272 2.3 20 307 3.9 295 3.0 30 LT-A - long-term aged LT-A FT - long-term aged Freeze Thaw % RAP

LT-A

LT-A 0.0026 0.0025 0.0025 0.0024

Strain at Failure, in./in. Coef. Of LT-A FT Var. (%) 2.9 0.0027 9.8 0.0025 2.4 0.0023 7.9 0.0020

Coef. Of Var. (%) 3.9 9.7 4.2 5.2

Strain at Failure, in./in. Coef. Of LT-A FT Var. (%) 6.0 0.0028 3.1 0.0028 1.6 0.0026 3.7 0.0025

Coef. Of Var. (%) 5.2 4.1 3 5.1

LT-A 0.503 0.433 0.425 0.411

LT-A 0.491 0.484 0.469 0.446

Toughness Index Coef. Of LT-A FT Var. (%) 0.8 0.487 17.3 0.418 7.9 0.403 6.8 0.392

Coef. Of Var. (%) 6.1 12.0 22.2 15.0

Toughness Index Coef. Of LT-A FT Var. (%) 8.7 0.503 5.5 0.461 3 0.437 0.8 0.420

Coef. Of Var. (%) 2.6 4.5 5.5 5.9

However, with the addition of screened RAP (Figure 17), there was no significant difference in post failure characteristics for long-term aged and long-term aged freeze thaw mixtures. As expected, mixtures containing polymer modified asphalt PG 76-22 had higher tensile strengths when compared to non-modified PG 64-22 asphalt.

Table 9 presents the differences in IDT characteristics for both binder types in addition to long-term aging and long-term aged freeze thaw mixtures containing RAP. As expected mixtures subject to one freeze thaw cycle had lower ITS when compared to long-term aged mixtures. Post failure characteristics for both types of conditioning with the inclusion of RAP had no significant difference when comparing to the control mixture. For both binder types and both types of conditioning, the addition of RAP resulted in no significant differences in IDT properties, Figure 18.

42

Indirect Tensile Strength (psi): PG 76-22

Indirect Tensile Strength (psi): PG 64-22

400.00

400.00

350.00

350.00

300.00

300.00

250.00

250.00

0% RAP 10% RAP 20% RAP 30% RAP

200.00 150.00

0% RAP 10% RAP 20% RAP 30% RAP

200.00 150.00

100.00

100.00

50.00

50.00 0.00

0.00 long-term aged

long-term aged

long-term aged FT

Diametric Strain at Peak Load (%): PG 64-22

long-term aged FT

Diametric Strain at Peak Load (%): PG 76-22

0.50

0.50

0.45

0.45

0.40

0.40

0.35

0.35

0.30

0% RAP 10% RAP 20% RAP 30% RAP

0.25 0.20

0.30

0.20

0.15

0.15

0.10

0.10

0.05

0.05

0.00

0% RAP 10% RAP 20% RAP 30% RAP

0.25

0.00

long-term aged

long-term aged FT

long-term aged

Indirect Tensile Toughness Index: PG 64-22

Indirect Tensile Toughness Index: PG 76-22

0.80

0.80

0.70

0.70

0.60

0.60

0.50

0% RAP 10% RAP 20% RAP 30% RAP

0.40 0.30

long-term aged FT

0.50

0.30

0.20

0.20

0.10

0.10

0.00

0% RAP 10% RAP 20% RAP 30% RAP

0.40

0.00 long-term aged

long-term aged FT

long-term aged

Indirect Tensile Strength (psi): Long-term aged Mixtures

Indirect Tensile Strength (psi): Long-term aged FT Mixtures

400.00

400.00

350.00

350.00

300.00

300.00

250.00

0% RAP 10% RAP 20% RAP 30% RAP

200.00 150.00

250.00

0% RAP 10% RAP 20% RAP 30% RAP

200.00 150.00

100.00

100.00

50.00

50.00

0.00

long-term aged FT

0.00 PG 64-22

PG 76-22

PG 64-22

Figure 17. IDT Test Results, Gravel Mixtures. 43

PG 76-22

Table 9. Percent Change of IDT Properties, Gravel Mixtures. Indirect Tensile Strength Strain at Failure Toughness Index PG 64-22 PG 76-22 PG 64-22 PG 76-22 PG 64-22 PG 76-22 %RAP LT-A LT-A FT LT-A LT-A FT LT-A LT-A FT LT-A LT-A FT LT-A LT-A FT LT-A LT-A FT 10 9 10 10 8 -4 -8 -4 0 -16 -17 -1 -9 20 20 20 14 16 -14 -17 -4 -8 -18 -21 -5 -15 30 26 26 24 22 -14 -35 -8 -12 -22 -24 -10 -20 Note: The values in the Table indicated the increase or decrease of properties relative to the control mix (0% RAP) LT-A - long-term aged LT-A FT - long-term aged Freeze Thaw %IDT ±

Change in IDT relative to Control (0% RAP): Long-term aged Mixtures

Change in IDT relative to Control (0% RAP): Long-term aged FT Mixtures

50.00

50.00

45.00

45.00

40.00

40.00

35.00

35.00

30.00

10% RAP 20% RAP 30% RAP

25.00 20.00

30.00

20.00

15.00

15.00

10.00

10.00

5.00

5.00

0.00

0.00 PG 64-22

PG 76-22

PG 64-22

Change in TI relative to Control (0% RAP): Long-term aged Mixtures

PG 76-22

Change in TI relative to Control (0% RAP): Long-term aged FT Mixtures

0.00 -5.00

10% RAP 20% RAP 30% RAP

25.00

0.00 PG 64-22

PG 76-22

-5.00

-10.00

-10.00

-15.00

-15.00

-20.00

PG 64-22

PG 76-22

-20.00

10% RAP 20% RAP 30% RAP

-25.00 -30.00

-30.00

-35.00

-35.00

-40.00

-40.00

-45.00

-45.00

-50.00

10% RAP 20% RAP 30% RAP

-25.00

-50.00

PG 64-22

PG 64-22

PG 76-22

PG 76-22

Figure 18. Percent Change in IDT Properties, Gravel Mixtures.

44

3.2 Semi-Circular Bending (SCB) Test Results 3.2.1 SCB Frequency Sweep Test Figure 19 represents typical curves of composite modulus and phase angles versus frequencies for the materials used in this study. SCB Composite modulus increased with increasing frequency while phase angle decreased with frequency. This trend was typical for mixtures containing RAP.

An increase in composite modulus was more significant for un-aged mixtures. As shown in Figure 20, mixtures subject to long-term aging had significantly higher composite modulus than un-aged mixtures. For un-aged mixtures the inclusion of 10 percent RAP significantly increased the composite modulus. Mixtures subject to longterm aging had little increase in composite modulus; however the inclusion of 30 percent RAP significantly stiffened the mixture. An increase in stiffness led to a decrease in phase angle. Figure 20 illustrates that mixtures subject to long-term aging had a lower phase angle when compared to un-aged mixtures. Similarly, the addition of RAP reduced the phase angle at higher RAP percentages. This trend indicates that with the inclusion of RAP and long-term aging, mixtures become more elastic and viscous.

3.2.2 SCB Tensile Strength Test Table 10 presents the results from the SCB tensile strength test. Similar to the traditional indirect tensile strength test, semi-circular samples were loaded monotonically at a loading rate of 2 in./min.. This test was used principally for SCB fatigue testing. By statically loading the specimens, ultimate strength for each mixture was obtained. 45

SCB Frequency Sweep Composite Modulus

Phase Angle in SCB Frequency Sweep Test

1600000

70

1400000

60

Phase Angle (deg)

1200000

E* (psi)

1000000 800000 600000 400000

50 40 30 20 10

200000 0 0.01

0.1

1

0 0.01

10

0.1

Frequency (Hz)

1

10

Frequency (Hz)

Figure 19. SCB Frequency Sweep Test.

SCB Phase Angle at 0.01 Hz: PG 64-22

SCB Composite Modulus at 0.01 Hz: PG 64-22

90

350000

80

300000 250000

60

0% RAP 10% RAP 20% RAP 30% RAP

50 40

E* (psi)

Phase Angle (deg)

70

30

0% RAP 10% RAP 20% RAP 30% RAP

200000 150000 100000

20 50000

10 0

0

unaged

long-term aged

unaged

SCB Phase Angle at 0.01 Hz: PG 76-22

SCB Composite Modulus at 0.01 Hz: PG 76-22

70

350000

60

300000 250000 0% RAP 10% RAP 20% RAP 30% RAP

40 30

E* (Psi)

50 Phase Angle (deg)

long-term aged

0% RAP 10% RAP 20% RAP 30% RAP

200000 150000

20

100000

10

50000

0

0 unaged

long-term aged

unaged

long-term aged

Figure 20. SCB Composite Modulus and Phase Angle.

46

Table 10. SCB Tensile Strength Test Results. PG 64-22 % RAP

UA

Control 10 20 30

2125 2416 2741 2991

PG 76-22 % RAP

UA

2265 Control 2622 10 2742 20 3228 30 UA - un-aged LT-A - long-term aged

Load at Failure Coef. Of LT-A Var. (%) 7.5 2624 0.9 2740 9.4 2861 2.7 3434

Coef. Of Var. (%) 5.1 5 10.2 7.6

Load at Failure Coef. Of LT-A Var. (%) 0.3 2664 0.5 3018 3.9 2935 3.4 3639

Coef. Of Var. (%) 2.1 1.5 5.9 5.5

As shown in Figure 21 the inclusion of RAP increased the fatigue resistance for both un-aged and long-term aged mixtures. Mixtures subject to long-term aging had higher strengths than un-aged mixtures. For PG 64-22 mixtures, the addition of 20 to 30 percent RAP significantly increased the performance for un-aged mixtures. There was little difference in strength between 0 to 10 percent RAP. However, mixtures containing 30 percent RAP were significantly stiffer than the control mix. As expected mixtures containing PG 76-22 binder had higher strengths than mixtures containing PG 64-22 binder. Table 11 represents the change in SCB properties relative to 0 percent RAP.

3.2.3 SCB Fatigue Test Figure 22 presents the results of the SCB fatigue test. Load levels were based on a fraction of the ultimate strength from the SCB tensile strength test. Load levels ranging

47

Semi-Circular Bending Strength: PG 64-22 Semi-Circular Bending Strength: PG 76-22 4000

4000

3500

3500

2500

0% RAP 10% RAP 20% RAP 30% RAP

2000 1500 1000

Ultimate Strength, lbs.

Ultimate Strength, lbs.

3000

3000 2500

0% RAP 10% RAP 20% RAP 20% RAP

2000 1500 1000 500

500

0

0 unaged

unaged

long-term aged

Figure 21. SCB Tensile Strength Test Results.

Table 11. Percent Change in SCB Strength Load at Failure PG 64-22 PG 76-22 %RAP UA LT-A UA LT-A 10 12 4 14 12 20 22 8 17 9 30 29 24 30 27 Note: The values in the Table indicated the increase or decrease of properties relative to the control mix (0% RAP) %SCB ±

48

long-term aged

SCB Fatigue, Un-Aged PG 64-22

SCB Fatigue, Un-Aged PG 76-22

4000

4000

0% RAP 3500

20% RAP

3000

10% RAP

20% RAP

3000

30% RAP

2500

30% RAP

2500 Load

Load

0% RAP

3500

10% RAP

2000

2000

1500

1500

1000

1000

500

500

0

0

1

10

100

1000

10000

100000

1000000

1

10

100

Cycles, Nf

1000

10000

100000

Cycles, Nf

SCB Fatigue, Long-term Aged PG 64-22 SCB Fatigue, Long-term Aged PG 76-22

4000

4000

0% RAP 3500

0% RAP

10% RAP

3500

20% RAP

3000

20% RAP

3000

30% RAP

30% RAP

2500

2500

2000

Load

Load

10% RAP

1500

2000 1500

1000

1000

500

500

0

0

1

10

100

1000

10000

100000

1

10

100

Cycles, Nf

1000

10000

100000

Cycles, Nf

Figure 22. SCB Fatigue Test Results.

from 15 to 35 percent of the ultimate SCB tensile strength were applied at a frequency of 5 Hz to evaluate the fatigue characteristics of mixtures containing RAP. Typically fatigue data is plotted on log-log scale (Figure 23). For this study semi-log scale was used to graphically illustrate how the inclusion of RAP stiffened the mixture when compared to the control mixture. The effects of RAP were more noticeable and followed similar trends as the previous test when plotted on semi-log scale. Additionally the slope of the fatigue line plotted on the semi-log scale had slightly higher R2 values than log-log R2 values for the same data.

49

SCB Fatigue, Un-Aged PG 76-22

SCB Fatigue, Un-Aged PG 64-22 100000

100000

0% RAP

0% RAP

10000

10000

10% RAP

10% RAP 20% RAP

20% RAP 30% RAP -0.2081

y = 2345.4x R2 = 0.9524

100

30% RAP

1000 Load

Load

1000

-0.1747

y = 2328.9x 2 R = 0.9781

100

-0.1927

y = 2670.3x 2 R = 0.958

-0.1664

y = 2688.4x 2 R = 0.9544

-0.1883

y = 2990.5x 2 R = 0.9666

10

-0.1612

y = 2817.2x 2 R = 0.9687

10

y = 3149.2x-0.1697 2 R = 0.9644

-0.1626

1

y = 3302.9x 2 R = 0.9634

1

1

10

100

1000

10000

100000 1000000

1

10

100

1000

10000

100000

Cycles, Nf

Cycles, Nf

SCB Fatigue, Long-term Aged PG 64-22

SCB Fatigue, Long-term Aged PG 76-22 100000

100000

0% RAP

0% RAP 10000

10000

10% RAP

10% RAP

20% RAP

20% RAP

30% RAP y = 2772.4x-0.1843 R2 = 0.9602

100

30% RAP

1000 Load

Load

1000

-0.1626

y = 2729.5x 2 R = 0.9433

100

y = 2881.5x-0.1811 R2 = 0.9673

-0.16

y = 3102.8x R2 = 0.9622

-0.1735

y = 3008.4x R2 = 0.9608

10

-0.1531

y = 3014.8x R2 = 0.9691

10

y = 3624.2x-0.1787 R2 = 0.9548

1

y = 3738.2x-0.1641 2 R = 0.9763

1

1

10

100

1000

10000

100000

1

10

100

1000

10000

100000

Cycles, Nf

Cycles, Nf

Figure 23. SCB Fatigue Test Log-Log Scale.

Mixtures subject to long-term aging generally had higher fatigue lives when compared to un-aged mixes. In addition to long-term aging the inclusion of RAP also increased the fatigue life for the mixtures used in this study. Increasing the percentage of RAP resulted in a higher fatigue life when compared to the control mixture at load levels greater than 500 lbs. However, at lower stress levels below 500 lbs. the fatigue life of mixtures containing 30 percent RAP had a lower fatigue life. This indicates that smaller load levels, similar to highway conditions, would generally reduce the fatigue life of mixtures containing 30 percent RAP.

Long-term aging significantly changed the mixtures resistance to fatigue cracking for both binder types. As noted in Table 12 and Figure 24, 30 percent RAP would result 50

Table 12. Comparison of Fatigue Life Relative to Slope PG 64-22

% RAP Slope R2 0 180 0.9872 10 197 0.9884 un-aged 20 216 0.9764 30 238 0.9958 0 217 0.9985 long-term 10 236 0.9969 20 237 0.9984 aged 30 294 0.9993 Note: % indicates the percent change in slope relative to the control mix (0% RAP).

% 2 10 18 6 7 25

PG 76-22

% RAP Slope R2 0 208 0.9994 10 231 0.9999 un-aged 20 233 1.0000 30 278 0.9997 0 231 0.9955 long-term 10 256 0.9995 20 237 1.0000 aged 30 315 0.9995 Note: % indicates the percent change in slope relative to the control mix (0% RAP).

SCB Fatigue: PG 76-22

SCB Fatigue: PG 64-22 30

30

25

25

20 10% RAP 20% RAP 30% RAP

15

% Change

% Change

20

10% RAP 20% RAP 30% RAP

15

10

10

5

5

0

0 unaged

unaged

long-term aged

long-term aged

SCB Fatigue: Long-term Aged MIxtures

SCB Fatigue: Unaged Mixtures 30

30

25

25

20 10% RAP 20% RAP 30% RAP

15

% Change

20 % Change

% 10 11 26 10 3 27

10% RAP 20% RAP 30% RAP

15

10

10

5

5

0

0 PG 64-22

unaged

PG 76-22

long-term aged

Figure 24. Change in SCB Fatigue Slope Relative to 0% RAP.

51

in higher slopes and lower fatigue life. Un-aged mixtures had no significant difference in fatigue life up to 20 percent RAP for PG 64-22 mixtures. Mixtures containing PG 76-22 binder had higher fatigue resistance than those with PG 64-22 binder. There was little difference in fatigue life for both un-aged and long-term aged mixtures with the inclusion of 20 percent RAP.

The total dissipated energy to failure increased with long-term aging and the inclusion of RAP, Figure 25. A load level of the same magnitude was applied to each mixture to evaluate the correlation of fatigue life and dissipated energy by increasing the percent RAP in the mix. Mixtures containing 20 percent RAP indicated a significant increase in dissipated energy for un-aged mixtures. Long-term aged mixture increased linearly up to 20 percent RAP and no significant difference was noticeable when compared to 30 percent RAP. This also indicates that the inclusion of RAP and longterm aging increased the fatigue life when compared to the control mixture (0% RAP).

Total Dissipated Energy to Failure 700

Dissipated Energy (psi)

600 500 0% RAP 10% RAP 20% RAP 30% RAP

400 300 200 100 0 unaged

long-term aged

Figure 25. SCB Fatigue Dissipated Energy. 52

3.2.4 SCB Notched Fracture Resistance Test Figure 26 presents the results from the SCB notched fracture test for limestone mixtures. Fracture energy was evaluated for both types of binder with the inclusion of RAP. Similar to IDT and SCB IDT, notched specimens were subject to a 0.02 in./min. monotonic load. Notch depths of 0.5, 1.0 and 1.5 inches were used to evaluate the fracture resistance for the mixtures used. The higher the J-integral for a mixture during a semi-circular notched test, the stronger the fracture resistance.

Figure 27 represents the calculated J-integral for each mixture. The inclusion of RAP and long-term aging exhibited higher J-integral values than mixtures without RAP.

Notched Fracture Energy, Unaged Mixes: PG 76-22 30.000

25.000

25.000

20.000 0% RAP 10% RAP 20% RAP 30% RAP

15.000 10.000

Fracture Energy, psi.

Fracture Energy, psi.

Notched Fracture Energy, Unaged Mixes: PG 64-22 30.000

5.000

20.000

0% Aged 10% Aged 20% Aged 30% Aged

15.000 10.000 5.000

0.000

0.000

0

0.5

1

1.5

2

0

0.5

Notch Depth, (in.)

1

1.5

2

Notch Depth, (in.)

Notched Fracture Energy, Aged Mixes: PG 76-22 Notched Fracture Energy, Long-term Aged Mixes: PG 64-22

30.000 30.000

25.000

20.000 0% Aged 10% Aged 20% Aged 30% Aged

15.000 10.000

Fracture Energy, psi.

Fracture Energy, psi.

25.000

20.000 0% RAP 10% RAP 20% RAP 30% RAP

15.000 10.000 5.000

5.000

0.000

0.000 0

0.5

1

1.5

0

2

0.5

1 Notch Depth, (in.)

Notch Depth, (in.)

Figure 26. SCB Notched Fracture Energy. 53

1.5

2

J-Integral from SCB Notched Fracture Test: PG 76-22

J-Integral from SCB Notched Fracture Test: PG 64-22

25

25

20

20

Jc, psi.

0% RAP 10% RAP 20% RAP 30% RAP

10

15

0% RAP 10% RAP 20% RAP 30% RAP

Jc, psi.

15

10

5

5

0

0 unaged

unaged

long-term aged

long-term aged

Figure 27. J-Integral from Semi-Circular Notched Fracture Test.

As expected, mixtures containing PG 76-22 asphalt binder resulted in higher Jintegral values when compared to non-modified PG 64-22 asphalt. Long-term aging was more notable for PG 64-22 mixtures than PG 76-22 mixtures.

When comparing the effects of long-term aging for both binder types, PG 64-22 had higher strength gains when compared to the strength gains for mixtures with PG 7622. J-integral for PG 76-22 mixtures with the inclusion of RAP resulted in no significant difference when compared to un-aged mixtures.

Increasing the percentage of RAP generally increased the mixtures stiffness and resistance to cracking. For un-aged PG 64-22 mixtures, the inclusion of 30 percent RAP resulted in much higher J-integral than mixtures containing 0 to 20 percent RAP. For laboratory long-term aged mixtures, J-integral increased more linearly when compared to un-aged mixtures.

54

Un-aged PG 76-22 mixtures resulted in no significant difference up to 20 percent RAP. However, the inclusion of 30 percent RAP significantly increased the fracture resistance when compared to mixtures without RAP. Long-term aged PG 76-22 mixtures had similar J-integral values when compared to un-aged mixtures. An inclusion of 30 percent RAP significantly increased the fracture resistance for PG 76-22 mixtures with no significant change in fracture resistance for mixtures containing up to 20 percent RAP.

Three notch depths were used in this study to determine J-integral. The addition of RAP resulted in a higher Jc when compared to mixtures without RAP. Higher Jintegral values accounts for the mixtures capability to absorb strain energy prior to failure. Similar to ITS testing, the addition of screened RAP increased the tensile strengths and lost some post failure tenacity resulting in higher J-integral values. This indicates that the addition of RAP stiffened the mixture into a more elastic material that is capable of absorbing more strain energy before tensile failure occurs. As failure propagates, mixtures with high percentages of RAP will fail faster because of the reduced post failure tenacity.

3.3 Flexural Beam Fatigue Test Results Table 13 presents the results from the flexural beam fatigue test for limestone mixtures. Flexural beam fatigue testing was evaluated on both types of binder with the inclusion of RAP, Figure 28. A constant sinusoidal strain of 600 micro-strain was applied to the neutral axis of the beam until the initial flexural stiffness was reduced by 50 percent. 55

Table 13. Beam Fatigue Test Results, Limestone Mixtures PG 64-22 % RAP

UA

Control 10 20 30

15299 13840 25263 85641

PG 76-22 % RAP

UA

224022 Control 84224 10 28286 20 145680 30 UA - un-aged LT-A - long-term aged

Cycles to failure Coef. Of LT-A Var. (%) 49.0 13058 58.0 51185 22.0 48735 27.0 74233

Coef. Of Var. (%) 23.0 33.0 66.0 57.0

Cycles to failure Coef. Of LT-A Var. (%) 33.5 131190 21.9 199974 33.4 53029 67.9 242768

Coef. Of Var. (%) 94.9 17.4 33.4 40.8

UA 315000 401666 576667 700000

UA 560000 546667 495000 656666

Initial Stiffness, psi. Coef. Of LT-A Var. (%) 2.0 445000 17.0 580000 19.0 640000 10.0 690000

Coef. Of Var. (%) 11.0 5.0 9.0 10.0

Cumm. Dissipated Energy, psi. Coef. Of Coef. Of LT-A Var. (%) Var. (%) 2414 48 2186 21.0 2711 63 10176 37.0 5121 16 9645 70.0 18039 25 14777 62.0

Initial Stiffness Coef. Of LT-A Var. (%) 20.1 480000 18.5 560000 10.0 505000 3.2 733333

Coef. Of Var. (%) 8.8 9.5 21.0 6.2

Cumm. Dissipated Energy, psi. Coef. Of Coef. Of LT-A Var. (%) Var. (%) 39306 26.38 20755 92.6 15960 23.31 33292 20.4 4334 40.99 7666 41.8 26032 67.74 40094 39.3

UA

UA

Number of Cycles to Failure: PG 76-22

Number of Cycles to Failure: PG 64-22

300,000

90,000 80,000

250,000

70,000

200,000

Cycles, Nf

Cycles, Nf

60,000 0% RAP 10% RAP 20% RAP 30% RAP

50,000 40,000

0% RAP 10% RAP 20% RAP 30% RAP

150,000

100,000

30,000 20,000

50,000 10,000

0

0 unaged

unaged

long-term aged

Cumulative Dissipated Energy: PG 76-22

20,000

45,000.00

18,000

40,000.00

16,000 14,000 12,000

0% RAP 10% RAP 20% RAP 30% RAP

10,000 8,000 6,000 4,000

Dissipated Energy (in-lbf/in3)

Dissipated Energy (in-lb/in3)

Cumulative Dissipated Energy: PG 64-22

long-term aged

35,000.00 30,000.00 0% RAP 10% RAP 20% RAP 30% RAP

25,000.00 20,000.00 15,000.00 10,000.00 5,000.00

2,000 0

0.00

unaged

long-term aged

unaged

long-term aged

Figure 28. Beam Fatigue Summary, Limestone Mixtures.

56

Generally, the inclusion of RAP and laboratory long-term aging significantly increased the fatigue life for PG 64-22 mixtures. In addition to the increase in fatigue life, the cumulative dissipated energy also increased with the inclusion of RAP and longterm aging. For un-aged PG 64-22 mixtures, the inclusion of 30 percent RAP significantly increased the fatigue life when compared to mixtures with less than 20 percent RAP. Fatigue life for long-term aged PG 64-22 mixtures significantly increased with the inclusion of 10 percent RAP. Figure 29 represents stiffness vs. cycles for the mixtures studied. The inclusion of RAP increased the mixtures stiffness and increased the fatigue life when compared to mixtures without RAP.

Flexural Stiffness vs. Cycles, unaged mixtures: PG 64-22

Flexural Stiffness vs. Cycles, unaged mixtures: PG 76-22

700000

800000

600000

700000 600000 0% RAP 10% RAP 20% RAP 30% RAP

400000 300000

Stiffness, psi

Stiffness, psi

500000

200000

500000

0% RAP 10% RAP 20% RAP 30% RAP

400000 300000 200000

100000

100000

0 100

1000

10000

100000

0 100

1000000

1000

Cycles, No Flexural Stiffness vs. Cycles, long-term aged mixtures: PG 64-22

100000

1000000

Flexural Stiffness vs. Cycles, long-term aged mixtures: PG 76-22

700000

800000

600000

700000

500000

600000

0% RAP 10% RAP 20% RAP 30% RAP

400000 300000 200000

Stiffness, psi

Stiffness, psi

10000

Cycles, No

0% RAP 10% RAP 20% RAP 30% RAP

500000 400000 300000 200000

100000 100000

0 100

1000

10000

100000

0 100

1000000

Cycles, No

1000

10000 Cycles, No

100000

1000000

Figure 29. Flexural Stiffness vs. Loading Cycles, Limestone Mixtures. 57

Fatigue life for PG 76-22 mixtures had noticeably different trends than PG 64-22 mixtures. The inclusion of 10 and 20 percent reduced the fatigue life for un-aged PG 7622 mixtures when compared to mixtures without RAP. Long-term aged PG 76-22 mixtures increased in fatigue life with the inclusion of 10 percent RAP, decreased with 20 percent RAP and significantly increased with the inclusion of 30 percent RAP. Flexural stiffness generally increased with the inclusion of RAP for long-term aged mixtures. However, un-aged PG 76-22 control mixture resulted in higher flexural stiffness than mixtures with 10 and 20 percent RAP.

As expected mixtures with PG 76-22 asphalt had a longer fatigue life when compared to PG 64-22 mixtures. However, PG 76-22 mixtures were found to have similar trends to the other laboratory fatigue tests.

Table 14 and Figure 30, represents the results from the flexural beam fatigue test for gravel mixtures. Flexural beam fatigue testing was evaluated on both types of binder with the inclusion of RAP. To evaluate the affects of moisture damage, half the gravel beams were subject to one freeze thaw cycle in addition to long-term aging in a forced draft oven.

Long-term aged PG 76-22 mixtures with the inclusion of 10 and 20 percent RAP resulted in no significant difference when compared to the control mixture. The addition of 30 percent RAP significantly stiffened the mixture resulting in a higher fatigue life.

58

Table 14. Beam Fatigue Test Results, Gravel Mixtures PG 64-22 % RAP

LTA

Control 10 20 30

17826 15673 46933 52151

PG 76-22 % RAP

LTA

Cycles to failure Coef. Of LT-A FT Var. (%) 39 4990 53 15029 36 11491 59 35787

Coef. Of Var. (%) 23 19 30 10

Cycles to failure Coef. Of LT-A FT Var. (%) 44.0 65963 24.0 70104 21.0 65576 27.7 55712

Coef. Of Var. (%) 1.0 53.0 92.0 74.0

91950 Control 80423 10 87376 20 250764 30 LTA - long-term aged LT-A FT - long-term aged freeze thaw

LTA 603333 600000 670000 680000

LTA 613333 630000 633333 695000

Initial Stiffness, psi. Coef. Of LT-A FT Var. (%) 10.1 536667 8.6 533333 15.1 573333 12.8 650000

Coef. Of Var. (%) 8 14.1 9.6 8.6

Cumm. Dissipated Energy, psi. Coef. Of Coef. Of LT-A FT Var. (%) Var. (%) 4009 41 1080 25.0 3323 57.2 3274 14.0 10689 43.6 2176 30.7 9583 53.6 6954 16.5

Initial Stiffness, psi. Coef. Of LT-A FT Var. (%) 11.0 520000 5.7 596666 10.7 543333 13.2 613333

Coef. Of Var. (%) 8 10.9 12.2 11.1

Cumm. Dissipated Energy, psi. Coef. Of Coef. Of LT-A FT Var. (%) Var. (%) 19307 58 12787 9.0 17891 24.7 15010 56.6 15372 35.5 13464 97.3 39659 10.8 11426 82.2

180,000

80,000

160,000

70,000

140,000

60,000

120,000

50,000

0% RAP 10% RAP 20% RAP 30% RAP

40,000 30,000

Cycles, Nf

Cycles, Nf

LTA

Number of Cycles to Failure: PG 76-22

Number of Cycles to Failure: PG 64-22

0% RAP 10% RAP 20% RAP 30% RAP

100,000 80,000 60,000

20,000

40,000

10,000

20,000 0

0 long-term aged

long-term aged

long-term aged FT

50,000

18,000

45,000

16,000

40,000

Dissipated Energy (in-lb/in3)

20,000

14,000 12,000

0% RAP 10% RAP 20% RAP 30% RAP

10,000 8,000

long-term aged FT

Cumulative Dissipated Energy: PG 76-22

Cumulative Dissipated Energy: PG 64-22

Dissipated Energy (in-lb/in3)

LTA

6,000 4,000

35,000 30,000

0% RAP 10% RAP 20% RAP 30% RAP

25,000 20,000 15,000 10,000 5,000

2,000

0

0 long-term aged

long-term aged

long-term aged FT

long-term aged FT

Figure 30. Beam Fatigue Summary, Gravel Mixtures.

59

No significant difference was notable for PG 76-22 mixtures subject to one freeze thaw cycle with the inclusion of RAP. As expected, mixtures with PG 76-22 had higher fatigue life when compared to PG 64-22 mixtures.

Figure 31 represents stiffness vs. loading cycles for both binder types. The inclusion of RAP increased the mixtures stiffness for both long-term aged and long-term aged freeze thaw mixtures. However, after one freeze thaw cycle, the mixtures studied resulted in lower stiffness and fatigue life when compared to long-term aged mixtures.

Flexural Stiffness vs. Load Cycles, Long-term aged: PG 76-22

Flexural Stiffness vs. Load Cycles, Long-term Aged: PG 64-22

900000

900000

800000

800000

700000

600000 0% RAP 10% RAP 20% RAP 30% RAP

500000 400000

Stiffness, psi.

Stiffness, psi.

700000

600000

400000

300000

300000

200000

200000

100000

100000

0 100

1000

10000

0% RAP 10% RAP 20% RAP 30% RAP

500000

0 100

100000

1000

Flexural Stiffness vs. Load Cycles, Long-term Aged FT: PG 64-22

1000000

900000

800000

800000

700000

700000

600000 0% RAP 10% RAP 20% RAP 30% RAP

500000 400000

Stiffness, psi.

Stiffness, psi.

100000

Flexural Stiffness vs. Load Cycles, Long-term aged FT: PG 76-22

900000

300000

600000

400000 300000 200000

100000

100000

1000

10000

0 100

100000

Cycles, No

0% RAP 10% RAP 20% RAP 30% RAP

500000

200000

0 100

10000 Cycles, No

Cycles, No

1000

10000

100000

1000000

Cycles, No

Figure 31. Flexural Stiffness vs. Loading Cycles, Gravel Mixtures.

60

3.4 Asphalt Binder Testing Results Table 15 presents the DSR results for Limestone PG 76-22 mixtures at high and intermediate temperatures. Laboratory fatigue testing discussed in the previous sections indicated that increasing the percentage of RAP in the mixture would notably increase the mixtures stiffness and resistance to fatigue cracking for the mixtures studied.

To further understand the rheological properties of mixtures containing 10, 20 and 30 percent RAP, superpave binder testing was completed on the recovered binders. As expected, increasing the percentage of RAP would notably increase G*/sin(δ) at lower temperatures and higher percentages of RAP, Figure 32. The superpave binder specifications requires that original binder and RTFO aged binder satisfy a rutting factor, G*/sin(δ), to be a minimum of 1.00 kPa and 2.20 kPa respectively. For each mixture, original and RTFO aged binders met the minimum criteria for rutting resistance. This indicates that increasing the percentage of RAP will increase the mixtures resistance to rutting under repeated loading.

Table 15. DSR Test Results

61

DSR RTFO Binder: PG 76-22 Mixtures

DSR Original Binder: PG 76-22 Mixtures 8

20

7

18 16 14

5

G*/sin(δ), kPa

G*/sin(δ), kPa

6 T = 76C

4 3

T = 82C

12 10

T = 76C

8 6

2

T = 82C

4

T = 88C 1

T = 88C

2

0

0 0

5

10

15

20

25

30

35

40

0

5

10

15

% RAP

20

25

30

35

40

% RAP DSR RTFO + PAV Binder: PG 76-22 Mixtures

10000 9000 8000

G*sin(δ), kPa

7000

T = 25C

6000 5000 4000 3000 2000 1000 0 0

5

10

15

20

25

30

35

40

% RAP

Figure 32. DSR Test Results, Limestone PG 76-22.

Increasing the percentage of RAP will generally increase the mixtures stiffness. Superpave binder specifications require that the fatigue factor, G*sin(δ), be a maximum of 5000 kPa on RTFO and PAV aged binders. G*sin(δ) increased with the inclusion of RAP. The smaller the fatigue factor, G*sin(δ), the better the mixture resists to fatigue cracking. For each mixture tested between 10 and 30 percent RAP, G*sin(δ) did not exceed 5000 kPa.

Figure 33 represents the results from BBR testing at -12°C. BBR testing indicated that increasing the percentage of RAP will increase the creep stiffness and 62

Creep Rate Trend: PG 76-22 Mixtures

500

0.5

450

0.45

400

0.4

350

0.35

300

T=-12C

250 200

Creep Rate

Creep Stiffness (MPa)

Creep Stiffness Trend: PG 76-22 Mixtures

0.3

T=-12C

0.25 0.2 0.15

150 100

0.1

50

0.05 0

0 0

5

10

15

20

25

30

35

0

40

10

20

30

40

% RAP

% RAP

Figure 33. BBR Test Results, Limestone PG 76-22.

decrease the logarithmic creep rate. Superpave binder specifications specify that the binder stiffness be less than 300 MPa and a creep rate “m-value” be greater than 0.300. For the mixture studied at -12°C, the inclusion of 10, 20 and 30 percent RAP met the specification for thermal cracking, however; the creep rate did not meet the specification for m-value. This indicates that increasing the percentage of RAP will lower the low temperature grade under superpave PG binder testing.

For the three different mixtures used for binder testing, the inclusion of RAP typically increased the rheological properties of the blended asphalt binders. This indicates that the inclusion of RAP significantly increases the mixtures stiffness and its resistance to rutting and fatigue cracking. However, at low temperatures the potential of thermal cracking is more likely with higher percentages of RAP. Further binder testing is recommended to evaluate the effects on the rheological properties of mixtures containing RAP.

63

3.5 Statistical Analysis of Laboratory Test The analysis of variance (ANOVA) was used to determine the variability for each mixture with the inclusion of RAP and comparing each to a control mix (0 percent RAP) to understand the relative importance of each mixture containing RAP. A simple ANOVA analysis was performed at a 95% confidence interval for IDT, SCB IDT and Beam fatigue test. Laboratory test results were used to compare the means of mixtures containing 0, 10, 20 and 30 percent RAP. The population means are represented as µ1=0% RAP, µ2=10% RAP, µ3=20% RAP and µ4=30% RAP. The hypothesis tested was:

Ho: µ1 = µ2 = µ3 = µ4 H1: at least one differs

For each mixture tested the null hypothesis indicates that the inclusion of RAP will not significantly affect the fatigue characteristics when compared to the control mixture (0% RAP). The hypothesis is rejected if the inclusion of RAP significantly increases the fatigue resistance of any one mixture containing RAP.

The analysis compares the means for each mixture and compares to the control mixture for significance with p-value = 0.05. Each mixture is placed within a column of homogenous subsets which represents no significant difference for the mixture within the subset and significant difference for difference subsets.

64

Figure 34 represents an ANOVA analysis for PG 64-22 and PG 76-22 limestone IDT test results. For both un-aged and long-term aged PG 64-22 mixtures the inclusion of RAP resulted in no significant difference between 0 and 10 percent RAP. However, the inclusion of 20 and 30 percent RAP significantly changed the indirect tensile strength (ITS) properties for limestone PG 64-22 mixtures.

For both un-aged and long-term aged PG 76-22 mixtures, the inclusion of 20 percent RAP significantly increases the ITS properties. There is no significant difference between 0 and 10 percent RAP.

Figure 35 represents an ANOVA analysis for PG 64-22 and PG 76-22 gravel IDT test. For long-term aged PG 64-22 mixtures the inclusion of 20 percent RAP significantly increased the ITS properties for gravel mixtures. Long-term aged freeze thaw mixtures increased linearly up to 30 percent RAP.

For long-term aged PG 76-22 mixtures, the inclusion of 10 percent RAP significantly increased ITS properties when compared to the control mixtures. Long-term aged freeze thaw PG 76-22 mixtures significantly increased in ITS properties with the inclusion of 20 percent RAP when compared to the control mixture.

Figure 36 represents the ANOVA analysis for SCB testing. For un-aged PG 64 mixtures, the inclusion of 20 percent RAP significantly increased the fatigue resistance

65

Unaged PG 76-22

Un-aged PG 64-22 a

a

Tukey HSD

Tukey HSD

% RAP Limestone 0 10 20 30 Sig.

N 3 3 3 3

Subset for alpha = .05 1 2 3 198.00 201.33 201.33 225.33 260.33 .971 .058 1.000

% RAP Limestone 0 10 20 30 Sig.

3 3 3 3

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

Long-term Aged PG

Long-term Aged PG 64-22 Tukey HSD

Subset for alpha = .05 1 2 234.41 248.57 278.29 298.60 .307 .102

N

76-22

a

Tukey HSD

a

% RAP Limestone 0 10 20 30 Sig.

N 3 3 3 3

Subset for alpha = .05 1 2 216.33 242.73 242.73 260.83 .052

.209

% RAP Limestone 0 10 20 30 Sig.

3

303.87 1.000

N 3 3 3 3

Subset for alpha = .05 1 2 26 9.69 28 3.72 31 7.60 33 2.20 .231 .206

Mean s for groups in h omog eneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.00 0.

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

Figure 34. ANOVA Analysis, Limestone IDT Test.

Long-term A ged PG 64-22

Long-term Aged PG 76-22

a

a

Tukey HSD

Tukey HSD

% R AP Gravel 0 10 20 30 Sig.

N 3 3 3 3

Subset for a lpha = .05 1 2 20 6.00 22 5.97 26 2.63 29 1.43 .323 .108

% RAP Gravel 0 10 20 30 Sig.

3 3 3 3

Subset for alpha = .05 1 2 3 232.91 259.87 272.40 306.88 1.000 .485 1.000

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

Mean s fo r gro ups in h omog eneo us sub sets a re displayed. a. Uses Harmonic Mea n Samp le Size = 3.00 0.

Long-term Aged FT PG 64-22

Long-term Aged FT PG 76-22

a

a

Tukey HSD

% RAP Gravel 0 10 20 30 Sig.

N

Tukey HSD

N 3 3 3 3

Subset for alpha = .05 1 2 3 200.80 222.33 222.33 251.83 251.83 272.40 .444 .216 .479

% RAP Gravel 0 10 20 30 Sig.

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

N 3 3 3 3

Subset for alpha = .05 1 2 3 229.08 249.79 249.79 272.09 272.09 294.65 .127 .096 .092

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

Figure 35. ANOVA Analysis, Gravel IDT Test. 66

Un-aged PG 64-22

Unaged PG 76-22

a

a

Tukey HSD

Tukey HSD

% RAP Limestone 0 10 20 30 Sig.

N 3 3 3 3

Subset for alpha = .05 1 2 3 2125.33 2416.00 2416.00 2741.00 2741.00 2991.67 .187 .130 .282

% RAP Limestone 0 10 20 30 Sig.

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

2 2 2 2

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 2.000.

Long-term Aged PG 76-22

Long-term Aged PG 64-22 a

a

Tukey HSD

Tukey HSD

% RAP Limestone 0 10 20 30 Sig.

Subset for alpha = .05 1 2 3 2265.50 2622.50 2742.00 3228.50 1.000 .487 1.000

N

N 3 3 3 3

Subset for alpha = .05 1 2 2624.99 2740.96 2860.67 3434.67 .574 1.000

% RAP Limestone 0 20 10 30 Sig.

N 2 2 2 2

Subset for alpha = .05 1 2 2664.00 2934.50 3018.50 3639.00 .181 1.000

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 2.000.

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

Figure 36. ANOVA Analysis, Limestone SCB IDT Test.

for SCB test. For long-term aged PG 64-22 mixtures, the inclusion of 30 percent RAP significantly increased the SCB properties when compared to the control mixture.

The inclusion of 10 percent RAP significantly increased the SCB fatigue resistance for un-aged PG 76-22 mixtures. However, for long-term aged PG 76 mixtures, the inclusion of 30 percent RAP significantly increased the SCB fatigue resistance when compared to the control mixture.

Figure 37 represents an ANOVA analysis for limestone beam fatigue testing. The ANOVA analysis compares cycles to failure for each fatigue test to the fatigue life of the control mixture. For un-aged PG 64-22 mixtures, the inclusion of 30 percent RAP 67

Long-term A ged PG 64-22

Un-aged PG 64-22

a

Tukey HSD

a

Tukey HSD

% RAP Limestone 10 0 20 30 Sig.

N 3 3 3 3

Subset for alpha = .05 1 2 13840.00 15298.67 25264.33 85641.33 .715 1.000

% RAP Limesto ne 0 20 10 30 Sig.

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

3 3 3 3

Mean s fo r gro ups in h omog eneo us sub sets a re displayed. a. Uses Harmonic Mea n Samp le Size = 3.00 0.

Long-term Aged PG 76-22

Unaged PG 76-22

a,b

Tukey HSD

a,b

Tukey HSD

% RAP Limestone 20 10 30 0 Sig.

N

Subset for alp ha = .05 1 13 057 .67 48 735 .33 51 185 .00 74 232 .67 .103

N 2 3 3 3

Subset for alpha = .05 1 28286.00 84224.67 145680.33 890422.00 .433

% RAP Limestone 20 0 10 30 Sig.

N 2 2 3 3

Subset for alpha = .05 1 53029.00 131190.00 199974.67 242768.00 .136

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 2.667.

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 2.400.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Figure 37. ANOVA Analysis, Limestone Beam Fatigue Test.

significantly increased the fatigue life when compared to the control mixture. No significant difference is notable for long-term aged PG 64-22 mixtures. No significant difference was noticed for PG 76-22 mixtures with the inclusion of RAP when compared to the control mixture.

Figure 38 presents an ANOVA analysis for gravel beam fatigue testing. No significant difference was noticeable for long-term aged PG 64-22 mixtures. For longterm aged freeze thaw mixtures, the inclusion of 20 percent RAP significantly increased the fatigue life for PG 64-22 mixtures when compared to the control mixture.

68

Long-term Aged PG 64-22 Long-term Aged PG 76-22

a

Tukey HSD

a,b

% RAP Gravel 10 0 20 30 Sig.

N 3 3 3 3

Tukey HSD

Subset for alpha = .05 1 15672.67 17826.00 46932.67 52151.00 .148

% RAP Gravel 10 20 0 30 Sig.

3 3 3 2

Subset for alpha = .05 1 2 80422.67 87375.67 91950.00 250764.50 .982 1.000

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 2.667. b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

Long-term Aged FT PG 76-22

Long-term Aged FT PG 64-22

a

Tukey HSD

a

Tukey HSD

% RAP Gravel 0 20 10 30 Sig.

N

N 3 3 3 3

Subset for alpha = .05 1 2 3 4990.00 11491.00 11491.00 15029.00 35787.33 .098 .488 1.000

% RAP Gravel 30 20 0 10 Sig.

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

N 3 3 3 3

Subset for alpha = .05 1 55777.33 65576.33 65922.67 70104.00 .972

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 3.000.

Figure 38. ANOVA Analysis, Gravel Beam Fatigue Test.

The inclusion of 30 percent RAP significantly increased the fatigue life for longterm aged PG 76-22 mixtures. No significant difference was notable for long-term aged freeze thaw PG 76-22 mixtures.

Statistical analysis indicates that the inclusion of RAP does influence the fatigue characteristics for the mixtures studied. For each test considered for statistical analysis, increasing the percentage of RAP will ultimately increase the mixtures resistance to fatigue cracking. Based on the initial hypothesis that the means of each mixture were equal: Ho: µ1 = µ2 = µ3 = µ4

69

H1: at least one differs

After evaluating the laboratory test through analysis of variance at the 95% confidence interval, the null hypothesis is rejected and the alternate is accepted and that the inclusion of RAP will increase the fatigue life of the mixtures studied.

3.6 Test Variability Based on the results from the laboratory fatigue test completed on the mixtures containing RAP, the repeatability varied for each test. Two methods of compaction were used during sample preparation for each test. All cylindrical samples were prepared using the Superpave Gyratory Compactor and the rectangular specimens were compacted using the Pavement Technology Vibratory Compactor.

Test completed indicated that the variability within each test method was low for specimens compacted using the SGC and the variability increased for rectangular specimens. Specimens prepared using the SGC were controlled by compacting to a specified height and density that was easily repeated for each mixture and test. However, for flexural beam fatigue testing the Vibratory Compactor was modified to compact larger specimens which made it more difficult to be consistent with the proper density.

Data evaluated from each test indicated that the repeatability for cylindrical specimens resulted in low coefficient of variations compared to the variations obtained during flexural beam testing. IDT testing and SCB testing were easily repeated for each 70

test conducted. This indicates that the specimen quality was more repeatable for cylindrical specimens resulting in better test results. Data from the flexural beam fatigue test had more variability than any of the previous fatigue test completed. Test results were more scattered during beam testing due to the difficulty in specimen preparation and testing. A more precise method of compaction would be recommended for future beam testing to reduce the variability. Table 16 illustrates a test comparison of the completed test used to evaluate the fatigue characteristics of HMA mixtures containing RAP.

71

Table 16. Test Comparison Type of Fatigue Test

Geometry

Load Type

Load Frequency

Repeatability

Advantages

Disadvantages

COV

Indirect Tensile Test (IDT)

4" Cylindrical

Static

2 in./min.

easy

test is easily performed, obtain tensile characteristics

material punches around loading fixture

0-10%

SCB IDT

6" Semi-Circular

Static

2 in./min.

easy

test is easily performed, obtain tensile characteristics

specimen alignment

0-10%

SCB Fatigue

6" Semi-Circular

StressControlled Dynamic

5 Hz

moderately easy

predict fatigue life at different stress levels

Creep occurs

5-30%

SCB Notched IDT

6" Semi-Circular Notched

Static

.02 in./min.

easy

evaluate the mixtures stiffness through fracture mechanics

specimen alignment, notches are difficult to cut

0-25%

Flexural Beam Fatigue Test

15" x 2.5" x 2" Rectangular

StrainControlled Dynamic

600-700 micro-strain

Difficult

Stiffness is easily obtained

Sample preperation is difficult, data is very scattered

20-70%

72

4.0 Conclusions A laboratory study has been conducted to evaluate the fatigue characteristics of typical Tennessee surface mixtures containing RAP. Mixtures consisting of either limestone or gravel meeting the TDOT “D” mix specification were considered for this study. Fatigue crack characteristics were evaluated for mixtures containing 0, 10, 20 and 30 percent RAP and compared to the control mixture containing 0 percent RAP. Laboratory testing completed on both un-aged and laboratory long-term aged mixtures for both PG 64-22 and PG 76-22 mixtures containing RAP were presented and discussed. The following conclusions can be summarized for the test conducted.

Laboratory mixture long-term aging and the inclusion of RAP influenced the fatigue characteristics for the mixtures studied. Laboratory long-term aging had more noticeable effects for PG 64-22 mixtures than PG 76-22 mixtures. This trend was typical for each fatigue test completed.

The inclusion of RAP and laboratory long-term aging increased the ITS properties for the limestone mixtures studied. The inclusion of RAP and long-term aging typically increased the mixtures stiffness and resistance to fatigue cracking. However, as the mixture increased in stiffness and tensile strength, the mixtures became more brittle resulting in a loss in diametric strain and post failure tenacity with the inclusion of RAP and laboratory long-term aging. Gravel mixtures subject to moisture induced damage resulted in lower ITS properties than long-term aged gravel mixtures.

73

For both limestone and gravel IDT testing, the inclusion of 30 percent RAP significantly changed the mixtures ITS properties. As expected, mixtures with PG 76-22 had higher strengths than PG 64-22 mixtures.

Laboratory long-term aging and the inclusion of RAP changed the mixtures response under cyclic loading. The inclusion of RAP generally increased the mixtures composite modulus. However, the inclusion of RAP decreased the phase angle between peak load and peak deflection. This indicates that long-term aging and the inclusion of RAP significantly stiffens the mixture into a more brittle material.

Laboratory long-term aging and the inclusion of RAP increased the SCB tensile strength. The inclusion of RAP increased the mixtures stiffness and decreased the post failure characteristics. Similar to IDT testing, SCB tensile strength testing followed the same trend with the inclusion of RAP and long-term aging.

The inclusion of RAP and laboratory long-term aging increased the fatigue life in the SCB fatigue test at stress levels above 20 percent of SCB tensile strength. However, at lower stress levels, the inclusion of 30 percent RAP and long-term aging tended to reduce the fatigue life of mixtures containing 30 percent RAP. This indicates that at lower stress levels, similar to highway conditions, higher percentages of RAP would potentially lower the fatigue life of mixtures containing RAP.

74

Laboratory long-term aging and the inclusion of RAP increased the mixtures resistance to fracture failure in the SCB notched fracture test. Fracture energy and Jintegral values increased with the inclusion of RAP and long-term aging. The inclusion of 30 percent RAP significantly increased the fracture resistance when compared to control mixtures.

Beam fatigue testing indicated that the inclusion of RAP and laboratory long-term aging generally increased the fatigue life. In addition to fatigue life, the flexural stiffness increased with the inclusion of RAP and long-term aging. For limestone mixtures, an increase in fatigue life was significant for PG 64-22 asphalt than the mixtures with PG 76-22 asphalt. Gravel mixtures subject to one freeze thaw cycle had a lower fatigue life than long-term aged gravel mixtures. Mixtures with PG 76-22 asphalt performed better than PG 64-22 mixtures. The inclusion of 30 percent RAP significantly increased the fatigue properties for both aggregate mixtures used in the beam fatigue test.

Superpave binder testing completed on the extracted binder indicated that laboratory long-term aging and the inclusion of RAP increased the rheological properties of the blended mixture. DSR test indicated that the inclusion of up to 30 percent RAP would satisfy both G*/sin(δ) and G*sin(δ), the rutting and fatigue parameters for performance graded asphalt binders. Both rutting and fatigue generally will not be a problem for the mixtures studied up to 30 percent RAP. However, BBR testing indicated that the low-temperature grade could possible drop by one performance grade for the

75

mixtures studied. Additional binder test are recommended to properly grade the blended binders with the inclusion of RAP.

The results presented in this paper were completed on laboratory prepared samples and the effects of fatigue life and mixture performance increased with the inclusion of RAP for each test completed. Based on the results from each fatigue test, a maximum of 20 percent screened RAP would be recommended for use in Tennessee surface mixtures. Further field testing is recommended to validate the fatigue crack resistance of field compacted to mixtures to laboratory compacted mixtures.

76

References

77

“AASHTO T 164-01 Quantitative Extraction of Bitumen from Bituminous Paving Mixtures,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003. “AASHTO T 166-00 Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003. “AASHTO T 209-99 Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003. “AASHTO T 240-03 Effect of Heat and Air on a Moving Film of Asphalt (Rolling ThinFilm Oven Test),” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

“AASHTO T 269-97 (1998) Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003. “AASHTO T 283-03 Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003. “AASHTO T 308-01 Determining the Asphalt Binder Content of Hot-Mix Asphalt (HMA) by the Ignition Method,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003. “AASHTO T 312-03 Preparing and Determining the Density of the Hot-Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003.

78

“AASHTO T 313-03 Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR),” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003. “AASHTO T 315-02 Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR),” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003. “AASHTO T 321-03 Determining the Fatigue Life of Compacted Hot-Mix Asphalt (HMA) Subject to Repeated Flexural Bending,” Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II, American Association of State Highway and Transportation Officials, Washington D.C., 2003. Banasiak, D., “States Plane off Excess in RAP Specs.” Roads and Bridges, Vol. 34, No. 10, October 1996. Bell, C.A., “Summary Report on Aging of Asphalt-Aggregate Systems,” Strategic Highway Research Program, SHRP A-305, November 1989. Benedetto, H. D., Soltani, A.A., Chaverot, P., “Fatigue Damage for Bituminous Mixtures: A Pertinent Approach” Journal of the Association of Asphalt Paving Technologist, Vol. 65, 1996, pp 142-152. Brock, J. D., Milling and Recycling, Technical Paper T-127, ASTEC, Chattanooga, TN. Bronstein, M., J. B. Sousa. Computer Software ATS-testing system. SHRP Equipment Inc., Walnut Creek, CA. 1987. Choubane, B., Sholar, G.A., Musselman, J.A., Page, G.C., “Long Term Performance Evaluation of Asphalt-Rubber Surface Mixes.” State Materials Office. Rep. No. FL/DOT/SMO/98-431, November 1998. Daniel, J.S., Lachance, A., “Rheological Properties of Asphalt Mixtures Containing Recycled Asphalt Pavement (RAP),” Journal of the Transportation Research Board (TRB), July 2003. Finn, F. N., “Factors Involved in the Design of Asphaltic Pavement Surfaces,” HRB, NCHRP Report 39, 1967.

79

Huang, B., Egan, B., Kingery, W.R., Zhang, Z., and Zuo, G., “Laboratory Study of Fatigue Characteristics of HMA Surface Mixtures Containing RAP,” Journal of the Transportation Research Board (TRB). January 2004. Kandhal, P.S., “Recycling of Asphalt Pavements – An Overview” Journal of the Association of Asphalt Paving Technologist, Vol. 66, 1997, pp. 686-696. Kandhal, P.S., Rao, S. S., “Performance of Recycled Hot Mix Asphalt Mixtures,” NCAT Report No. 95-1, May 1995. Kennedy, T. W. and Hudson, W. R., “Application of the Indirect Tensile Test to Stabilize Materials,” Highway Research Record 235, Highway Research Board, Washington, D. C., 1968 Kennedy, T.W. and Anagnos, J.N., Procudures for the Static and Repeated Load Indirect Tensile Tests. Research Record 183-14, Center for Transportation Research, University of Texas at Austin. Kennedy, T.W., “Characterization of Asphalt Pavement Materials Using the Indirect Tensile Test,” Journal of the Association of Asphalt Paving Technologist, Vol. 56, 1977. Kim, Y. R., and Wen, W., “Fracture Energy from Indirect Tension Testing,” Journal of the Association of Asphalt Paving Technologist, Vol. 71, 2002. Kim, Y.R., Kim, N., and Khosla, N.P., 1992, "Effects of Aggregate Type and Gradation on Fatigue and Permanent Deformation of Asphalt Concrete," Effects of Aggregate and Mineral Fillers on Asphalt Mixture Performance, ASTM STP 1147, Richard Meininger, Editor, American Society for Testing and Materials, Philadelphia, pp. 310-328. LADOTD, Louisiana Standard Specifications for Roads and Bridges, Louisiana Department of Transportation and Development (LADOTD), Baton Rouge, LA, 2000, p. 220. Majidzadeh, K., Kauffmann, E. M., and Saraf, C. L., “Application of Fracture mechanics in Analysis of Pavement Fatigue,” Proceedings, Association of Asphalt Paving Technologist, 1971. Molenaar, A., “Fracture Energy from Semi Circular Bending Test,” Asphalt Paving Technology, Journal of the Association of Asphalt Paving Technologists, Vol. 71, 2002, (In Press.) Monismith, C. L., and Salam, Y. M., “Distress Characteristics of Asphalt Concrete Mixes,” Proceedings, Association of Asphalt Paving Technologist, 1973. 80

Myers, L.A., Roque, R., “Evaluation of Top-Down Cracking in Thick Asphalt Pavements and the Implications for Pavement Design.” Transportation Research Circular, Issue 503 pp 79-87, 2001. Pais, J., Pereira, P. and Picado-Santos L., 2002, "Variability of Laboratory Fatigue Life of Bituminous Mixtures Using Four Point Bending Test Results," International Journal of Pavement, Vol. 1, Number 2, pp. 48 - 58. Roberts, F.L., P.S. Kandhal, E.R. Brown, D.Y. Lee, and T.W. Kennedy, “Hot Mix Asphalt Materials, Mixture Design, and Construction,” 2nd Edition, NAPA Education Foundation, Lanham, Maryland, 1991, p. 439. Sobhan, K., Mashnad, M., “Tensile Strength and Toughness of Soil-Cement-Fly-Ash Composite Reinforced with Recycled High-Density Polyethylene Strips.” Journal of Materials in Civil Engineering, March/April 2002. Salam, Y. M., Characteristics of Deformation and Fracture of Asphalt Concrete, Ph.D. Dissertation, University of California, Berkeley, 1971. SHRP-A-404. “Fatigue Response of Asphalt-Aggregate Mixes”. Institute of Transportation Studies, University of California, Berkeley, 1994 Sulaiman, S. J., and Stock, A. F., “The Use of Fracture Mechanics for the Evaluation of Asphalt Mixes,” Journal of the Association of Asphalt Paving Technologist, Vol. 64, 1995. Tangella, R., J. Crauss, J. A. Deacon, and C. L. Monismith (1990). Summary report of fatigue response of asphalt mixtures. Technical Memorandum No. TM-UCB-A003A-89-3m, prepared for SHRP Project A-003A. Institute of Transportation Studies, University of California, Berkeley. Tangella, R., J. Crauss, J. A. Deacon, and C. L. Monismith. Summary report of fatigue response of asphalt mixtures. Technical Memorandum No. TM-UCB-A-003A89-3m, prepared for SHRP Project A-003A. Institute of Transportation Studies, University of California, Berkeley. February 1990. Taylor, N.H., “Life Expectancy of Recycled Asphalt Paving,” Recycling of Bituminous Pavements, Editor, L.E. Wood, ASTM STP 662, American Society for Testing Materials, Philadelphia, PA, 1977, pp. 3 – 15. TDOT, Standard Specifications for Road and Bridge Construction, the Tennessee Department of Transportation, Nashville, TN, March, 1995, p. 167.

81

Tsai, B. W., and A.A. Tayebali. “Computer software for fatigue test data analysis for SHRP Project A-003A”. Prepared for SHRP Project A-003A. Asphalt Research Program, Institute of Transportation Studies, University of California, Berkeley, January 1992.

82

Appendices

83

Appendix A: Job Mix Formulas

84

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 01/10/03

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

0% RAP Limestone PG 64-22

Mix

ACS-HM

Date Region County Date of Letting Roadway Surface

07/16/2002

01/10/03

Item

411-D PG 64-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Limestone) #10 (Soft) Natural Sand Manufactured Sand

Coarse Aggregate Screenings Natural Sand Manufactured Sand

RAP

Producer and Location

Percent Used 47.500 14.250 23.750 9.500

Vulcan Materials Co. Vulcan Materials Co. Ingram Vulcan Materials Co.

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 64-22 5.5 Optimum AC Content: Virgin AC

Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: Dust to Asphalt Ratio:

5.00 1.03

N/A

% Fracture Face on CA: Gravity of RAP Agg:

T.S.R.:

2.457 #VALUE! Log Miles

ADT

5.000 100.000

5.0

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.650

Lbs/Ft3: Ignition Oven Corr. Factor:

153.3 N/A

Beginning:

Mixing Temp Range(°F): Mixing Temperature(°F):

100.0 0.81

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F): Percents Used

Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Limesto ne)

#10 (Soft)

Natural Sand

Manufactured Sand

50.0 100 100

15.0 100 100

25.0 100 100

10.0 100 100

100 100 100

100 100 100 97 70 21 7

100 100 100 100 100 92 61

100 100 100 100 100 98 93

100 100 100 100 100 99 82

100 100 100 99 85 59 44

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

4 3 2.0 1.8

29 21 20.0 16.0

63 13 2.0 1.0

28 17 9.0 5.0

25 10 5.4 4.1

17-29 10-18 3-10 0-6.5

Requested:

RAP

% Req.

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

85

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 01/10/03

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

10% RAP Limestone PG 64-22

Mix

ACS-HM

Date Region County Date of Letting Roadway Surface

07/16/2002

01/10/03

Item

411-D PG 64-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Limestone) #10 (Soft) Natural Sand Manufactured Sand

Coarse Aggregate Screenings Natural Sand Manufactured Sand

RAP

Producer and Location

Percent Used 47.500 9.500 19.000 9.500

Vulcan Materials Co. Vulcan Materials Co. Ingram Vulcan Materials Co.

10.053 4.447 100.000

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 64-22 5.5 Optimum AC Content: Virgin AC

N/A

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 0.55 Dust to Asphalt Ratio:

4.45 1.03

T.S.R.:

2.453 #VALUE! Log Miles

ADT

5.0

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.645

Lbs/Ft3: Ignition Oven Corr. Factor:

153.1 N/A

Beginning:

Mixing Temp Range(°F): Mixing Temperature(°F):

88.9 1.03

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F): Percents Used

Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Limesto ne)

#10 (Soft)

Natural Sand

Manufactured Sand

RAP

50.0 100 100

10.0 100 100

20.0 100 100

10.0 100 100

10.0 100 100

100 100 100

100 100 100 97 70 21 7

100 100 100 100 100 92 61

100 100 100 100 100 98 93

100 100 100 100 100 99 82

100 100 100 100 100 100 81

100 100 100 99 85 59 44

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

4 3 2.0 1.8

29 21 20.0 16.0

63 13 2.0 1.0

28 17 9.0 5.0

46 30 23.2 19.3

25 11 6.6 5.1

17-29 10-18 3-10 0-6.5

Requested:

% Req.

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

86

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 01/10/03

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

20% RAP Limestone PG 64-22

Mix

ACS-HM

Date Region County Date of Letting Roadway Surface

07/16/2002

01/10/03

Item

411-D PG 64-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Limestone) #10 (Soft) Natural Sand Manufactured Sand

Coarse Aggregate Screenings Natural Sand Manufactured Sand

RAP

Producer and Location

Percent Used 47.500

Vulcan Materials Co. Vulcan Materials Co. Ingram Vulcan Materials Co.

19.000 9.500

20.106 3.894 100.000

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 64-22 5.5 Optimum AC Content: Virgin AC

N/A

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 1.11 Dust to Asphalt Ratio:

3.89 1.03

T.S.R.:

2.462 #VALUE! Log Miles

ADT

5.0

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.656

Lbs/Ft3: Ignition Oven Corr. Factor:

153.6 N/A

Beginning:

Mixing Temp Range(°F): Mixing Temperature(°F):

77.9 1.09

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F): Percents Used

Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Limesto ne)

Natural Sand

Manufactured Sand

RAP

50.0 100 100

20.0 100 100

10.0 100 100

20.0 100 100

100 100 100

100 100 100 97 70 21 7

100 100 100 100 100 98 93

100 100 100 100 100 99 82

100 100 100 100 100 100 81

100 100 100 99 85 60 46

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

4 3 2.0 1.8

63 13 2.0 1.0

28 17 9.0 5.0

46 30 23.2 19.3

27 12 6.9 5.5

17-29 10-18 3-10 0-6.5

#10 (Soft)

Requested:

% Req.

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

87

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 01/10/03

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

30% RAP Limestone PG 64-22

Mix

ACS-HM

Date Region County Date of Letting Roadway Surface

07/16/2002

01/10/03

Item

411-D PG 64-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Limestone) #10 (Soft) Natural Sand Manufactured Sand

Coarse Aggregate Screenings Natural Sand Manufactured Sand

RAP

Producer and Location

Percent Used 47.500

Vulcan Materials Co. Vulcan Materials Co. Ingram Vulcan Materials Co.

9.500 9.500

30.159 3.341 100.000

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 64-22 5.5 Optimum AC Content: Virgin AC

N/A

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 1.66 Dust to Asphalt Ratio:

3.34 1.03

T.S.R.:

2.468 #VALUE! Log Miles

ADT

5.0

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.664

Lbs/Ft3: Ignition Oven Corr. Factor:

154.0 N/A

Beginning:

Mixing Temp Range(°F): Mixing Temperature(°F):

66.8 1.46

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F): Percents Used

Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Limesto ne)

Natural Sand

Manufactured Sand

RAP

50.0 100 100

10.0 100 100

10.0 100 100

30.0 100 100

100 100 100

100 100 100 97 70 21 7

100 100 100 100 100 98 93

100 100 100 100 100 99 82

100 100 100 100 100 100 81

100 100 100 99 85 60 45

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

4 3 2.0 1.8

63 13 2.0 1.0

28 17 9.0 5.0

46 30 23.2 19.3

25 14 9.1 7.3

17-29 10-18 3-10 0-6.5

#10 (Soft)

Requested:

% Req.

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

88

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 01/10/03

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

0% RAP Limestone PG 76-22

Mix

ACS-HM

Date Region County Date of Letting Roadway Surface

07/16/2002

01/10/03

Item

411-D PG 76-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Limestone) #10 (Soft) Natural Sand Manufactured Sand

Coarse Aggregate Screenings Natural Sand Manufactured Sand

RAP

Producer and Location

Percent Used 47.500 14.250 23.750 9.500

Vulcan Materials Co. Vulcan Materials Co. Ingram Vulcan Materials Co.

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 76-22 5.5 Optimum AC Content: Virgin AC

Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: Dust to Asphalt Ratio:

5.00 1.03

N/A

% Fracture Face on CA: Gravity of RAP Agg:

T.S.R.:

2.455 #VALUE! Log Miles

ADT

5.000 100.000

5.0

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.648

Lbs/Ft3: Ignition Oven Corr. Factor:

153.2 N/A

Beginning:

Mixing Temp Range(°F): Mixing Temperature(°F):

100.0 0.81

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F): Percents Used

Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Limesto ne)

#10 (Soft)

Natural Sand

Manufactured Sand

50.0 100 100

15.0 100 100

25.0 100 100

10.0 100 100

100 100 100

100 100 100 97 70 21 7

100 100 100 100 100 92 61

100 100 100 100 100 98 93

100 100 100 100 100 99 82

100 100 100 99 85 59 44

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

4 3 2.0 1.8

29 21 20.0 16.0

63 13 2.0 1.0

28 17 9.0 5.0

25 10 5.4 4.1

17-29 10-18 3-10 0-6.5

Requested:

RAP

% Req.

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

89

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 01/10/03

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

10% RAP Limestone PG 76-22

Mix

ACS-HM

Date Region County Date of Letting Roadway Surface

07/16/2002

01/10/03

Item

411-D PG 76-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Limestone) #10 (Soft) Natural Sand Manufactured Sand

Coarse Aggregate Screenings Natural Sand Manufactured Sand

Producer and Location

Percent Used 47.500 9.500 19.000 9.500

Vulcan Materials Co. Vulcan Materials Co. Ingram Vulcan Materials Co.

10.053 4.447 100.000

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 76-22 5.5 Optimum AC Content: Virgin AC

N/A

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 0.55 Dust to Asphalt Ratio:

4.45 1.03

T.S.R.:

2.453 #VALUE! Log Miles

ADT

5.0

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.645

Lbs/Ft3: Ignition Oven Corr. Factor:

153.1 N/A

Beginning:

Mixing Temp Range(°F): Mixing Temperature(°F):

88.9 1.03

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F): Percents Used

Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Limesto ne)

#10 (Soft)

Natural Sand

Manufactured Sand

RAP

50.0 100 100

10.0 100 100

20.0 100 100

10.0 100 100

10.0 100 100

100 100 100

100 100 100 97 70 21 7

100 100 100 100 100 92 61

100 100 100 100 100 98 93

100 100 100 100 100 99 82

100 100 100 100 100 100 81

100 100 100 99 85 59 44

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

4 3 2.0 1.8

29 21 20.0 16.0

63 13 2.0 1.0

28 17 9.0 5.0

46 30 23.2 19.3

25 11 6.6 5.1

17-29 10-18 3-10 0-6.5

Requested:

% Req.

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

90

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 01/10/03

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

20% RAP Limestone PG 76-22

Mix

ACS-HM

Date Region County Date of Letting Roadway Surface

07/16/2002

01/10/03

Item

411-D PG 76-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Limestone) #10 (Soft) Natural Sand Manufactured Sand

Coarse Aggregate Screenings Natural Sand Manufactured Sand

Producer and Location

Percent Used 47.500

Vulcan Materials Co. Vulcan Materials Co. Ingram Vulcan Materials Co.

19.000 9.500

20.106 3.894 100.000

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 76-22 5.5 Optimum AC Content: Virgin AC

N/A

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 1.11 Dust to Asphalt Ratio:

3.89 1.03

T.S.R.:

2.462 #VALUE! Log Miles

ADT

5.0

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.656

Lbs/Ft3: Ignition Oven Corr. Factor:

153.6 N/A

Beginning:

Mixing Temp Range(°F): Mixing Temperature(°F):

77.9 1.09

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F): Percents Used

Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Limesto ne)

Natural Sand

Manufactured Sand

RAP

50.0 100 100

20.0 100 100

10.0 100 100

20.0 100 100

100 100 100

100 100 100 97 70 21 7

100 100 100 100 100 98 93

100 100 100 100 100 99 82

100 100 100 100 100 100 81

100 100 100 99 85 60 46

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

4 3 2.0 1.8

63 13 2.0 1.0

28 17 9.0 5.0

46 30 23.2 19.3

27 12 6.9 5.5

17-29 10-18 3-10 0-6.5

#10 (Soft)

Requested:

% Req.

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

91

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 01/10/03

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

30% RAP Limestone PG 76-22

Mix

ACS-HM

Date Region County Date of Letting Roadway Surface

07/16/2002

01/10/03

Item

411-D PG 76-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Limestone) #10 (Soft) Natural Sand Manufactured Sand

Coarse Aggregate Screenings Natural Sand Manufactured Sand

Producer and Location

Percent Used 47.500

Vulcan Materials Co. Vulcan Materials Co. Ingram Vulcan Materials Co.

9.500 9.500

30.159 3.341 100.000

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 76-22 5.5 Optimum AC Content: Virgin AC

N/A

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 1.66 Dust to Asphalt Ratio:

3.34 1.03

T.S.R.:

2.468 #VALUE! Log Miles

ADT

5.0

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.664

Lbs/Ft3: Ignition Oven Corr. Factor:

154.0 N/A

Beginning:

Mixing Temp Range(°F): Mixing Temperature(°F):

66.8 1.46

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F): Percents Used

Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Limesto ne)

Natural Sand

Manufactured Sand

RAP

50.0 100 100

10.0 100 100

10.0 100 100

30.0 100 100

100 100 100

100 100 100 97 70 21 7

100 100 100 100 100 98 93

100 100 100 100 100 99 82

100 100 100 100 100 100 81

100 100 100 99 85 60 45

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

4 3 2.0 1.8

63 13 2.0 1.0

28 17 9.0 5.0

46 30 23.2 19.3

25 14 9.1 7.3

17-29 10-18 3-10 0-6.5

#10 (Soft)

Requested:

% Req.

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

92

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 1/22/2003(r4)

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

0% RAP Gravel PG 64-22

Date Region County Date of Letting Roadway Surface

Mix

ACS-HM

11/03/2003

01/10/03

Item

411-D PG 64-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Gravel) Ag. Lime #10 (Soft) Natural Sand

Coarse Aggregate Ag. Lime Screenings Natural Sand

Producer and Location

Percent Used 51.810 9.420 9.420 23.550

Standard Const. Frank Road Vulcan Mtl. Savannah, TN. Vulcan Mtl. Savannah, TN. Standard Const. Frank Road

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 64-22 MARATHON ASHLAND, KNOXVILLE 5.8 5.8 Optimum AC Content: Virgin AC

5.80 1.03

80.4

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

T.S.R.:

2.367 8.0 Log Miles

ADT

Mixing Temp Range(°F): Mixing Temperature(°F):

5.800 100.000 0.3% 100.0 1.02

Total Dosage: RAP AC Percent Virgin AC: Dust to Asphalt Ratio: % Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.573

Lbs/Ft3: 90.0 Ignition Oven Corr. Factor:

147.7 0.55

Beginning:

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F):

310-350 330

290-330 310

Percents Used Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Gravel)

Ag. Lime

#10 (Soft)

Natural Sand

55.0 100 100

10.0 100 100

10.0 100 100

25.0 100 100

100 100 100

100 100 100 95 77 40 22

100 100 100 100 100 98 92

100 100 100 100 100 91 60

100 100 100 100 100 96 84

100 100 100 97 87 65 48

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

8 5 3.0 2.0

64 52 41.0 34.0

30 21 16.0 14.0

60 8 1.0

29 12 7.6 5.9

17-29 10-18 3-10 0-6.5

RAP

% Req.

Requested:

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

93

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 1/22/2003(r4)

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

10% RAP Gravel PG 64-22

Date Region County Date of Letting Roadway Surface

Mix

ACS-HM

11/03/2003

01/10/03

Item

411-D PG 64-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Gravel) Ag. Lime #10 (Soft) Natural Sand

Coarse Aggregate Ag. Lime Screenings Natural Sand

Producer and Location

Percent Used 51.810

Standard Const. Frank Road Vulcan Mtl. Savannah, TN. Vulcan Mtl. Savannah, TN. Standard Const. Frank Road

9.420 23.550

10.000 5.220 100.000 0.3% 90.0 0.62

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 64-22 MARATHON ASHLAND, KNOXVILLE 5.8 5.8 Optimum AC Content: Virgin AC

5.22 1.03

80.4

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 0.58 Dust to Asphalt Ratio:

T.S.R.:

2.367 8.0 Log Miles

ADT

Mixing Temp Range(°F): Mixing Temperature(°F):

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.573

Lbs/Ft3: 90.0 Ignition Oven Corr. Factor:

147.7 0.55

Beginning:

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F):

310-350 330

290-330 310

Percents Used Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Gravel)

#10 (Soft)

Natural Sand

RAP

55.0 100 100

10.0 100 100

25.0 100 100

10.0 100 100

100 100 100

100 100 100 95 77 40 22

100 100 100 100 100 91 60

100 100 100 100 100 96 84

100 100 100 100 100 100 90

100 100 100 97 87 65 48

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

8 5 3.0 2.0

30 21 16.0 14.0

60 8 1.0

57 27 14.8 10.8

28 10 5.0 3.6

17-29 10-18 3-10 0-6.5

Ag. Lime

% Req.

Requested:

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

94

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 1/22/2003(r4)

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

20% RAP Gravel PG 64-22

Date Region County Date of Letting Roadway Surface

Mix

ACS-HM

11/03/2003

01/10/03

Item

411-D PG 64-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Gravel) Ag. Lime #10 (Soft) Natural Sand

Coarse Aggregate Ag. Lime Screenings Natural Sand

Producer and Location

Percent Used 51.810 4.710

Standard Const. Frank Road Vulcan Mtl. Savannah, TN. Vulcan Mtl. Savannah, TN. Standard Const. Frank Road

18.840

20.000 4.640 100.000 0.3% 80.0 0.85

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 64-22 MARATHON ASHLAND, KNOXVILLE 5.8 5.8 Optimum AC Content: Virgin AC

4.64 1.03

80.4

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 1.16 Dust to Asphalt Ratio:

T.S.R.:

2.367 8.0 Log Miles

ADT

Mixing Temp Range(°F): Mixing Temperature(°F):

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.573

Lbs/Ft3: 90.0 Ignition Oven Corr. Factor:

147.7 0.55

Beginning:

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F):

310-350 330

290-330 310

Percents Used Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Gravel)

Ag. Lime

55.0 100 100

#10 (Soft)

Natural Sand

RAP

5.0 100 100

20.0 100 100

20.0 100 100

100 100 100

100 100 100 95 77 40 22

100 100 100 100 100 98 92

100 100 100 100 100 96 84

100 100 100 100 100 100 90

100 100 100 97 87 66 51

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

8 5 3.0 2.0

64 52 41.0 34.0

60 8 1.0

57 27 14.8 10.8

31 12 6.9 5.0

17-29 10-18 3-10 0-6.5

% Req.

Requested:

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

95

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 1/22/2003(r4)

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

30% RAP Gravel PG 64-22

Date Region County Date of Letting Roadway Surface

Mix

ACS-HM

11/03/2003

01/10/03

Item

411-D PG 64-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Gravel) Ag. Lime #10 (Soft) Natural Sand

Coarse Aggregate Ag. Lime Screenings Natural Sand

Producer and Location

Percent Used 51.810 4.710

Standard Const. Frank Road Vulcan Mtl. Savannah, TN. Vulcan Mtl. Savannah, TN. Standard Const. Frank Road

9.420

30.000 4.060 100.000 0.3% 70.0 1.04

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 64-22 MARATHON ASHLAND, KNOXVILLE 5.8 5.8 Optimum AC Content: Virgin AC

4.06 1.03

80.4

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 1.74 Dust to Asphalt Ratio:

T.S.R.:

2.367 8.0 Log Miles

ADT

Mixing Temp Range(°F): Mixing Temperature(°F):

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.573

Lbs/Ft3: 90.0 Ignition Oven Corr. Factor:

147.7 0.55

Beginning:

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F):

310-350 330

290-330 310

Percents Used Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Gravel)

Ag. Lime

55.0 100 100

#10 (Soft)

Natural Sand

RAP

5.0 100 100

10.0 100 100

30.0 100 100

100 100 100

100 100 100 95 77 40 22

100 100 100 100 100 98 92

100 100 100 100 100 96 84

100 100 100 100 100 100 90

100 100 100 97 87 67 52

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

8 5 3.0 2.0

64 52 41.0 34.0

60 8 1.0

57 27 14.8 10.8

31 14 8.2 6.0

17-29 10-18 3-10 0-6.5

% Req.

Requested:

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

96

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 1/22/2003(r4)

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

0% RAP Gravel PG 76-22

Date Region County Date of Letting Roadway Surface

Mix

ACS-HM

11/03/2003

01/10/03

Item

411-D PG 76-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Gravel) Ag. Lime #10 (Soft) Natural Sand

Coarse Aggregate Ag. Lime Screenings Natural Sand

Producer and Location

Percent Used 51.810 9.420 9.420 23.550

Standard Const. Frank Road Vulcan Mtl. Savannah, TN. Vulcan Mtl. Savannah, TN. Standard Const. Frank Road

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 76-22 MARATHON ASHLAND, KNOXVILLE 5.8 5.8 Optimum AC Content: Virgin AC

5.80 1.03

80.4

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

T.S.R.:

2.367 8.0 Log Miles

ADT

Mixing Temp Range(°F): Mixing Temperature(°F):

5.800 100.000 0.3% 100.0 1.02

Total Dosage: RAP AC Percent Virgin AC: Dust to Asphalt Ratio: % Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.573

Lbs/Ft3: 90.0 Ignition Oven Corr. Factor:

147.7 0.55

Beginning:

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F):

310-350 330

290-330 310

Percents Used Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Gravel)

Ag. Lime

#10 (Soft)

Natural Sand

55.0 100 100

10.0 100 100

10.0 100 100

25.0 100 100

100 100 100

100 100 100 95 77 40 22

100 100 100 100 100 98 92

100 100 100 100 100 91 60

100 100 100 100 100 96 84

100 100 100 97 87 65 48

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

8 5 3.0 2.0

64 52 41.0 34.0

30 21 16.0 14.0

60 8 1.0

29 12 7.6 5.9

17-29 10-18 3-10 0-6.5

RAP

% Req.

Requested:

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

97

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 1/22/2003(r4)

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

10% RAP Gravel PG 76-22

Date Region County Date of Letting Roadway Surface

Mix

ACS-HM

11/03/2003

01/10/03

Item

411-D PG 76-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Gravel) Ag. Lime #10 (Soft) Natural Sand

Coarse Aggregate Ag. Lime Screenings Natural Sand

Producer and Location

Percent Used 51.810 9.420

Standard Const. Frank Road Vulcan Mtl. Savannah, TN. Vulcan Mtl. Savannah, TN. Standard Const. Frank Road

23.550

10.000 5.220 100.000 0.3% 90.0 0.96

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 76-22 MARATHON ASHLAND, KNOXVILLE 5.8 5.8 Optimum AC Content: Virgin AC

5.22 1.03

80.4

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 0.58 Dust to Asphalt Ratio:

T.S.R.:

2.367 8.0 Log Miles

ADT

Mixing Temp Range(°F): Mixing Temperature(°F):

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.573

Lbs/Ft3: 90.0 Ignition Oven Corr. Factor:

147.7 0.55

Beginning:

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F):

310-350 330

290-330 310

Percents Used Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Gravel)

Ag. Lime

55.0 100 100

#10 (Soft)

Natural Sand

RAP

10.0 100 100

25.0 100 100

10.0 100 100

100 100 100

100 100 100 95 77 40 22

100 100 100 100 100 98 92

100 100 100 100 100 96 84

100 100 100 100 100 100 90

100 100 100 97 87 66 51

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

8 5 3.0 2.0

64 52 41.0 34.0

60 8 1.0

57 27 14.8 10.8

32 13 7.5 5.6

17-29 10-18 3-10 0-6.5

% Req.

Requested:

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

98

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 1/22/2003(r4)

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

20% RAP Gravel PG 76-22

Date Region County Date of Letting Roadway Surface

Mix

ACS-HM

11/03/2003

01/10/03

Item

411-D PG 76-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Gravel) Ag. Lime #10 (Soft) Natural Sand

Coarse Aggregate Ag. Lime Screenings Natural Sand

Producer and Location

Percent Used 51.810 4.710

Standard Const. Frank Road Vulcan Mtl. Savannah, TN. Vulcan Mtl. Savannah, TN. Standard Const. Frank Road

18.840

20.000 4.640 100.000 0.3% 80.0 0.85

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 76-22 MARATHON ASHLAND, KNOXVILLE 5.8 5.8 Optimum AC Content: Virgin AC

4.64 1.03

80.4

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 1.16 Dust to Asphalt Ratio:

T.S.R.:

2.367 8.0 Log Miles

ADT

Mixing Temp Range(°F): Mixing Temperature(°F):

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.573

Lbs/Ft3: 90.0 Ignition Oven Corr. Factor:

147.7 0.55

Beginning:

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F):

310-350 330

290-330 310

Percents Used Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Gravel)

Ag. Lime

55.0 100 100

#10 (Soft)

Natural Sand

RAP

5.0 100 100

20.0 100 100

20.0 100 100

100 100 100

100 100 100 95 77 40 22

100 100 100 100 100 98 92

100 100 100 100 100 96 84

100 100 100 100 100 100 90

100 100 100 97 87 66 51

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

8 5 3.0 2.0

64 52 41.0 34.0

60 8 1.0

57 27 14.8 10.8

31 12 6.9 5.0

17-29 10-18 3-10 0-6.5

% Req.

Requested:

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

99

Headquarters Materials and Tests

STATE OF TENNESSEE ASPHALT JOB MIX FORMULA 1/22/2003(r4)

Project Ref. No. Project No. Contract No. Contractor State Route No. Hot-mix Producer

Type

30% RAP Gravel PG 76-22

Date Region County Date of Letting Roadway Surface

Mix

ACS-HM

11/03/2003

01/10/03

Item

411-D PG 76-22

Serial No.:

Design No.:

Material

Size or Grade

D Rock(Gravel) Ag. Lime #10 (Soft) Natural Sand

Coarse Aggregate Ag. Lime Screenings Natural Sand

Producer and Location

Percent Used 51.810 4.710

Standard Const. Frank Road Vulcan Mtl. Savannah, TN. Vulcan Mtl. Savannah, TN. Standard Const. Frank Road

9.420

30.000 4.060 100.000 0.3% 70.0 1.04

RAP

RAP

Asphalt Cement Percent AC in RAP: Anti-Strip Additive: AC Contribution: Asphalt Sp. Gravity:

PG 76-22 MARATHON ASHLAND, KNOXVILLE 5.8 5.8 Optimum AC Content: Virgin AC

4.06 1.03

80.4

% Fracture Face on CA: Gravity of RAP Agg: Theo. Gravity: L.O.I.:

Total Dosage: RAP AC Percent Virgin AC: 1.74 Dust to Asphalt Ratio:

T.S.R.:

2.367 8.0 Log Miles

ADT

Mixing Temp Range(°F): Mixing Temperature(°F):

% Glassy Particles on CA: Eff. Gravity of Agg:

N/A 2.573

Lbs/Ft3: 90.0 Ignition Oven Corr. Factor:

147.7 0.55

Beginning:

Ending:

Compaction Temp Range(°F): Compaction Temperature(°F):

310-350 330

290-330 310

Percents Used Sieve Size 2" 1.5" 1.25" 1" 3/4" 5/8" 1/2" 3/8" No.4 No.8 No.16 No.30 No.50 No.100 No.200

D Rock(Gravel)

Ag. Lime

55.0 100 100

#10 (Soft)

Natural Sand

RAP

5.0 100 100

10.0 100 100

30.0 100 100

100 100 100

100 100 100 95 77 40 22

100 100 100 100 100 98 92

100 100 100 100 100 96 84

100 100 100 100 100 100 90

100 100 100 97 87 67 52

Design Range 100 100 100 100 100 100 95-100 80-93 54-76 35-57

8 5 3.0 2.0

64 52 41.0 34.0

60 8 1.0

57 27 14.8 10.8

31 14 8.2 6.0

17-29 10-18 3-10 0-6.5

% Req.

Requested:

Approved: Contractor Personnel and Lab Tech Cert No.

Approved:

Regional Materials and Tests Supervisor

Approved: Regional Construction Supervisor

100

Headquarters Materials and Tests

Appendix B: Indirect Tensile Strength Test Data

101

Limestone Mixtures Virgin U-1 U-2 U-3 A-1 A-2 A-3 10% RAP U-1 U-2 U-3 A-1 A-2 A-3 20% RAP U-1 U-2 U-3 A-1 A-2 A-3 30% RAP U-1 U-2 U-3 A-1 A-2 A-3

4 in. IDT: PG 64-22 Stress, psi. Strain in./in. 192.0 0.003300 206.0 0.003508 196.5 0.003923 225.8 0.002359 205.6 0.002772 217.3 0.002925 Stress, psi. Strain in./in. 204.2 0.003515 198.9 0.003653 202.9 0.003071 236.5 0.003201 255.5 0.002474 236.2 0.003217 Stress, psi. Strain in./in. 226.7 0.003063 224.2 0.003071 226.4 0.003048 261.9 0.002903 272.9 0.002466 247.7 0.003056 Stress, psi. Strain in./in. 274.6 0.002903 241.9 0.002680 266.4 0.003079 308.5 0.002466 305.6 0.002458 297.5 0.002313

TI 0.57 0.62 0.65 0.38 0.57 0.50 TI 0.58 0.61 0.53 0.48 0.45 0.46 TI 0.49 0.46 0.46 0.43 0.39 0.47 TI 0.45 0.49 0.47 0.39 0.43 0.38

Virgin U-1 U-2 U-3 A-1 A-2 A-3 10% RAP U-1 U-2 U-3 A-1 A-2 A-3 20% RAP U-1 U-2 U-3 A-1 A-2 A-3 30% RAP U-1 U-2 U-3 A-1 A-2 A-3

4 in. IDT: PG 76-22 Stress, psi. Strain, in./in. 232.82 0.003661 230.8 0.003377 239.62 0.004105 258.67 0.002925 276.18 0.002803 274.21 0.003056 Stress, psi. Strain, in./in. 259.81 0.003492 238.52 0.003791 247.39 0.003806 289.31 0.0027 276.62 0.003217 285.22 0.00306 Stress, psi. Strain, in./in. 271.53 0.003354 277.94 0.003354 285.4 0.002811 313.18 0.00264 315.11 0.002903 324.51 0.002474 Stress, psi. Strain, in./in. 301.38 0.003025 284.96 0.002489 309.45 0.002765 339.96 0.002589 335.48 0.002489 321.17 0.002742

TI 0.625 0.686 0.7 0.531 0.56 0.52 TI 0.548 0.553 0.613 0.47 0.479 0.469 TI 0.4165 0.5064 0.522 0.4159 0.409 0.373 TI 0.489 0.428 0.464 0.352 0.325 0.434

avg

Stress std

COV

avg

std

Strain Diam. Strain,%

COV

avg

TI std.

COV

198.2

7.2

3.6

0.0036

0.0003

0.358

8.9

0.612

0.043

7.0

216.2

10.2

4.7

0.0027

0.0003

0.269

10.9

0.481

0.093

19.4

202.0

2.8

1.4

0.0034

0.0003

0.341

8.9

0.574

0.039

6.9

242.7

11.1

4.6

0.0030

0.0004

0.296

14.3

0.464

0.013

2.8

225.7

1.3

0.6

0.0031

0.0000

0.306

0.4

0.469

0.016

3.4

260.8

12.6

4.8

0.0028

0.0003

0.281

10.9

0.430

0.043

9.9

260.9

17.0

6.5

0.0029

0.0002

0.289

6.9

0.469

0.021

4.4

303.9

5.7

1.9

0.0024

0.0001

0.241

3.6

0.399

0.029

7.3

COV

avg

std

COV

avg

TI std.

COV

avg

Stress std

Strain diam strain %

234.4

4.6

2.0

0.0037

0.0004

0.371

9.9

0.670

0.040

5.9

269.7

9.6

3.6

0.0029

0.0001

0.293

4.3

0.537

0.021

3.8

248.6

10.7

4.3

0.0037

0.0002

0.370

4.8

0.571

0.036

6.3

283.7

6.5

2.3

0.0030

0.0003

0.299

8.9

0.473

0.006

1.2

278.3

6.9

2.5

0.0032

0.0003

0.317

9.9

0.482

0.057

11.8

317.6

6.1

1.9

0.0027

0.0002

0.267

8.1

0.399

0.023

5.8

298.6

12.5

4.2

0.0028

0.0003

0.276

9.7

0.460

0.031

6.7

332.2

9.8

3.0

0.0026

0.0001

0.261

4.9

0.370

0.057

15.3

102

0% RAP IDT UA-1: PG 64-22

250

250

200

200

Stress, psi.

Stress, psi.

0% RAP IDT Long-term Aged: PG 64-22

150

100

150

100

50

50

0

0 0

0.002

0.004 0.006 Strain, in./in.

0.008

0

0.01

0.002

0.006

0.008

0.01

0.012

0.01

0.012

Strain, in./in.

0% RAP IST LTA-2: PG 64-22

0% RAP IDT UA-2: PG 64-22

250

250

200

200

150

Stress, psi.

S tress, psi.

0.004

100

50

150

100

50

0

0

0

0.002

0.004

0.006

0.008

0.01

0

0.002

0.004

Strain, in./in.

0.006

0.008

Strain, in./in.

0% RAP IDT UA-3: PG 64-22 250

0% RAP IDT LTA-3: PG 64-22 250

200

S tre s s , p s i.

200

S tre s s , p s i.

150

150

100

100

50 50

0 0

0 0

0.002

0.004

0.006

0.008

0.01

0.012

0.02

0.04

0.06 Strain, in./in.

Strain, in./in.

103

0.08

0.1

0.12

10% RAP IDT UA-1: PG 64-22

250

250

200

200

S tress, psi.

Stress, psi.

10% RAP IDT LTA-1: PG 64-22

150

100

150

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0

0.01

0.002

0.004

0.006

0.008

0.01

0.012

Strain, in./in.

Strain, in./in.

10% RAP IDT LTA-2: PG 64-22

10% RAP IDT UA-2: PG 64-22

300

250

250

200

Stress, psi.

Stress, psi.

200 150

150

100

100 50

50 0

0

0

0.002

0.004

0.006

0.008

0.01

0

0.002

0.004

Strain, in./in.

0.008

0.01

0.012

10% RAP IDT UA-3: PG 64-22

10% RAP IDT LTA-3: PG 64-22

250

250

200

Stress, psi.

200

Stress, psi.

0.006 Strain, in./in.

150

100

150

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

0.002

0.004

0.006 Strain, in./in.

Strain, in./in.

104

0.008

0.01

0.012

20% RAP IDT UA-1: PG 64-22

20% RAP IDT LTA-1: PG 64-22 300

250

250

200

Stress, psi.

Stress, psi.

200 150

150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0

0.01

0.002

0.004

0.006

0.008

0.01

0.012

0.01

0.012

Strain, in./in.

Strain, in./in.

20% RAP IDT LTA-2: PG 64-22

20% RAP IDT UA-2: PG 64-22

300

250

250

200

Stress, psi.

Stress, psi.

200 150

150

100

100 50

50 0

0

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.002

Strain, in./in.

0.004

0.006

0.008

Strain, in./in.

20% RAP IDT UA-3: PG 64-22

20% RAP IDT LTA-3: PG 64-22

250

300

250

200

Stress, psi.

Stress, psi.

200

150

150

100

100

50 50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

0.002

0.004

0.006

Strain, in./in.

Strain, in./in.

105

0.008

0.01

30% RAP IDT UA-1: PG 64-22

30% RAP IDT LTA-1: PG 64-22

300

300

250

250

200 Stress, psi.

Stress, psi.

350

200 150

150 100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

0.002

0.004

0.006

0.008

0.01

0.012

0.01

0.012

Strain, in./in.

Strain, in./in.

30% RAP IDT UA-2: PG 64-22

30% RAP IDT LTA-2: PG 64-22 350

300

300

250

250

Stress, psi.

Stress, psi.

200 200 150

150 100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

0.002

0.004

0.008

30% RAP IDT UA-3: PG 64-22

30% RAP IDT LTA-3: PG 64-22 350

300

300

250

250

200

Stress, psi.

Stress, psi.

0.006 Strain, in./in.

Strain, in./in.

200 150

150 100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

Strain, in./in.

0.002

0.004

0.006

0.008

Strain, in./in.

106

0.01

0.012

0.014

0% RAP IDT UA-1: PG 76-22 300

250

250

200

200

Stress, psi.

Stress, psi.

0% RAP IDT LTA-1: PG 76-22 300

150

150

100

100

50

50

0

0

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.002

0.004

Strain, in./in.

300

300

250

250

200

200

Stress, psi.

Stress, psi.

0.008

0.01

0.012

0.01

0.012

0.01

0.012

0% RAP IDT UA-2: PG 76-22

0% RAP IDT LTA-2: PG 76-22

150

150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

0.002

0.004

0.006

0.008

Strain, in./in.

Strain, in./in.

0% RAP IDT UA-3: PG 76-22

0% RAP IDT LTA-3: PG 76-22 300

300

250

250

200

200 S tre s s , p s i.

S tre ss , p s i.

0.006 Strain, in./in.

150

150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

0.002

0.004

0.006 Strain, in./in.

Strain, in./in.

107

0.008

10% RAP IDT UA-1: PG 76-22

300

300

250

250

200

200 S tre ss, p si.

Stress, psi.

10% RAP IDT LTA-1: PG 76-22

150

150

100

100

50

50

0

0

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.002

0.004

Strain, in./in.

0.008

0.01

0.012

0.01

0.012

0.01

0.012

10% RAP IDT UA-2: PG 76-22

300

300

250

250

200

200 S tre s s , p s i.

S tre s s, p s i.

10% RAP IDT LTA-2: PG 76-22

150

150

100

100

50

50

0

0

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.002

0.004

Strain, in./in.

0.006

0.008

Strain, in./in. 10% RAP IDT UA-3: PG 76-22

10% RAP LTA-3: PG 76-22 300

300

250

250

200

200 S tress, psi.

Stress, psi.

0.006 Strain, in./in.

150

150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

0.002

0.004

0.006 Strain, in./in.

Strain, in./in.

108

0.008

20% RAP IDT UA-1: PG 76-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

20% RAP IDT LTA-1: PG 76-22

200 150

200 150

100

100

50

50

0

0

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.002

0.004

Strain, in./in.

0.008

0.01

0.012

20% RAP IDT UA-2: PG 76-22

350

350

300

300

250

250

Stress, psi.

Stress, psi.

20% RAP IDT LTA-2: PG 76-22

200 150

200 150

100

100

50

50

0

0

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.002

0.004

Strain, in./in.

0.006

0.008

0.01

0.012

0.01

0.012

Strain, in./in.

20% RAP IDT UA-3: PG 76-22

20% RAP IDT LTA-3: PG 76-22 350

350

300

300

250

250

Stress, psi.

Stress, psi.

0.006 Strain, in./in.

200 150

200 150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

0.002

0.004

0.006 Strain, in./in.

Strain, in./in.

109

0.008

30% RAP IDT UA-1: PG 76-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

30% RAP IDT LTA-1: PG 76-22

200 150

200 150

100

100

50

50

0

0

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.002

0.004

Strain, in./in.

0.01

0.012

350

350

300

300

250

Stress, psi.

250

Stress, psi.

0.008

30% RAP IDT UA-2: PG 76-22

30% RAP IDT LTA-2: PG 76-22

200 150

200 150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.012

0.002

0.004

0.006

0.008

0.01

0.012

Strain, in./in.

Strain, in./in.

30% RAP IDT UA-3: PG 76-22

30% RAP IDT LTA-3: PG 76-22

350

350

300

300

250

Stress, psi.

250

Stress, psi.

0.006 Strain, in./in.

200 150

200 150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.002

0.004

0.006 Strain, in./in.

Strain, in./in.

110

0.008

0.01

0.012

Gravel Mixtures Virgin A-1 A-2 A-3 A-1 (FT) A-2 (FT) A-3 (FT) 10% RAP A-1 A-2 A-3 A-1 (FT) A-2 (FT) A-3 (FT) 20% RAP A-1 A-2 A-3 A-1 (FT) A-2 (FT) A-3 (FT) 30% RAP A-1 A-2 A-3 A-1 (FT) A-2 (FT) A-3 (FT)

4 in. IDT: PG 64-22 Stress, psi. Strain in./in. 188.0 0.002435 221.1 0.002420 208.9 0.002550 178.4 0.002642 193.0 0.002779 231.0 0.002573 Stress, psi. Strain in./in. 206.0 0.002144 242.8 0.002588 229.1 0.002504 225.5 0.002297 221.1 0.002474 220.4 0.002779 Stress, psi. Strain in./in. 268.8 0.002175 254.8 0.002282 264.3 0.002228 238.9 0.002366 242.7 0.002282 273.9 0.002175 Stress, psi. Strain in./in. 285.4 0.002037 293.7 0.002351 295.2 0.002083 272.6 0.002010 275.8 0.002091 268.8 0.001884

TI 0.50 0.50 0.51 0.48 0.51 0.47 TI 0.45 0.41 0.42 0.46 0.43 0.36 TI 0.45 0.42 0.41 0.42 0.38 0.41 TI 0.44 0.40 0.39 0.36 0.40 0.42

Virgin A-1 A-2 A-3 A-1 (FT) A-2 (FT) A-3 (FT) 10% RAP A-1 A-2 A-3 A-1 (FT) A-2 (FT) A-3 (FT) 20% RAP A-1 A-2 A-3 A-1 (FT) A-2 (FT) A-3 (FT) 30% RAP A-1 A-2 A-3 A-1 (FT) A-2 (FT) A-3 (FT)

4 in. IDT: PG 76-22 Stress, psi. Strain, in./in. 239.5322 0.002481 224.8722 0.002673 234.4407 0.002795 221.0975 0.002757 226.0573 0.002964 240.1466 0.00268 Stress, psi. Strain, in./in. 251.6025 0.002604 267.4915 0.002451 260.5126 0.002497 234.4407 0.002848 255.1578 0.002941 259.8103 0.002711 Stress, psi. Strain, in./in. 282.8098 0.002435 275.831 0.002458 258.625 0.002512 273.899 0.00268 265.253 0.00255 277.147 0.002543 Stress, psi. Strain, in./in. 300.8495 0.002351 299.6205 0.002351 321.0399 0.002504 285.3556 0.002688 303.2197 0.002458 295.3824 0.002474

TI 0.5399 0.4675 0.4652 0.5175 0.4932 0.4980 TI 0.4617 0.4756 0.5132 0.4438 0.4552 0.4839 TI 0.4847 0.4627 0.4589 0.4337 0.4145 0.4624 TI 0.4425 0.4493 0.4475 0.3914 0.4299 0.4377

avg

Stress std

COV

avg

std

Strain Diam. Strain,%

COV

avg

TI std.

COV

206.0

16.7

8.1

0.0025

0.0001

0.247

2.9

0.503

0.004

0.8

200.8

27.2

13.5

0.0027

0.0001

0.266

3.9

0.487

0.021

4.4

226.0

18.6

8.2

0.0024

0.0002

0.241

9.8

0.428

0.020

4.7

222.3

2.8

1.2

0.0025

0.0002

0.252

9.7

0.418

0.050

12.0

262.6

7.2

2.7

0.0022

0.0001

0.223

2.4

0.425

0.021

4.9

251.8

19.2

7.6

0.0023

0.0001

0.227

4.2

0.403

0.021

5.2

291.4

5.3

1.8

0.0022

0.0002

0.216

7.9

0.411

0.028

6.8

272.4

3.5

1.3

0.0020

0.0001

0.199

5.2

0.392

0.033

8.4

avg

std

strain diam strain %

avg

TI std.

COV

avg

Stress std

232.9

7.4

3.2

0.0026

0.0002

0.265

6.0

0.491

0.042

8.7

229.1

9.9

4.3

0.0028

0.0001

0.280

5.2

0.503

0.013

2.6

259.9

8.0

3.1

0.0025

0.0001

0.252

3.1

0.484

0.027

5.5

249.8

13.5

5.4

0.0028

0.0001

0.283

4.1

0.461

0.021

4.5

272.4

12.4

4.6

0.0025

0.0000

0.247

1.6

0.469

0.014

3.0

272.1

6.1

2.3

0.0026

0.0001

0.259

3.0

0.437

0.024

5.5

307.2

12.0

3.9

0.0024

0.0001

0.240

3.7

0.446

0.004

0.8

294.7

9.0

3.0

0.0025

0.0001

0.254

5.1

0.420

0.025

5.9

111

0% RAP IDT LTA-1-FT: PG 64-22 350

300

300

250

250 Stress, psi.

Stress, psi.

0% RAP IDT LTA-1: PG 64-22 350

200 150

200 150 100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0

0.01

0.002

0.004

0.008

0.01

0% RAP IDT LTA-2-FT: PG 64-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

0% RAP IDT LTA-2: PG 64-22

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.002

Strain, in./in.

0.004

0.006

0.008

0.01

0.008

0.01

Strain, in./in.

0% RAP IDT LTA-3: PG 64-22

0% RAP IDT LTA-3-FT: PG 64-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

0.006

Strain, in./in.

Strain x, in./in.

200 150

200 150

100

100

50

50

0

0

0

0.002

0.004

0.006

0.008

0.01

0

Strain, in./in.

0.002

0.004

0.006

Strain, in./in.

112

10% RAP IDT LTA-1-FT: PG 64-22 350

300

300

250

250 Stress, psi.

Stress, psi.

10% RAP IDT LTA-1: PG 64-22 350

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.002

Strain, in./in.

10% RAP IDT LTA-1: PG 64-22

0.008

0.01

0.008

0.01

0.008

0.01

10% RAP IDT LTA-2-FT: PG 64-22 350

300

300

250

250 Stress, psi.

Stress, psi.

0.006

Strain, in./in.

350

200 150

200 150

100

100

50

50 0

0 0

0.002

0.004 0.006 Strain, in./in.

0.008

0

0.01

0.002

0.004

0.006

Strain, in./in.

10% RAP IDT LTA-3: PG 64-22

10% RAP IDT LTA-3-FT: PG 64-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

0.004

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

Strain, in./in.

0.002

0.004

0.006

Strain, in./in.

113

20% RAP IDT LTA-1-FT: PG 64-22 350

300

300

250

250 Stress, psi.

Stress, psi.

20% RAP IDT LTA-1: PG 64-22 350

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.002

Strain, in./in.

0.004

0.006

0.008

0.01

0.008

0.01

0.008

0.01

Strain, in./in.

20% RAP IDT LTA-2-FT: PG 64-22 20% RAP IDT LTA-2: PG 64-22

350 350

300 300

250

Stress, psi.

Stress, psi.

250 200 150

200 150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0

0.01

0.002

20% RAP IDT LTA-3: PG 64-22

0.006

20% RAP IDT LTA-3-FT: PG64-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

0.004

Strain, in./in.

Strain, in./in.

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

Strain, in./in.

0.002

0.004

0.006

Strain, in./in.

114

30% RAP IDT LTA-1-FT: PG 64-22 350

300

300

250

250 Stress, psi.

Stress, psi.

30% RAP IDT LTA-1: PG 64-22 350

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.002

Strain, in./in.

0.006

0.008

0.01

Strain, in./in.

30% RAP IDT LTA-2: PG 64-22

Stress, psi.

0.004

30% RAP IDT LTA-2-FT: PG 64-22

350

350

300

300

250

250

200

200

150 150 100 100 50 50 0 0

0.002

0.004

0.006

0.008

0.01

0

Strain, in./in.

0

0.002

0.006

0.008

0.01

30% RAP IDT LTA-3-FT: PG 64-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

30% RAP IDT LTA-3: PG 64-22

0.004

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

Strain, in./in.

0.002

0.004

0.006

Strain, in./in.

115

0.008

0.01

0% RAP IDT LTA-1-FT: PG 76-22 350

300

300

250

250 Stress, psi.

Stress, psi.

0% RAP IDT LTA-1: PG 76-22 350

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.002

Strain, in./in.

0.008

0.01

0.008

0.01

0.008

0.01

0% RAP IDT LTA-2-FT: PG 76-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

0.006

Strain, in./in.

0% RAP IDT LTA-2: PG 76-22

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.002

Strain, in./in.

0.004

0.006

Strain, in./in.

0% RAP IDT LTA-3: PG 76-22

0% RAP IDT LTA-3-FT: PG 76-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

0.004

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

Strain, in./in.

0.002

0.004

0.006

Strain, in./in.

116

10% RAP IDT LTA-1-FT: PG 76-22 350

300

300

250

250 Stress, psi.

Stress, psi.

10% RAP IDT LTA-1: PG 76-22 350

200 150

200 150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0

0.01

0.002

0.006

0.008

0.01

0.008

0.01

0.008

0.01

10% RAP IDT LTA-2-FT: PG 76-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

10% RAP IDT LTA-2: PG 76-22

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.002

Strain, in./in.

0.004

0.006

Strain, in./in.

10% RAP IDT LTA-3: PG 76-22

10% RAP IDT LTA-3-FT: PG 76-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

0.004

Strain, in./in.

Strain, in./in.

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

Strain, in./in.

0.002

0.004

0.006

Strain, in./in.

117

20% RAP IDT LTA-1-FT: PG 76-22 350

300

300

250

250 Stress, psi.

Stress, psi.

20% RAP IDT LTA-1: PG 76-22 350

200 150

200 150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0

0.01

0.002

0.006

0.008

0.01

0.008

0.01

0.008

0.01

20% RAP IDT LTA-2-FT: PG 76-22

350

350

300

300

250

250 Stress, in.

Stress, psi.

20% RAP IDT LTA-2: PG 76-22

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.002

Strain, in./in.

0.004

0.006

Strain, in./in.

20% RAP IDT LTA-3: PG 76-22

20% RAP IDT LTA-3-FT: PG 76-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

0.004

Strain, in./in.

Strain, in./in.

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

Strain, in./in.

0.002

0.004

0.006

Strain, in./in.

118

30% RAP IDT LTA-1-FT: PG 76-22 350

300

300

250

250 Stress, psi.

Stress, psi.

30% RAP IDT LTA-1: PG 76-22 350

200 150

200 150

100

100

50

50 0

0 0

0.002

0.004

0.006

0.008

0

0.01

0.002

0.006

0.008

0.01

0.008

0.01

0.008

0.01

30% RAP IDT LTA-2-FT: PG 76-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

30% RAP IDT LTA-2: PG 76-22

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

0.002

Strain, in./in.

0.004

0.006

Strain, in./in.

30% RAP IDT LTA-3: PG 76-22

30% RAP IDT LTA-3-FT: PG 76-22

350

350

300

300

250

250 Stress, psi.

Stress, psi.

0.004

Strain, in./in.

Strain, in./in.

200 150

200 150

100

100

50

50

0

0 0

0.002

0.004

0.006

0.008

0.01

0

Strain, in./in.

0.002

0.004

0.006

Strain, in./in.

119

Appendix C: Semi-Circular Bending Test Data

120

Frequency Sweep Test

Limestone PG 64-22 0% RAP FS-1 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 172.05 0.02 50 388.11 0.05 20 556.58 0.1 10 691.53 0.2 5 808.63 0.5 2 916.13 1 1 1019.95 2 0.5 1122.10 5 0.2 1223.23 10 0.1 1324.01

t1 154.05 379.61 555.18 690.33 808.08 916.01 1019.89 1122.03 1223.22 1324.01

? t = t2 - t1 18.00 8.50 1.40 1.20 0.55 0.12 0.06 0.07 0.01 0.01

θ = ((t2 - t1) / T) * 360 64.80 61.20 25.20 43.20 39.60 21.60 21.60 50.40 10.80 21.60

Y2 96.74 117.07 127.54 131.92 133.44 132.78 132.06 131.13 130.33 129.78

Y1 82.58 101.70 113.04 117.83 121.17 124.58 123.20 123.62 126.13 124.27

? Y 14.16 15.37 14.50 14.09 12.27 8.20 8.85 7.51 4.20 5.51

0% RAP FS-2 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 170.40 0.02 50 386.26 0.05 20 555.76 0.1 10 689.79 0.2 5 806.89 0.5 2 914.44 1 1 1018.24 2 0.5 1120.37 5 0.2 1221.50 10 0.1 1322.27

t1 151.90 377.26 552.96 688.29 806.34 914.28 1018.18 1120.31 1221.49 1322.26

? t = t2 - t1 18.50 9.00 2.80 1.50 0.55 0.16 0.06 0.06 0.01 0.01

θ = ((t2 - t1) / T) * 360 66.60 64.80 50.38 54.00 39.60 28.80 21.60 46.08 14.40 32.40

Y2 101.53 123.20 134.88 139.95 141.81 141.50 141.19 140.60 139.95 139.50

Y1 89.89 110.59 121.58 127.51 130.95 133.44 132.75 133.95 133.85 134.61

? Y 11.65 12.61 13.30 12.44 10.85 8.06 8.44 6.65 6.10 4.89

0% RAP FS-3 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 171.67 0.02 50 387.10 0.05 20 556.89 0.1 10 691.17 0.2 5 808.38 0.5 2 915.73 1 1 1019.59 2 0.5 1121.84 5 0.2 1222.98 10 0.1 1323.78

t1 150.67 377.60 554.49 690.17 807.93 915.61 1019.52 1121.77 1222.97 1323.77

? t = t2 - t1 21.00 9.50 2.40 1.00 0.45 0.12 0.07 0.07 0.01 0.01

θ = ((t2 - t1) / T) * 360 75.60 68.40 43.20 36.00 32.40 21.60 23.40 50.40 21.60 36.00

Y2 90.96 114.42 127.03 132.99 135.50 135.43 135.05 134.47 133.71 133.09

Y1 79.34 101.91 114.56 120.69 124.65 128.13 126.65 127.44 127.58 128.58

? Y 11.61 12.51 12.47 12.30 10.85 7.30 8.41 7.03 6.13 4.51

121

0% RAP FS-1 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 177.00 389.41 557.50 691.53 808.19 915.70 1019.42 1121.45 1222.90 1323.63

t1 153.99 379.41 554.50 690.03 807.64 915.44 1019.36 1121.40 1222.88 1323.61

? t = t2 - t1 23.01 10.00 3.00 1.50 0.54 0.26 0.06 0.05 0.02 0.02

θ = ((t2 - t1) / T) * 360 82.83 72.00 54.00 54.00 39.24 46.80 21.60 36.00 36.00 72.00

Y2 50.63 62.19 71.02 75.24 77.30 77.90 78.30 78.33 78.43 78.38

Y1 47.06 59.10 67.17 71.82 73.83 75.78 75.86 76.50 77.60 77.00

? Y 3.57 3.09 3.85 3.42 3.47 2.12 2.44 1.83 0.83 1.38

0% RAP FS-2 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 176.09 389.72 556.60 691.11 808.40 915.84 1019.62 1121.67 1222.75 1323.50

t1 152.55 379.22 553.79 689.71 807.50 915.60 1019.47 1121.62 1222.72 1323.49

? t = t2 - t1 23.54 10.50 2.81 1.40 0.90 0.24 0.15 0.05 0.03 0.01

θ = ((t2 - t1) / T) * 360 84.74 75.60 50.58 50.40 64.80 43.20 54.00 36.00 54.00 36.00

Y2 51.90 65.37 72.94 76.47 78.30 78.71 79.01 78.96 78.77 78.67

Y1 47.94 60.55 68.30 72.80 74.43 75.92 77.00 77.31 77.85 77.35

? Y 3.96 4.82 4.64 3.67 3.87 2.79 2.01 1.65 0.92 1.32

0% RAP FS-3 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 178.20 387.07 556.70 691.34 808.26 916.04 1019.78 1121.83 1222.93 1323.54

t1 156.20 378.07 554.09 690.44 808.06 915.86 1019.75 1121.80 1222.92 1323.53

? t = t2 - t1 22.00 9.00 2.61 0.90 0.20 0.18 0.03 0.03 0.01 0.01

θ = ((t2 - t1) / T) * 360 79.20 64.80 46.98 32.40 14.40 32.40 10.80 21.60 18.00 36.00

Y2 66.08 84.24 94.71 100.30 102.99 104.25 104.66 105.20 104.97 104.15

Y1 62.87 80.36 90.20 95.74 99.59 100.88 102.44 102.65 103.16 103.55

? Y 3.21 3.88 4.51 4.56 3.40 3.37 2.22 2.55 1.81 0.60

122

10% RAP FS-1 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 173.27 0.02 50 388.21 0.05 20 556.92 0.1 10 692.15 0.2 5 809.01 0.5 2 916.19 1 1 1020.14 2 0.5 1122.19 5 0.2 1223.39 10 0.1 1324.13

t1 155.27 378.71 555.12 690.35 808.26 916.07 1020.04 1122.18 1223.37 1324.13

? t = t2 - t1 18.00 9.50 1.80 1.80 0.75 0.12 0.10 0.02 0.02 0.01

θ = ((t2 - t1) / T) * 360 64.80 68.41 32.40 64.80 54.00 21.60 36.00 11.52 28.80 32.40

Y2 62.46 78.93 89.54 93.37 95.30 95.40 95.47 95.40 95.06 94.92

Y1 55.85 71.45 80.96 85.99 87.89 90.34 89.37 89.92 91.16 91.54

? Y 6.61 7.48 8.58 7.37 7.41 5.06 6.10 5.48 3.89 3.38

10% RAP FS-2 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 173.11 0.02 50 388.55 0.05 20 557.54 0.1 10 691.18 0.2 5 808.83 0.5 2 916.04 1 1 1019.95 2 0.5 1122.08 5 0.2 1223.29 10 0.1 1324.07

t1 153.61 379.55 554.54 690.08 808.18 915.92 1019.86 1122.05 1223.28 1324.06

? t = t2 - t1 19.50 9.00 3.00 1.10 0.65 0.12 0.09 0.03 0.00 0.01

θ = ((t2 - t1) / T) * 360 70.20 64.80 54.00 39.60 46.80 21.60 32.76 24.48 7.20 32.40

Y2 54.19 70.21 78.38 83.34 85.10 85.17 85.06 84.75 84.37 84.20

Y1 44.55 60.05 68.77 74.42 76.55 78.76 79.34 78.52 78.97 79.93

? Y 9.65 10.16 9.61 8.92 8.54 6.41 5.72 6.24 5.41 4.27

10% RAP FS-3 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 171.91 0.02 50 385.34 0.05 20 556.18 0.1 10 691.05 0.2 5 808.63 0.5 2 915.96 1 1 1019.87 2 0.5 1122.02 5 0.2 1223.16 10 0.1 1323.97

t1 154.41 378.84 554.38 690.35 808.13 915.84 1019.78 1121.97 1223.14 1323.95

? t = t2 - t1 17.50 6.50 1.80 0.70 0.50 0.12 0.09 0.05 0.02 0.01

θ = ((t2 - t1) / T) * 360 63.00 46.81 32.38 25.20 36.00 21.60 32.40 36.00 28.80 46.80

Y2 48.37 62.60 70.42 73.63 74.45 73.76 72.90 72.08 71.08 70.32

Y1 39.41 51.78 60.33 63.19 65.67 65.56 65.53 65.43 66.29 65.15

? Y 8.96 10.82 10.09 10.44 8.79 8.20 7.37 6.65 4.79 5.17

123

10% RAP FS-1 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 176.24 386.64 557.26 691.12 808.25 915.86 1019.53 1121.53 1222.69 1323.50

t1 154.74 380.14 554.46 689.92 807.50 915.54 1019.44 1121.48 1222.68 1323.50

? t = t2 - t1 21.50 6.50 2.80 1.20 0.75 0.32 0.09 0.05 0.01 0.00

θ = ((t2 - t1) / T) * 360 77.40 46.80 50.40 43.20 54.00 57.60 32.40 36.00 18.00 0.00

Y2 54.89 71.14 80.26 84.94 87.40 88.15 88.58 88.82 88.68 88.87

Y1 51.13 66.59 75.58 80.12 83.54 85.16 86.19 86.05 87.35 86.77

? Y 3.76 4.55 4.68 4.82 3.86 2.99 2.39 2.77 1.33 2.10

10% RAP FS-2 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 176.51 388.40 557.46 690.87 808.40 915.56 1019.39 1121.41 1222.54 1323.31

t1 153.51 377.41 554.86 689.57 807.60 915.12 1019.29 1121.37 1222.51 1323.29

? t = t2 - t1 23.00 10.99 2.60 1.30 0.80 0.44 0.10 0.04 0.03 0.02

θ = ((t2 - t1) / T) * 360 82.80 79.13 46.80 46.80 57.60 79.20 36.00 28.80 54.00 72.00

Y2 57.47 71.87 80.00 83.82 85.46 85.87 85.92 85.72 85.37 85.06

Y1 53.57 67.25 75.07 79.15 81.50 82.93 84.01 83.19 84.18 83.27

? Y 3.90 4.62 4.93 4.67 3.96 2.94 1.91 2.53 1.19 1.79

10% RAP FS-3 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 174.88 388.28 556.65 691.28 807.94 915.52 1019.28 1121.27 1222.39 1323.13

t1 155.38 380.28 554.64 689.38 807.19 915.34 1019.14 1121.18 1222.36 1323.12

? t = t2 - t1 19.50 8.00 2.01 1.90 0.75 0.18 0.14 0.09 0.03 0.01

θ = ((t2 - t1) / T) * 360 70.20 57.60 36.18 68.40 54.00 32.40 50.40 64.80 54.00 36.00

Y2 44.15 56.38 63.38 66.80 68.68 69.35 69.78 69.71 69.92 70.09

Y1 41.65 53.69 60.08 63.89 66.17 67.61 67.73 68.60 68.77 69.18

? Y 2.50 2.69 3.30 2.91 2.51 1.74 2.05 1.11 1.15 0.91

124

20% RAP FS-1 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 173.45 0.02 50 386.4 0.05 20 556.9 0.1 10 690.58 0.2 5 807.93 0.5 2 915.37 1 1 1019.2 2 0.5 1121.27 5 0.2 1222.43 10 0.1 1323.21

t1 153.45 379.40 554.10 689.57 807.23 915.25 1019.12 1121.27 1222.40 1323.20

? t = t2 - t1 20.00 7.00 2.80 1.01 0.70 0.12 0.08 0.00 0.03 0.01

θ = ((t2 - t1) / T) * 360 72.00 50.40 50.40 36.36 50.40 21.60 28.80 0.00 54.00 36.00

Y2 73.35 85.03 91.13 93.33 93.71 92.75 91.89 91.20 90.09 89.61

Y1 60.95 72.35 79.41 82.93 84.20 84.90 84.13 84.44 85.30 85.30

? Y 12.40 12.68 11.72 10.40 9.51 7.85 7.76 6.76 4.79 4.31

20% RAP FS-1 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 172.78 0.02 50 385.68 0.05 20 556.98 0.1 10 691.26 0.2 5 808.26 0.5 2 915.64 1 1 1019.45 2 0.5 1121.56 5 0.2 1222.76 10 0.1 1323.50

t1 152.78 379.68 553.98 689.96 807.71 915.46 1019.41 1121.54 1222.73 1323.49

? t = t2 - t1 20.00 6.00 3.00 1.30 0.55 0.18 0.04 0.02 0.03 0.01

θ = ((t2 - t1) / T) * 360 72.00 43.20 54.05 46.80 39.60 32.40 14.40 14.40 54.00 36.00

Y2 56.57 71.80 80.24 83.82 84.96 84.96 84.65 83.31 83.65 83.50

Y1 46.30 61.84 69.53 73.90 76.73 78.00 78.35 78.17 79.75 79.62

? Y 10.27 9.96 10.71 9.92 8.23 6.96 6.30 5.14 3.90 3.88

20% RAP FS-3 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 172.03 0.02 50 385.99 0.05 20 557.72 0.1 10 691.22 0.2 5 808.55 0.5 2 916.13 1 1 1020.00 2 0.5 1122.15 5 0.2 1223.31 10 0.1 1324.18

t1 156.03 378.49 555.32 690.02 808.25 916.03 1019.91 1122.14 1223.29 1324.18

? t = t2 - t1 16.00 7.50 2.40 1.20 0.30 0.10 0.09 0.01 0.02 0.00

θ = ((t2 - t1) / T) * 360 57.60 54.00 43.20 43.20 21.60 18.00 32.40 7.20 36.00 0.00

Y2 94.23 111.28 120.41 124.30 125.40 124.80 124.10 123.30 122.41 121.93

Y1 81.10 97.09 106.77 111.56 114.52 114.56 115.18 115.93 116.66 116.17

? Y 13.13 14.19 13.64 12.74 10.88 10.24 8.92 7.37 5.75 5.76

125

20% RAP FS-1 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 173.18 391.24 558.51 692.30 809.38 916.81 1020.64 1122.75 1223.85 1324.59

t1 143.68 379.24 555.31 690.90 808.83 916.50 1020.48 1122.68 1223.80 1324.57

? t = t2 - t1 29.50 12.00 3.20 1.40 0.55 0.31 0.16 0.07 0.05 0.02

θ = ((t2 - t1) / T) * 360 106.20 86.40 57.60 50.40 39.60 55.80 57.60 50.40 90.00 72.00

Y2 35.48 40.96 44.96 45.99 45.99 45.82 45.68 45.58 45.37 44.03

Y1 22.63 35.38 39.80 41.41 42.45 43.17 44.09 43.75 44.78 44.17

? Y 12.85 5.58 5.16 4.58 3.54 2.65 1.59 1.83 0.59 -0.14

20% RAP FS-2 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 176.37 387.66 556.69 691.08 808.09 915.58 1019.20 1121.31 1222.37 1323.21

t1 154.37 378.66 553.89 689.69 807.35 915.32 1019.67 1121.27 1222.36 1323.21

? t = t2 - t1 22.00 9.00 2.80 1.39 0.74 0.26 -0.47 0.04 0.01 0.00

θ = ((t2 - t1) / T) * 360 79.20 64.80 50.40 50.04 53.28 46.80 -169.20 28.80 18.00 0.00

Y2 50.39 60.48 66.01 68.57 69.61 69.80 69.83 69.71 69.40 69.34

Y1 46.30 56.34 61.84 64.41 66.27 67.29 68.32 67.46 68.64 67.88

? Y 4.09 4.14 4.17 4.16 3.34 2.51 1.51 2.25 0.76 1.46

20% RAP FS-3 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 175.87 388.68 557.50 690.89 808.13 915.54 1019.25 1121.33 1222.47 1323.32

t1 152.87 378.18 554.70 689.29 807.64 915.36 1019.16 1121.33 1222.45 1323.31

? t = t2 - t1 23.00 10.50 2.80 1.60 0.49 0.18 0.09 0.00 0.02 0.01

θ = ((t2 - t1) / T) * 360 82.80 75.60 50.40 57.60 35.28 32.40 32.40 0.00 36.00 36.00

Y2 57.98 75.69 85.30 89.85 92.02 92.68 92.92 93.02 92.54 92.71

Y1 53.78 71.25 79.62 84.86 87.23 89.30 89.72 91.82 90.64 91.05

? Y 4.20 4.44 5.68 4.99 4.79 3.38 3.20 1.20 1.90 1.66

126

30% RAP FS-1 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 168.28 0.02 50 385.19 0.05 20 557.19 0.1 10 691.13 0.2 5 808.10 0.5 2 915.80 1 1 1019.70 2 0.5 1121.80 5 0.2 1222.96 10 0.1 1323.73

t1 153.78 380.19 554.40 690.03 807.76 915.65 1019.63 1121.73 1222.93 1323.73

? t = t2 - t1 14.50 5.00 2.79 1.10 0.34 0.15 0.07 0.07 0.03 0.00

θ = ((t2 - t1) / T) * 360 52.20 35.97 50.22 39.60 24.48 27.00 25.20 50.40 54.00 0.00

Y2 69.32 82.93 90.27 93.54 94.64 93.95 94.06 93.70 93.26 93.13

Y1 62.43 75.00 81.90 85.55 87.72 89.30 88.99 88.68 89.96 89.65

? Y 6.89 7.93 8.37 7.99 6.92 4.65 5.07 5.02 3.30 3.48

30% RAP FS-2 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 172.37 0.02 50 388.28 0.05 20 557.73 0.1 10 691.43 0.2 5 808.42 0.5 2 916.02 1 1 1019.93 2 0.5 1122.04 5 0.2 1223.16 10 0.1 1323.94

t1 152.37 379.28 554.53 690.03 808.07 915.80 1019.82 1121.99 1223.13 1323.93

? t = t2 - t1 20.00 9.00 3.20 1.40 0.35 0.22 0.11 0.05 0.03 0.01

θ = ((t2 - t1) / T) * 360 72.00 64.80 57.60 50.40 25.20 39.42 39.60 36.00 54.00 36.00

Y2 58.43 68.30 73.73 75.76 76.24 75.18 74.60 74.14 73.32 72.87

Y1 48.90 58.98 64.46 66.84 68.18 69.08 68.40 68.53 68.66 69.56

? Y 9.53 9.32 9.27 8.92 8.06 6.10 6.20 5.61 4.66 3.31

30% RAP FS-3 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 173.06 0.02 50 387.02 0.05 20 556.89 0.1 10 691.27 0.2 5 808.53 0.5 2 916.06 1 1 1019.91 2 0.5 1122.04 5 0.2 1223.24 10 0.1 1324.03

t1 152.56 381.02 555.29 690.27 808.03 915.90 1019.81 1121.97 1223.22 1324.02

? t = t2 - t1 20.50 6.00 1.60 1.00 0.50 0.16 0.10 0.07 0.02 0.01

θ = ((t2 - t1) / T) * 360 73.80 43.20 28.80 36.00 36.00 28.80 36.00 50.40 36.00 36.00

Y2 81.76 91.81 95.64 97.23 97.15 95.64 95.46 94.71 93.95 93.13

Y1 67.53 79.31 84.89 87.13 89.09 89.85 89.96 88.71 88.71 88.61

? Y 14.23 12.50 10.75 10.10 8.06 5.79 5.50 6.00 5.24 4.52

127

30% RAP FS-1 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 172.73 387.63 556.17 690.13 807.78 915.24 1018.98 1121.09 1222.18 1322.95

t1 153.73 378.63 554.17 689.53 807.13 915.12 1018.88 1121.02 1222.16 1322.94

? t = t2 - t1 19.00 9.00 2.00 0.60 0.65 0.12 0.10 0.07 0.02 0.01

θ = ((t2 - t1) / T) * 360 68.40 64.80 36.00 21.60 46.80 22.14 36.00 50.40 36.00 36.00

Y2 54.36 65.15 72.93 76.14 77.73 78.00 78.20 78.27 78.17 77.89

Y1 51.75 61.50 68.29 71.80 73.52 75.45 75.45 76.58 76.59 76.80

? Y 2.61 3.65 4.64 4.34 4.21 2.55 2.75 1.69 1.58 1.09

30% RAP FS-2 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 170.47 388.36 556.39 690.76 807.86 915.54 1019.26 1121.27 1222.42 1323.20

t1 154.50 378.86 553.79 689.26 807.36 915.36 1019.11 1121.22 1222.42 1323.18

? t = t2 - t1 15.97 9.50 2.60 1.50 0.50 0.18 0.15 0.05 0.00 0.02

θ = ((t2 - t1) / T) * 360 57.49 68.40 46.80 54.00 36.00 32.40 54.00 36.00 0.00 72.00

Y2 69.87 81.89 88.50 91.09 91.85 91.23 90.64 89.99 89.09 88.65

Y1 59.32 72.35 79.76 82.20 84.09 85.86 86.68 85.34 86.92 85.41

? Y 10.55 9.54 8.74 8.89 7.76 5.37 3.96 4.65 2.17 3.24

30% RAP FS-3 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 167.97 386.77 556.62 689.84 807.59 914.89 1018.61 1120.77 1221.89 1322.64

t1 151.47 377.77 552.82 688.74 806.89 914.76 1018.57 1120.71 1221.86 1322.64

? t = t2 - t1 16.50 9.00 3.80 1.10 0.70 0.13 0.04 0.06 0.03 0.00

θ = ((t2 - t1) / T) * 360 59.40 64.80 68.40 39.60 50.40 23.40 14.40 43.20 54.00 0.00

Y2 48.85 60.80 67.39 69.87 70.93 71.49 71.45 71.28 71.11 71.04

Y1 44.09 55.19 62.11 65.18 66.46 68.46 69.04 68.87 69.63 68.87

? Y 4.76 5.61 5.28 4.69 4.47 3.03 2.41 2.41 1.48 2.17

128

Limestone PG 76-22 0% RAP FS-1 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 173.90 0.02 50 388.90 0.05 20 559.10 0.1 10 692.50 0.2 5 809.20 0.5 2 916.90 1 1 1020.60 2 0.5 1122.73 5 0.2 1223.85 10 0.1 1324.68

t1 156.00 381.90 556.30 691.20 808.80 916.60 1020.50 1122.68 1223.84 1324.67

? t = t2 - t1 17.90 7.00 2.80 1.30 0.40 0.30 0.10 0.05 0.02 0.01

θ = ((t2 - t1) / T) * 360 64.44 50.40 50.40 46.80 28.80 54.00 36.00 35.93 35.82 36.36

0% RAP FS-2 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 174.33 0.02 50 390.22 0.05 20 557.92 0.1 10 692.41 0.2 5 809.15 0.5 2 916.62 1 1 1020.45 2 0.5 1122.54 5 0.2 1223.65 10 0.1 1324.44

t1 157.33 380.72 555.12 690.81 808.65 916.48 1020.34 1122.48 1223.64 1324.43

? t = t2 - t1 17.00 9.50 2.80 1.60 0.50 0.14 0.11 0.06 0.01 0.01

θ = ((t2 - t1) / T) * 360 61.20 68.40 50.40 57.60 36.00 25.02 39.60 46.08 18.00 25.20

0% RAP FS-2 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 176.21 0.02 50 388.56 0.05 20 557.97 0.1 10 692.13 0.2 5 808.89 0.5 2 914.44 1 1 1020.30 2 0.5 1122.36 5 0.2 1223.46 10 0.1 1324.30

t1 157.21 380.06 555.17 690.73 808.54 914.26 1020.14 1122.30 1223.43 1324.29

? t = t2 - t1 19.00 8.50 2.80 1.40 0.35 0.18 0.16 0.06 0.03 0.01

θ = ((t2 - t1) / T) * 360 68.40 61.20 50.35 50.40 25.13 32.40 57.60 43.20 46.80 36.00

129

Y2 66.70 78.60 84.00 87.10 86.70 89.60 84.60 84.31 82.41 81.86

Y2 69.28 83.89 91.58 94.06 94.71 93.61 92.88 92.33 91.20 90.47

Y2 72.08 82.76 88.78 90.16 90.92 89.03 88.78 88.13 87.27 86.68

Y1 54.20 68.10 73.80 77.50 77.00 79.10 80.59 78.48 77.93 78.98

Y1 58.29 72.52 79.90 84.55 85.06 85.96 86.61 85.86 85.68 86.65

Y1 61.33 71.77 77.35 80.38 81.34 81.89 82.34 81.89 82.82 82.65

? Y 12.50 10.50 10.20 9.60 9.70 10.50 4.02 5.82 4.48 2.88

? Y 10.99 11.37 11.68 9.51 9.65 7.65 6.27 6.48 5.51 3.83

? Y 10.75 10.99 11.44 9.79 9.58 7.13 6.44 6.24 4.44 4.03

0% RAP FS-1 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 169.27 387.24 557.03 690.97 808.25 915.83 1019.60 1121.63 1222.72 1323.47

? t = t2 - t1 t1 153.27 15.9998 380.24 6.9998 554.63 2.4000 689.97 1.0000 807.85 0.4000 915.55 0.2800 1019.48 0.1200 1121.59 0.0402 1222.71 0.0121 1323.46 0.0088

θ = ((t2 - t1) / T) * 360 57.60 50.40 43.20 36.00 28.80 50.41 43.20 28.94 21.78 31.68

Y2 67.04 82.89 91.51 95.19 96.40 952.64 95.02 94.30 93.13 92.33

Y1 54.50 69.70 78.62 83.27 85.96 87.51 87.65 88.16 88.41 88.54

? Y 12.54 13.20 12.89 11.92 10.44 865.13 7.37 6.13 4.72 3.79

0% RAP FS-2 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 171.87 386.00 557.24 691.00 808.36 916.05 1019.89 1121.98 1223.11 1323.86

? t = t2 - t1 t1 157.87 14.00 379.00 7.00 554.84 2.40 690.10 0.90 808.06 0.30 915.89 0.16 1019.75 0.14 1121.91 0.07 1223.09 0.02 1323.85 0.01

θ = ((t2 - t1) / T) * 360 50.40 50.40 43.20 32.40 21.60 28.80 48.96 50.40 36.00 46.80

Y2 62.61 72.13 76.69 78.67 78.91 78.14 77.66 77.08 76.45 75.94

Y1 53.64 63.07 68.25 71.07 72.13 73.34 73.75 72.98 73.05 73.17

? Y 8.97 9.07 8.44 7.60 6.78 4.80 3.91 4.10 3.40 2.77

0% RAP FS-3 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 171.049 384.96 556.268 691.017 808.486 915.581 1019.556 1121.621 1222.687 1323.556

? t = t2 - t1 t1 151.049 20 378.461 6.499 554.668 1.6 689.917 1.1 807.736 0.75 915.54 0.041 1019.436 0.12 1121.571 0.05 1222.669 0.018 1323.554 0.002

θ = ((t2 - t1) / T) * 360 72 46.7928 28.8 39.6 54 7.38 43.2 36 32.4 7.2

Y2 55.331 66.631 72.523 74.865 75.141 75.003 74.624 74.073 73.315 72.867

Y1 46.683 57.467 63.496 67.217 68.423 69.284 69.215 69.387 69.835 69.801

? Y 8.648 9.164 9.027 7.648 6.718 5.719 5.409 4.686 3.48 3.066

130

10% RAP FS-1 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 170.56 0.02 50 388.00 0.05 20 556.50 0.1 10 691.07 0.2 5 808.82 0.5 2 916.32 1 1 1020.03 2 0.5 1122.07 5 0.2 1223.24 10 0.1 1324.05

t1 157.06 380.00 555.10 690.27 808.37 916.08 1019.93 1122.05 1223.21 1324.04

? t = t2 - t1 13.50 8.00 1.40 0.80 0.45 0.24 0.10 0.02 0.03 0.01

θ = ((t2 - t1) / T) * 360 48.60 57.60 25.20 28.80 32.40 43.20 36.00 17.93 57.60 46.80

Y2 69.41 83.31 90.08 91.89 91.58 89.51 87.96 86.82 84.55 83.26

Y1 47.39 61.03 69.46 73.54 73.85 75.30 74.21 80.62 74.62 75.25

? Y 14.68 14.85 13.75 12.23 11.82 9.47 9.16 4.13 6.62 5.34

10% RAP FS-2 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 169.75 0.02 50 386.24 0.05 20 558.67 0.1 10 691.81 0.2 5 808.70 0.5 2 916.52 1 1 1020.25 2 0.5 1122.33 5 0.2 1223.46 10 0.1 1324.26

t1 154.75 381.24 555.47 690.41 808.55 916.32 1020.18 1122.30 1223.45 1324.26

? t = t2 - t1 15.00 5.00 3.20 1.40 0.15 0.20 0.07 0.03 0.01 0.00

θ = ((t2 - t1) / T) * 360 54.00 36.00 57.60 50.36 10.80 36.00 25.20 18.00 21.60 14.40

Y2 84.03 99.02 106.10 108.32 108.01 106.05 104.44 103.15 101.39 100.10

Y1 63.88 79.64 87.96 90.49 91.83 92.76 92.35 92.71 93.13 93.33

? Y 13.44 12.92 12.09 11.89 10.78 8.85 8.06 6.96 5.51 4.51

10% RAP FS-3 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 168.69 0.02 50 385.06 0.05 20 556.79 0.1 10 691.39 0.2 5 808.58 0.5 2 916.41 1 1 1020.24 2 0.5 1122.39 5 0.2 1223.50 10 0.1 1324.31

t1 152.19 380.56 555.59 690.49 808.28 916.31 1020.14 1122.35 1223.49 1324.30

? t = t2 - t1 16.50 4.50 1.20 0.90 0.30 0.10 0.10 0.05 0.01 0.01

θ = ((t2 - t1) / T) * 360 59.40 32.41 21.60 32.40 21.60 18.00 36.00 32.40 25.20 25.20

Y2 127.13 141.08 147.85 149.56 148.84 146.46 144.96 143.51 141.70 140.36

Y1 103.52 119.95 126.30 131.47 132.25 133.44 132.45 137.62 136.17 132.82

? Y 15.74 14.09 14.37 12.06 11.06 8.68 8.34 3.93 3.69 5.03

131

10% RAP FS-1 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

? t = t2 - t1 t2 t1 167.245 150.245 17 384.253 377.253 7 554.205 551.405 2.8 688.06 687.06 1 805.306 804.706 0.6 912.605 912.545 0.06 1016.623 1016.443 0.18 1118.652 1118.64 0.012 1219.804 1219.786 0.018 1320.606 1320.598 0.008

θ = ((t2 - t1) / T) * 360 61.2 50.4 50.4 36 43.2 10.8 64.8 8.64 32.4 28.8

Y2 60.18869 72.316 78.621 81.14 81.791 80.895 80.447 79.999 79.2066 78.414

Y1 49.474 61.567 67.872 71.661 73.419 74.934 75.865 75.865 76.933 75.727

? Y 10.71469 10.749 10.749 9.479 8.372 5.961 4.582 4.134 2.2736 2.687

10% RAP FS-2 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 167.659 383.054 555.216 688.794 805.735 913.332 1017.113 1119.218 1220.396 1321.239

? t = t2 - t1 t1 151.159 16.5 377.554 5.5 551.616 3.6 687.794 1 805.285 0.45 913.092 0.24 1017.023 0.09 1119.198 0.02 1220.374 0.022 1321.239 0.0003

θ = ((t2 - t1) / T) * 360 59.4 39.6 64.8 36 32.4 43.2 32.4 14.4 39.6 1.08

Y2 48.475 55.23 58.948 60.774 60.705 59.913 58.983 58.122 57.433 56.847

Y1 33.591 41.136 47.2 49.887 51.334 52.644 53.505 52.265 53.264 53.126

? Y 14.884 14.094 11.748 10.887 9.371 7.269 5.478 5.857 4.169 3.721

10% RAP FS-3 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

? t = t2 - t1 t2 t1 173.542 152.54 21.002 385.001 378.501 6.5 555.721 554.321 1.4 690.776 689.576 1.2 808.053 806.95 1.103 915.237 915.117 0.12 1019.119 1019.05 0.069 1121.217 1121.182 0.035 1222.291 1222.27 0.021 1323.152 1323.146 0.006

θ = ((t2 - t1) / T) * 360 75.6072 46.8 25.2 43.2 79.416 21.6 24.84 25.2 37.8 21.6

Y2 50.025 61.291 67.424 69.973 70.421 70.593 70.214 69.801 69.146 68.664

Y1 42.515 52.712 59.465 62.325 64.84 65.77 65.908 65.908 65.77 66.459

? Y 7.51 8.579 7.959 7.648 5.581 4.823 4.306 3.893 3.376 2.205

132

20% RAP FS-1 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 170.79 0.02 50 390.31 0.05 20 559.76 0.1 10 693.68 0.2 5 810.92 0.5 2 918.67 1 1 1022.34 2 0.5 1124.52 5 0.2 1225.59 10 0.1 1326.42

t1 157.79 382.31 557.16 692.58 810.47 918.43 1022.27 1124.48 1225.58 1326.42

? t = t2 - t1 13.00 8.00 2.60 1.10 0.45 0.24 0.07 0.04 0.01 0.00

θ = ((t2 - t1) / T) * 360 46.80 57.60 46.80 39.60 32.40 43.20 25.20 25.20 14.40 7.20

Y2 122.24 140.08 147.80 149.39 148.15 145.53 143.19 140.98 138.36 136.29

Y1 93.99 113.49 121.27 125.61 128.16 127.75 130.09 127.68 132.23 127.75

? Y 14.13 13.30 13.26 11.89 9.99 8.89 6.55 6.65 3.07 4.27

20% RAP FS-2 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 168.83 0.02 50 387.74 0.05 20 557.79 0.1 10 691.67 0.2 5 808.90 0.5 2 916.53 1 1 1020.48 2 0.5 1122.56 5 0.2 1223.66 10 0.1 1324.48

t1 156.33 378.74 555.39 690.87 808.50 916.43 1020.38 1122.51 1223.64 1324.48

? t = t2 - t1 12.50 9.00 2.40 0.80 0.40 0.10 0.10 0.05 0.01 0.00

θ = ((t2 - t1) / T) * 360 45.00 64.81 43.20 28.80 28.80 18.00 36.00 36.00 21.60 18.00

Y2 90.20 105.01 112.25 113.00 112.87 109.35 107.35 105.01 102.67 100.67

Y1 64.29 79.65 86.89 90.96 91.37 93.16 90.89 91.92 90.82 91.44

? Y 12.95 12.68 12.68 11.02 10.75 8.10 8.23 6.55 5.93 4.62

20% RAP FS-3 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 167.54 0.02 50 385.99 0.05 20 556.89 0.1 10 690.76 0.2 5 808.71 0.5 2 916.24 1 1 1020.09 2 0.5 1122.21 5 0.2 1223.30 10 0.1 1324.16

t1 153.54 378.99 555.09 690.46 808.21 916.06 1020.03 1122.17 1223.28 1324.15

? t = t2 - t1 14.00 7.00 1.80 0.30 0.50 0.18 0.06 0.04 0.01 0.01

θ = ((t2 - t1) / T) * 360 50.40 50.40 32.40 10.80 36.00 32.40 21.24 28.80 25.20 28.80

Y2 158.21 179.43 187.97 190.11 189.63 186.11 183.91 181.43 178.88 177.02

Y1 124.44 146.77 156.14 162.69 164.27 164.68 166.61 167.23 167.16 167.44

? Y 16.88 16.33 15.92 13.71 12.68 10.72 8.65 7.10 5.86 4.79

133

20% RAP FS-1 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

? t = t2 - t1 t2 t1 167.333 152.833 14.5 386.253 379.253 7 555.889 554.089 1.8 690.047 689.147 0.9 807.459 806.809 0.65 915.003 914.823 0.18 1018.86 1018.76 0.1 1120.932 1120.92 0.012 1222.048 1222.04 0.008 1322.91 1322.899 0.0105

θ = ((t2 - t1) / T) * 360 52.2 50.4 32.4 32.4 46.8 32.4 36 8.64 14.4 37.8

Y2 54.228 64.357 69.319 71.248 71.454 70.628 69.869 69.112 68.147 67.596

Y1 44.237 53.677 58.879 61.326 62.6 63.84 63.255 63.427 63.634 64.2196

? Y 9.991 10.68 10.44 9.922 8.854 6.788 6.614 5.685 4.513 3.3764

20% RAP FS-2 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

? t = t2 - t1 t2 t1 171.127 153.627 17.5 386.573 380.073 6.5 557.206 554.806 2.4 690.461 690.061 0.4 807.907 807.56 0.347 915.697 915.48 0.217 1019.461 1019.28 0.181 1121.53 1121.51 0.02 1222.68 1222.65 0.03 1323.47 1323.465 0.005

θ = ((t2 - t1) / T) * 360 63 46.8 43.2 14.4 24.984 39.06 65.16 14.4 54 18

Y2 49.473 58.259 67.738 64.461 64.84 64.219 63.806 63.358 62.807 62.256

Y1 41.688 49.439 54.263 56.399 57.67 58.259 58.535 58.707 59.086 59.806

? Y 7.785 8.82 13.475 8.062 7.17 5.96 5.271 4.651 3.721 2.45

20% RAP FS-3 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 169.026 385.933 556.352 690.837 808.214 915.604 1019.41 1121.558 1222.649 1323.485

? t = t2 - t1 t1 156.53 12.496 377.93 8.003 554.352 2 689.636 1.201 807.714 0.5 915.443 0.161 1019.297 0.113 1121.498 0.06 1222.639 0.01 1323.475 0.01

θ = ((t2 - t1) / T) * 360 44.9856 57.6216 36 43.236 36 28.98 40.68 43.2 18 36

Y2 33.45 41.068 44.96 46.235 46.89 46.579 46.132 45.856 45.546 45.098

Y1 27.8966 33.936 37.795 40.171 40.895 42.102 42.136 42.067 42.756 42.928

? Y 5.5534 7.132 7.165 6.064 5.995 4.477 3.996 3.789 2.79 2.17

134

30% RAP FS-1 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 164.00 0.02 50 382.84 0.05 20 555.34 0.1 10 689.79 0.2 5 807.11 0.5 2 915.02 1 1 1018.76 2 0.5 1120.89 5 0.2 1222.04 10 0.1 1322.82

t1 152.50 378.84 553.94 689.09 806.86 914.82 1018.72 1120.86 1222.03 1322.82

? t = t2 - t1 11.50 4.00 1.40 0.70 0.25 0.20 0.04 0.02 0.01 0.01

θ = ((t2 - t1) / T) * 360 41.40 28.80 25.20 25.20 18.00 36.00 14.40 18.00 18.00 25.20

Y2 60.81 85.27 96.12 99.05 98.88 95.78 93.71 91.99 89.75 88.37

Y1 42.72 56.16 64.08 68.56 68.98 72.87 69.94 69.60 69.08 71.15

? Y 3.62 5.82 6.41 6.10 5.98 4.58 4.75 4.48 4.13 3.45

30% RAP FS-2 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 163.24 0.02 50 382.77 0.05 20 554.31 0.1 10 688.75 0.2 5 806.60 0.5 2 914.44 1 1 1018.25 2 0.5 1120.40 5 0.2 1221.54 10 0.1 1322.27

t1 152.24 377.77 552.71 688.35 806.40 914.32 1018.18 1120.38 1221.52 1322.27

? t = t2 - t1 11.00 5.00 1.60 0.40 0.20 0.12 0.07 0.02 0.02 0.00

θ = ((t2 - t1) / T) * 360 39.60 35.99 28.80 14.40 14.40 21.60 25.20 14.40 32.40 14.40

Y2 152.80 177.60 188.63 190.52 189.83 185.53 182.08 179.67 176.40 173.99

Y1 102.33 127.82 141.60 147.97 151.42 154.00 157.45 151.94 150.04 153.66

? Y 10.09 9.96 9.41 8.51 7.68 6.30 4.93 5.55 5.27 4.07

30% RAP FS-3 Long-term Aged Frequency (Hz) T = 1 / F t2 0.01 100 166.70 0.02 50 385.64 0.05 20 556.80 0.1 10 690.91 0.2 5 808.71 0.5 2 916.22 1 1 1020.04 2 0.5 1122.13 5 0.2 1223.23 10 0.1 1324.07

t1 155.20 379.14 555.00 690.21 808.26 916.04 1019.94 1122.09 1223.22 1324.06

? t = t2 - t1 11.50 6.50 1.80 0.70 0.45 0.18 0.10 0.04 0.02 0.01

θ = ((t2 - t1) / T) * 360 41.40 46.80 32.40 25.20 32.40 32.40 37.44 28.80 28.80 32.40

Y2 148.11 161.76 166.41 164.34 160.41 153.49 147.91 143.87 139.43 136.85

Y1 89.30 107.80 117.31 122.07 121.96 120.21 122.38 120.52 118.45 120.00

? Y 19.60 17.98 16.37 14.09 12.82 11.09 8.51 7.79 6.99 5.62

135

30% RAP FS-1 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 166.629 385.037 556.404 690.358 807.941 915.657 1019.538 1121.619 1222.744 1323.502

? t = t2 - t1 t1 155.129 11.5 379.037 6 554.604 1.8 689.758 0.6 807.641 0.3 915.497 0.16 1019.468 0.07 1121.534 0.085 1222.734 0.01 1323.486 0.016

θ = ((t2 - t1) / T) * 360 41.4 43.2 32.4 21.6 21.6 28.8 25.2 61.2 18 57.6

Y2 65.546 72.867 76.571 77.26 76.829 75.021 74.245 73.384 72.264 71.317

Y1 48.061 56.675 50.809 63.996 66.149 65.805 66.838 64.082 64.168 64.168

? Y 17.485 16.192 25.762 13.264 10.68 9.216 7.407 9.302 8.096 7.149

30% RAP FS-2 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

t2 166.95 383.275 557.75 692.319 809.747 917.292 1021.098 1123.178 1224.34 1325.138

? t = t2 - t1 t1 155.95 11 379.275 4 556.15 1.6 691.519 0.8 809.147 0.6 917.112 0.18 1021.088 0.01 1123.153 0.025 1224.337 0.003 1325.136 0.002

θ = ((t2 - t1) / T) * 360 39.6 28.8 28.8 28.8 43.2 32.4 3.6 18 5.4 7.2

Y2 60.723 73.384 78.38 79.586 79.672 78.466 77.346 76.743 75.882 74.676

Y1 42.98 53.659 60.378 62.962 65.804 63.651 65.718 64.513 64.771 65.374

? Y 17.743 19.725 18.002 16.624 13.868 14.815 11.628 12.23 11.111 9.302

30% RAP FS-3 Unaged Frequency (Hz) T=1/F 0.01 100 0.02 50 0.05 20 0.1 10 0.2 5 0.5 2 1 1 2 0.5 5 0.2 10 0.1

? t = t2 - t1 t2 t1 165.582 152.582 13 382.027 378.027 4 555.211 553.011 2.2 689.566 688.466 1.1 807.217 806.366 0.851 914.719 914.579 0.14 1018.515 1018.485 0.03 1120.596 1120.556 0.04 1221.738 1221.73 0.008 1322.54 1322.529 0.011

θ = ((t2 - t1) / T) * 360 46.8 28.8 39.6 39.6 61.272 25.2 10.8 28.8 14.4 39.6

Y2 48.923 54.4 57.019 57.639 57.295 56.33 55.538 54.779 53.849 53.195

Y1 38.07 43.617 46.614 47.648 49.233 48.854 48.785 48.992 49.956 49.991

? Y 10.853 10.783 10.405 9.991 8.062 7.476 6.753 5.787 3.893 3.204

136

SCB Tensile Strength Test 0% RAP Long-term Aged SCB IDT: PG 64-22

0% RAP Unaged SCB IDT: PG 64-22

4000

4000

3500

3500 3000

2500 A-1 A-2 A-3

2000 1500

Load, lbs.

Load, lbs.

3000

2500 U-1 U-2 U-3

2000 1500

1000

1000

500

500

0

0

0

0.05

0.1

0.15

0.2

0

0.05

Defl., in.

4000

4000

3500

3500

3000

3000

2500 A-1 A-2 A-3

2000 1500

Load, lbs.

Load, lbs.

0.15

0.2

10% RAP Unaged SCB IDT: PG 64-22

10% RAP Long-term Aged SCB IDT: PG 64-22

2500 U-1 U-2 U-3

2000 1500

1000

1000

500

500 0

0 0

0.05

0.1

0.15

0

0.2

0.05

0.1

0.15

0.2

Defl., in.

Defl., in.

20% RAP Unaged SCB IDT: PG 64-22

20% Long-term Aged SCB IDT: PG 64-22

4000

4000

3500

3500

3000

2500 A-1 A-2 A-3

2000 1500

Load, lbs.

3000 Load, lbs.

0.1 Defl., in.

2500 U-1 U-2 U-3

2000 1500

1000

1000

500

500 0

0 0

0.05

0.1

0.15

0

0.2

0.05

0.1 Defl., in.

Defl., in.

137

0.15

0.2

30% Unaged SCB IDT: PG 64-22

4000

4000

3500

3500

3000

3000

2500

Load, lbs.

Load, lbs.

30% RAP Long-term Aged SCB IDT: PG 64-22

A-1 A-2 A-3

2000 1500

2500 U-1 U-2 U-3

2000 1500

1000

1000

500

500 0

0 0

0.05

0.1

0.15

0

0.2

0.05

0.1

0.15

0.2

Defl., in.

Defl., in.

0% RAP SCB IDT: PG 76-22 10% RAP SCB IDT: PG 76-22

4000 4000

3500 3500

3000 0% A-1 0% A-2 0% U-1 0% U-2

2000 1500

Load, lbs.

Load, lbs.

3000

2500

1000

2500

10% A-1 10% A-2 10% U-1 10% U-2

2000 1500 1000

500

500

0

0

0

0.05

0.1

0.15

0.2

0

0.05

Vert. Defl., in.

0.1

0.15

0.2

Vert. Defl., in.

20% RAP SCB IDT: PG 76-22 30% RAP SCB IDT: PG 76-22

4000 4000

3500

3500

3000

20% A-1 20% A-2 20% U-1 20% U-2

2000 1500

Load, lbs.

Load, lbs.

3000

2500

1000

2500

30% 30% 30% 30%

2000 1500 1000

500

500

0

0

0

0.05

0.1

0.15

0.2

0

Vert. Defl., in.

0.05

0.1 Vert. Defl., in.

138

0.15

0.2

A-1 A-2 U-1 U-2

SCB Fatigue Test PG 64-22 SCB Fatigue Test Summary LTA IDT 0% 1.00 0.35 0.20 0.15

2625 2500 919 525 394

10% 1.00 0.35 0.20 0.15

2742 2742 960 548 411

20% 1.00 0.35 0.20 0.15

2862 2862 1002 572 429

30% 3436 1.00 3436 0.35 1203 0.20 687 0.15 515 LTA - Long-term Aged UA - Un-aged

Cycles to Failure

1614 6614 26000

1013 10920 25502

2000 15814 28000

1510 7818 24500

1311 7514 16502

1211 10020 15002

1600 16900 37502

1911 7320 26502

AVG

1310 7155 13502

1 1412 7094 18668

1312 14611 17000

1 1179 11850 19168

1810 16900 21001

1 1803 16538 28834

2211 13912 19002

1 1877 9683 23335

Stdev

175 453 6524

152 2433 5576

200 627 8282

352 3671 3883

COV

UA IDT

Cycles to Failure

AVG

Stdev

COV

12.4 6.4 35.0

0% 1.00 0.35 0.20 0.10

2125 2125 744 425 213

810 5715 38820

712 5516 24502

810 6250 38812

1 777 8741 51067

57 380 8264

7.3 4.3 16.2

12.9 20.5 29.1

10% 1.00 0.35 0.20 0.10

2416 2416 846 483 242

1711 8015 76512

1200 7815 94515

1513 11515 106513

1 1475 9115 92513

258 2081 15100

17.5 22.8 16.3

11.1 3.8 28.7

20% 1.00 0.35 0.20 0.10

2743 2743 960 549 274

1712 8317 146000

1212 5916 155000

1610 9610 157000

1 1511 7948 152667

264 1874 5859

17.5 23.6 3.8

18.7 37.9 16.6

30% 1.00 0.35 0.20 0.15

2985 2985 1045 597 448

2210 14316 48000

2410 10620 72000

2410 22510 48500

1 2343 15815 56167

115 6085 13714

4.9 38.5 24.4

139

Limestone SCB Fatigue PG 76-22 SCB Test Summary Mix

LTA

0% 1.00 0.35 0.20

IDT 2666 933 533

10% 1.00 0.35 0.20

IDT 3018 1056 211

20% 1.00 0.35 0.20

IDT 2934 1027 205

30% IDT 1.00 3639 0.35 1274 0.20 255 LTA - Long-term Aged UA - Un-aged

Cycles to Failure 1 2

AVG

2802 7002

1 2402 8250

1 2602 7626

2102 12202

1 2802 10575

1 2452 11389

3702 20200

1 2502 19210

1 3102 19705

1802 11402

1 1402 11000

1 1602 11201

Stdev

200 624

350 814

600 495

200 201

Cycles to Failure 1 2

COV

Mix

UA

7.7 8.2

0% 1.00 0.35 0.20

IDT 2265 793 453

957 7119

14.3 7.1

10% 1.00 0.35 0.20

IDT 2622 918 524

19.3 2.5

20% 1.00 0.35 0.20

IDT 2742 960 548

12.5 1.8

30% 1.00 0.35 0.20

IDT 3228 1130 646

140

AVG

Stdev

COV

1 1075 5920

1 1016 6520

59 600

5.8 9.2

2202 10202

1 1602 5202

1 1902 7702 0

300 2500

15.8 32.5

2602 11000

1 1600 12800

1 2101 11900

501 900

23.8 7.6

3319 1 3200 10800

1 2150 10301

1050 500

48.8 4.8

3161 1100 9801

SCB Notched IDT Limestone PG 64-22 .5" Notched Samples ID

0%

10%

20%

30%

0001A(.5) 0002A(.5) 0003A(.5) Average STD Dev. COV 0004U(.5) 0005U(.5) 0006U(.5) Average STD Dev. COV 1001A(.5) 1002A(.5) 1003A(.5) Average STD Dev. COV 1004U(.5) 1005U(.5) 1006U(.5) Average STD Dev. COV 2001A(.5) 2002A(.5) 2003A(.5) Average STD Dev. COV 2004U(.5) 2005U(.5) 2006U(.5) Average STD Dev. COV 3001A(.5) 3002A(.5) 3003A(.5) Average STD Dev. COV 3004U(.5) 3005U(.5) 3006U(.5) Average STD Dev. COV

Notch in. 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0

Width mm 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0

in. 1.125 1.040 1.030 1.065 0.05 4.9 1.125 1.045 1.035 1.0683333 0.05 4.6 1.045 1.030 1.200 1.0916667 0.09 8.6 1.180 1.035 1.045 1.0866667 0.08 7.5 1.060 1.040 1.180 1.0933333 0.08 6.9 1.170 1.035 1.030 1.0783333 0.08 7.4 1.045 1.025 1.200 1.09 0.10 8.8 1.170 1.035 1.030 1.0783333 0.08 7.4

m 0.029 0.026 0.026 0.027051 0.00 4.9 0.029 0.027 0.026 0.0271357 0.00 4.6 0.027 0.026 0.030 0.0277283 0.00 8.6 0.030 0.026 0.027 0.0276013 0.00 7.5 0.027 0.026 0.030 0.0277707 0.00 6.9 0.030 0.026 0.026 0.0273897 0.00 7.4 0.027 0.026 0.030 0.027686 0.00 8.8 0.030 0.026 0.026 0.0273897 0.00 7.4

Peak lbs. newtons 412.28 1833.91 381.96 1699.04 345.44 1536.59 379.89333 1689.849123 33.47 148.87 8.8 8.8 242.76 1079.85 206.96 920.60 251.04 1116.68 233.58667 1039.044882 23.43 104.21 10.0 10.0 313.06 1392.56 445.36 1981.06 522.54 2324.37 426.98667 1899.33063 105.94 471.25 24.8 24.8 329.59 1466.09 286.18 1272.99 337.17 1499.81 317.64667 1412.962256 27.51 122.38 8.7 8.7 348.19 1548.83 506.01 2250.84 601.10 2673.83 485.1 2157.831522 127.75 568.24 26.3 26.3 345.44 1536.59 371.63 1653.09 340.62 1515.15 352.56333 1568.279271 16.69 74.23 4.7 4.7 555.62 2471.52 638.31 2839.34 574.92 2557.37 589.61667 2622.744649 43.26 192.43 7.3 7.3 461.90 2054.63 541.15 2407.15 430.89 1916.69 477.98 2126.16 56.86 252.93 11.9 11.9

Defl. in. 0.051 0.054 0.036 0.04719 0.01 20.2 0.056 0.059 0.056 0.0572767 0.00 2.9 0.061 0.043 0.048 0.05075 0.01 18.4 0.064 0.054 0.059 0.0589333 0.01 8.9 0.056 0.043 0.048 0.049178 0.01 13.3 0.055 0.054 0.059 0.0561433 0.00 5.1 0.050 0.061 0.044 0.0516667 0.01 16.8 0.054 0.055 0.088 0.07 0.02 29.1

141

mm 1.300 1.374 0.922 1.198626 0.24 20.2 1.431 1.504 1.430 1.4548273 0.04 2.9 1.553 1.097 1.216 1.28905 0.24 18.4 1.636 1.369 1.486 1.4969067 0.13 8.9 1.426 1.097 1.224 1.2491212 0.17 13.3 1.397 1.372 1.510 1.4260407 0.07 5.1 1.280 1.547 1.110 1.3123333 0.22 16.8 1.382 1.397 2.230 1.67 0.49 29.1

Triangle Area in^2 10.548 10.332 6.270 9.049979267 2.41 26.6 6.837 6.126 7.067 6.676709133 0.49 7.3 9.573 9.620 12.512 10.56845703 1.68 15.9 10.613 7.713 9.862 9.395857167 1.51 16.0 9.773 10.930 14.487 11.72965824 2.46 20.9 9.500 10.034 10.122 9.885044433 0.34 3.4 14.002 19.437 12.562 15.3333885 3.63 23.6 12.564 14.882 18.916 15.45 3.21 20.8

Peak Load Area and Calculations Origin Origin Origin Area Area Strain Energy lb-in. N-m lbs/in.^2 12.4875 1.41089754 11.100 12.69901 1.434794953 12.211 8.7165 0.984831905 8.463 11.30100333 1.276841466 10.5910693 2.24 0.25 1.93 19.8 19.8 18.2 9.5055 1.073976902 8.449 9.20207 1.039693928 8.806 9.66109 1.091556205 9.334 9.45622 1.068409012 8.86317614 0.23 0.03 0.45 2.5 2.5 5.0 14 1.581787032 13.397 13.11164 1.481415866 12.730 17.8797 2.020134114 14.900 14.99711333 1.694445671 13.67554225 2.54 0.29 1.11 16.9 16.9 8.1 14.73306 1.664611661 12.486 11.65501 1.316838834 11.261 13.95904 1.577159175 13.358 13.44903667 1.519536557 12.3681521 1.60 0.18 1.05 11.9 11.9 8.5 13.86538 1.56657702 13.081 15.41924 1.742139563 14.826 20.5546 2.322357123 17.419 16.61307333 1.877024569 15.10863067 3.50 0.40 2.18 21.1 21.1 14.4 13.90619 1.571187929 11.886 14.0582 1.588362747 13.583 14.92266 1.686033576 14.488 14.29568333 1.615194751 13.31881794 0.55 0.06 1.32 3.8 3.8 9.9 17.96965 2.030297096 17.196 24.20174 2.734428463 23.611 16.59323 1.874782574 13.828 19.58820667 2.213169378 18.21166088 4.05 0.46 4.97 20.7 20.7 27.3 17.81744 2.013099681 15.229 20.18994 2.281156091 19.507 24.65021 2.785098751 23.932 20.89 2.36 19.56 3.47 0.39 4.35 16.6 16.6 22.3

1" Notched Samples ID

0%

10%

20%

30%

0011A(1) 0012A(1) 0013A(1) Average STD Dev. COV 0014U(1) 0015U(1) 0016U(1) Average STD Dev. COV 1011A(1) 1012A(1) 1013A(1) Average STD Dev. COV 1014U(1) 1015U(1) 1016U(1) Average STD Dev. COV 2011A(1) 2012A(1) 2013A(1) Average STD Dev. COV 2014U(1) 2015U(1) 2016U(1) Average STD Dev. COV 3011A(1) 3012A(1) 3013A(1) Average STD Dev. COV 3014U(1) 3015U(1) 3016U(1) Average STD Dev. COV

Notch in. 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0

mm 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0

Width in. m 1.020 0.026 1.025 0.026 1.190 0.030 1.0783333 0.0273897 0.10 0.00 9.0 9.0 1.180 0.030 1.035 0.026 1.035 0.026 1.0833333 0.0275167 0.08 0.00 7.7 7.7 1.195 0.030 1.033 0.026 1.025 0.026 1.0843333 0.0275421 0.10 0.00 8.8 8.8 1.175 0.030 1.035 0.026 1.026 0.026 1.0786667 0.0273981 0.08 0.00 7.7 7.7 1.030 0.026 1.030 0.026 1.164 0.030 1.0746667 0.0272965 0.08 0.00 7.2 7.2 1.155 0.029 1.031 0.026 1.025 0.026 1.0703333 0.0271865 0.07 0.00 6.9 6.9 1.030 0.026 1.032 0.026 1.154 0.029 1.072 0.0272288 0.07 0.00 6.6 6.6 1.158 0.029 1.030 0.026 1.032 0.026 1.0733333 0.0272627 0.07 0.00 6.8 6.8

Peak lbs. newtons 206.93 920.47 260.68 1159.56 315.12 1401.73 260.91067 1160.588046 54.10 240.63 20.7 20.7 162.14 721.23 172.47 767.18 153.18 681.39 162.59733 723.2687101 9.65 42.93 5.9 5.9 319.94 1423.16 326.14 1450.74 266.88 1187.14 304.32 1353.68231 32.57 144.89 10.7 10.7 240.69 1070.64 235.18 1046.13 184.88 822.39 220.25 979.720455 30.75 136.80 14.0 14.0 309.60 1377.17 349.58 1555.00 384.72 1711.32 347.96567 1547.827838 37.59 167.19 10.8 10.8 275.84 1227.01 313.05 1392.52 228.29 1015.48 272.39433 1211.669921 42.49 188.98 15.6 15.6 350.75 1560.23 461.21 2051.56 365.43 1625.50 392.46367 1745.764731 59.99 266.83 15.3 15.3 320.64 1426.26 413.66 1840.05 373.007 1659.22 369.10067 1641.840967 46.64 207.44 12.6 12.6

Defl. in. mm 0.036 0.919 0.036 0.922 0.037 0.930 0.03636 0.923544 0.00 0.01 0.6 0.6 0.050 1.262 0.049 1.247 0.046 1.168 0.0482667 1.2259733 0.00 0.05 4.1 4.1 0.043 1.097 0.037 0.930 0.036 0.914 0.0386 0.98044 0.00 0.10 10.3 10.3 0.049 1.232 0.047 1.203 0.042 1.062 0.04589 1.165606 0.00 0.09 7.8 7.8 0.037 0.945 0.038 0.965 0.024 0.610 0.0330667 0.8398933 0.01 0.20 23.8 23.8 0.049 1.242 0.036 0.917 0.037 0.945 0.0407333 1.0346267 0.01 0.18 17.4 17.4 0.029 0.742 0.035 0.889 0.027 0.691 0.0304667 0.7738533 0.00 0.10 13.3 13.3 0.027 0.691 0.041 1.031 0.042 1.057 0.0364667 0.9262533 0.01 0.20 22.0 22.0

142

Triangle Area in^2 3.743 4.731 5.767 4.7471461 1.01 21.3 4.029 4.234 3.523 3.9288345 0.37 9.3 6.911 5.968 4.804 5.894302 1.06 17.9 5.837 5.570 3.864 5.090320933 1.07 21.0 5.759 6.642 4.617 5.672387667 1.02 17.9 6.744 5.651 4.246 5.54703595 1.25 22.6 5.121 8.071 4.970 6.053996867 1.75 28.9 4.361 8.397 7.759 6.838826533 2.17 31.7

Origin Area lb-in. 5.3955 6.5848 7.711 6.563766667 1.16 17.6 5.925 5.849 4.9275 5.567166667 0.56 10.0 8.8269 7.9683 6.2983 7.697833333 1.29 16.7 8.4358 7.6539 5.5919 7.2272 1.47 20.3 7.91053 9.5694 6.66147 8.047133333 1.46 18.1 9.19142 7.53443 5.9213 7.54905 1.64 21.7 6.40195 10.69507 6.92041 8.00581 2.34 29.3 5.61123 11.33472 11.59807 9.514673333 3.38 35.6

Origin Area N-m 0.609609424 0.743982232 0.8712257 0.741605785 0.13 17.6 0.669434869 0.660848025 0.556732543 0.629005146 0.06 10.0 0.997305425 0.900296686 0.71161209 0.869738067 0.15 16.7 0.953117075 0.864774269 0.631799636 0.81656366 0.17 20.3 0.893769555 1.08119663 0.752644776 0.909203654 0.16 18.1 1.03849064 0.851275976 0.669016825 0.852927814 0.18 21.7 0.723322964 1.208380217 0.781901057 0.904534746 0.26 29.3 0.633983632 1.280650936 1.31040548 1.075013349 0.38 35.6

Origin Strain Energy lbs/in.^2 5.290 6.424 6.480 6.064577646 0.67 11.1 5.021 5.651 4.761 5.144421245 0.46 8.9 7.387 7.714 6.145 7.081652164 0.83 11.7 7.179 7.395 5.450 6.67489055 1.07 16.0 7.680 9.291 5.723 7.564572732 1.79 23.6 7.958 7.308 5.777 7.01423433 1.12 16.0 6.215 10.363 5.997 7.52527148 2.46 32.7 4.846 11.005 11.238 9.029548069 3.63 40.1

1.5" Notched Samples Notch

ID

0%

10%

20%

30%

0021A(1.5) 0022A(1.5) 0023A(1.5) Average STD Dev. COV 0024U(1.5) 0025U(1.5) 0026U(1.5) Average STD Dev. COV 1021A(1.5) 1022A(1.5) 1023A(1.5) Average STD Dev. COV 1024U(1.5) 1025U(1.5) 1026U(1.5) Average STD Dev. COV 2021A(1.5) 2022A(1.5) 2023A(1.5) Average STD Dev. COV 2024U(1.5) 2025U(1.5) 2026U(1.5) Average STD Dev. COV 3021A(1.5) 3022A(1.5) 3023A(1.5) Average STD Dev. COV 3024U(1.5) 3025U(1.5) 3026U(1.5) Average STD Dev. COV

in. 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0

mm 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0

Width in. m 0.935 0.024 0.955 0.024 0.960 0.024 0.95 0.02413 0.01 0.00 1.4 1.4 0.940 0.024 0.945 0.024 0.965 0.025 0.95 0.02413 0.01 0.00 1.4 1.4 0.975 0.025 0.975 0.025 0.902 0.023 0.9506667 0.0241469 0.04 0.00 4.4 4.4 0.935 0.024 0.945 0.024 0.960 0.024 0.9466667 0.0240453 0.01 0.00 1.3 1.3 0.992 0.025 0.965 0.025 0.971 0.025 0.976 0.0247904 0.01 0.00 1.5 1.5 0.970 0.025 0.964 0.024 0.930 0.024 0.9546667 0.0242485 0.02 0.00 2.3 2.3 0.831 0.021 1.002 0.025 1.014 0.026 0.949 0.0241046 0.10 0.00 10.8 10.8 0.964 0.024 0.956 0.024 0.938 0.024 0.9526667 0.0241977 0.01 0.00 1.4 1.4

Peak Defl. lbs. newtons in. mm 147.66 656.82 0.026 0.650 149.70 665.90 0.023 0.584 144.91 644.59 0.022 0.559 147.42333 655.7714198 0.0235333 0.5977467 2.40 10.69 0.00 0.05 1.6 1.6 7.9 7.9 132.50 589.39 0.030 0.770 129.75 577.16 0.037 0.927 115.28 512.79 0.032 0.809 125.84333 559.7788322 0.0328967 0.8355753 9.25 41.15 0.00 0.08 7.4 7.4 9.8 9.8 142.16 632.34 0.019 0.483 175.23 779.47 0.027 0.678 177.30 788.67 0.019 0.475 164.89633 733.4951679 0.0214667 0.5452533 19.72 87.72 0.00 0.12 12.0 12.0 21.1 21.1 143.53 638.45 0.023 0.582 152.49 678.31 0.028 0.699 135.95 604.74 0.028 0.711 143.99 640.4991978 0.0261333 0.6637867 8.28 36.83 0.00 0.07 5.8 5.8 10.8 10.8 242.76 1079.85 0.016 0.406 180.05 800.90 0.017 0.442 204.17 908.19 0.018 0.450 208.99333 929.6483252 0.0170333 0.4326467 31.63 140.71 0.00 0.02 15.1 15.1 5.3 5.3 184.19 819.32 0.027 0.693 200.04 889.82 0.039 0.993 177.99 791.74 0.033 0.838 187.40667 833.6260828 0.0331333 0.8415867 11.37 50.58 0.01 0.15 6.1 6.1 17.8 17.8 169.03 751.89 0.018 0.455 240.69 1070.64 0.024 0.610 248.96 1107.43 0.020 0.505 219.56033 976.6526659 0.0206 0.52324 43.95 195.52 0.00 0.08 20.0 20.0 15.1 15.1 164.20 730.40 0.038 0.970 212.44 944.98 0.023 0.579 160.07 712.03 0.025 0.640 178.90333 795.8013854 0.0287333 0.7298267 29.12 129.52 0.01 0.21 16.3 16.3 28.8 28.8

143

Triangle Area in^2 1.890 1.722 1.594 1.735202667 0.15 8.6 2.009 2.368 1.837 2.0712081 0.27 13.1 1.350 2.339 1.658 1.782532517 0.51 28.4 1.643 2.097 1.903 1.881152 0.23 12.1 1.942 1.566 1.807 1.7718065 0.19 10.7 2.514 3.911 2.937 3.1206035 0.72 23.0 1.513 2.888 2.477 2.29275315 0.71 30.8 3.136 2.422 2.017 2.524972667 0.57 22.4

Origin Area lb-in. 2.94846 2.50112 2.49739 2.64899 0.26 9.8 2.97141 3.80356 2.65248 3.142483333 0.59 18.9 2.01184 3.4222 2.53533 2.656456667 0.71 26.8 2.48416 2.93918 2.85436 2.759233333 0.24 8.8 2.5079 2.28852 2.32987 2.37543 0.12 4.9 3.60231 5.52244 4.13431 4.419686667 0.99 22.4 2.2653 3.64711 3.11092 3.007776667 0.70 23.2 3.81585 3.53177 2.79789 3.381836667 0.53 15.5

Origin Area N-m 0.333131128 0.282588513 0.28216708 0.299295574 0.03 9.8 0.335724129 0.42974442 0.29968989 0.355052813 0.07 18.9 0.227307316 0.386656541 0.286453723 0.300139193 0.08 26.8 0.280672291 0.332082629 0.322499259 0.311751393 0.03 8.8 0.28335455 0.258567947 0.263239868 0.268387455 0.01 4.9 0.407006232 0.623951713 0.467114139 0.499357361 0.11 22.4 0.25594444 0.41206795 0.351486637 0.339833009 0.08 23.2 0.431133003 0.399036285 0.316119008 0.382096099 0.06 15.5

Origin Strain Energy lbs/in.^2 3.153 2.619 2.601 2.791284965 0.31 11.2 3.161 4.025 2.749 3.311563208 0.65 19.7 2.063 3.510 2.811 2.7947205 0.72 25.9 2.657 3.110 2.973 2.913463556 0.23 8.0 2.528 2.372 2.399 2.433034162 0.08 3.4 3.714 5.729 4.445 4.629296157 1.02 22.0 2.726 3.640 3.068 3.144597187 0.46 14.7 3.958 3.694 2.983 3.545165289 0.50 14.2

Notched IDT 0004UA(.5): PG 64-22

700

700

600

600

500

500 Load, lbs.

Load, lbs.

Notched IDT 0001LTA(.5): PG 64-22

400 300

400 300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

Defl., in.

Notched IDT 0002LTA(.5): PG 64-22 Notched IDT 0005UA(.5): PG 64-22

700 700

600

600 500

400

Load, lbs.

Load, lbs.

500

300

400 300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

Defl., in.

Notched IDT 0003LTA(.5): PG 64-22 Notched IDT 0006UA(.5): PG 64-22

700 700

600

600

500

Load, lbs.

Load, lbs.

500

400 300 200

400 300 200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Defl., in.

0

0.02

0.04

0.06

0.08 Defl., in.

144

0.1

0.12

0.14

0.16

Notched IDT 1004UA(.5): PG 64-22

700

700

600

600

500

500

400

Load, lbs.

Load, lbs.

Notched IDT 1001LTA(.5): PG 64-22

300 200

400 300 200

100

100

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.16

0

Defl., in.

0.02

0.06

0.1

0.12

0.14

0.16

Notched IDT 1005UA(.5): PG 64-22

700

700

600

600

500

500 Load, lbs.

400 300

400 300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

0.12

0.14

0.16

Defl., in.

Notched IDT 1003LTA(.5): PG 64-22

Nothced IDT 1006UA(.5): PG 64-22

700

700

600

600

500

500

400

Load, lbs.

Load, lbs.

0.08 Defl., in.

Nothced IDT 1002LTA(.5): PG 64-22

Load, lbs.

0.04

300

400 300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Defl., in.

0

0.02

0.04

0.06

0.08 Defl., in.

145

0.1

Notched IDT 2004UA(.5): PG 64-22 700

600

600

500

500

400

Load, lbs.

Load, lbs.

Notched IDT 2001LTA(.5): PG 64-22 700

300

400 300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

Notched IDT 2005UA(.5): PG 64-22

700

700

600

600

500

500

400

Load, lbs.

Load, lbs.

Notched IDT 2002LTA(.5): PG 64-22

300

400 300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

0.12

0.14

0.16

Defl., in.

Notched IDT 2003LTA(.5): PG 64-22

Notched IDT 2006UA(.5): PG 64-22

700

700

600

600

500

500

400

Load, lbs.

Load, lbs.

0.08 Defl., in.

300

400 300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Defl., in.

0

0.02

0.04

0.06

0.08 Defl., in.

146

0.1

Notched IDT 3004UA(.5): PG 64-22 700

600

600

500

500

400

Load, lbs.

Load, lbs.

Notched IDT 3001LTA(.5): PG 64-22 700

300

400 300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

Notched IDT 3005UA(.5): PG 64-22

700

700

600

600

500

500

400

Load, lbs.

Load, lbs.

Notched IDT 3002LTA(.5): PG 64-22

300

400 300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

0.12

0.14

0.16

Defl., in.

Notched IDT 3003LTA(.5): PG 64-22

Notched IDT 3006UA(.5): PG 64-22

700

700

600

600

500

500

400

Load, lbs.

Load, lbs.

0.08 Defl., in.

300

400 300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Defl., in.

0

0.02

0.04

0.06

0.08 Defl., in.

147

0.1

Notched IDT 0014UA(1): PG 64-22 500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

Notched IDT 0011LTA(1): PG 64-22 500

250 200

250 200

150

150

100

100

50

50

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

0.14

0.16

0.14

0.16

Defl., in.

Notched IDT 0012LTA(1): PG 64-22 Notched IDT 0015UA(1): PG 64-22

500

500

450

450

400

400 350

300 Load, lbs.

Load, lbs.

350

250 200

300 250 200

150

150

100

100

50

50

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

Notched IDT 0013LTA(1): PG 64-22

0.1

0.12

Notched IDT 0016UA(1): PG 64-22

500

500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

0.08 Defl., in.

250 200

250 200

150

150

100

100

50

50

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Defl., in.

0

0.02

0.04

0.06

0.08 Defl., in.

148

0.1

0.12

Notched IDT 1014UA(1): PG 64-22 500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

Notched IDT 1011LTA(1): PG 64-22 500

250 200

250 200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

0.12

0.14

0.16

0.12

0.14

0.16

Notched IDT 1015UA(1): PG 64-22

500

500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

Notched IDT 1012LTA(1): PG 64-22

250 200

250 200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

Defl., in.

Notched IDT 1013LTA(1): PG 64-22

Notched IDT 1016UA(1): PG 64-22

500

500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

0.08 Defl., in.

250 200

250 200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

149

0.1

Notched IDT 2014UA(1): PG 64-22 500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

Notched IDT 2011LTA(1): PG 64-22 500

250 200

250 200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

Notched IDT 2015UA(1): PG 64-22

500

500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

Notched IDT 2012LTA(1): PG 64-22

250 200

250 200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

0.12

0.14

0.16

Defl., in.

Notched IDT 2013LTA(1): PG 64-22

Notched IDT 2016UA(1): PG 64-22

500

500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

0.08 Defl,. in.

250 200

250 200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

150

0.1

Notched IDT 3014UA(1): PG 64-22 500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

Notched IDT 3011LTA(1): PG 76-22 500

250 200

250 200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

0.12

0.14

0.16

0.12

0.14

0.16

Notched IDT 3015UA(1): PG 64-22

500

500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

Notched IDT 3012LTA(1): PG 64-22

250 200

250 200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

Defl., in.

Notched IDT 3013LTA(1): PG 64-22

Notched IDT 3016UA(1): PG 64-22

500

500

450

450

400

400

350

350

300

300

Load, lbs.

Load, lbs.

0.08 Defl., in.

250 200

250 200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

151

0.1

Notched IDT 0024UA(1.5): PG 64-22 300

250

250

200

200 Load, lbs.

Load, lbs.

Notched IDT 0021LTA(1.5): PG 64-22 300

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

Defl., in.

0.08

0.1

0.08

0.1

0.08

0.1

Notched IDT 0025UA(1.5): PG 64-22

300

300

250

250

200

200 Load, lbs.

Load, lbs.

Notched IDT 0022LTA(1.5): PG 64-22

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

Defl., in.

0.06 Defl., in.

Notched IDT 0023LTA(1.5): PG 64-22

Notched IDT 0026UA(1.5): PG 64-22

300

300

250

250

200

200 Load, lbs.

Load, lbs.

0.06 Defl., in.

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

Defl., in.

0.02

0.04

0.06 Defl., in.

152

Notched IDT 1024UA(1.5): PG 64-22 300

250

250

200

200 Load, lbs.

Load, lbs.

Notched IDT 1021LTA(1.5): PG 64-22 300

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

Defl., in.

0.08

0.1

0.08

0.1

0.08

0.1

Notched IDT 1025UA(1.5): PG 64-22

300

300

250

250

200

200 Load, lbs.

Load, lbs.

Notched IDT 1022LTA(1.5): PG 64-22

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

Defl., in.

0.06 Defl., in.

Notched IDT 1023LTA(1.5): PG 64-22

Notched IDT 1026UA(1.5): PG 64-22

300

300

250

250

200

200 Load, lbs.

Load, lbs.

0.06 Defl., in.

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

Defl., in.

0.02

0.04

0.06 Defl., in.

153

Notched IDT 2024UA(1.5): PG 64-22 300

250

250

200

200 Load, lbs.

Load, lbs.

Notched IDT 2021LTA(1.5): PG 64-22 300

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

Defl., in.

0.08

0.1

0.08

0.1

0.08

0.1

Notched IDT 2025UA(1.5): PG 64-22

300

300

250

250

200

200 Load, lbs.

Load, lbs.

Notched IDT 2022LTA(1.5): PG 64-22

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

Defl., in.

0.06 Defl., in.

Notched IDT 2023LTA(1.5): PG 64-22

Notched IDT 2026UA(1.5): PG 64-22

300

300

250

250

200

200 Load, lbs.

Load, lbs.

0.06 Defl., in.

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

Defl., in.

0.02

0.04

0.06 Defl., in.

154

Notched IDT 3024UA(1.5): PG 64-22

300

300

250

250

200

200 Load, lbs.

Load, lbs.

Notched IDT 3021LTA(1.5): PG 64-22

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

Defl., in.

0.08

0.1

0.08

0.1

0.08

0.1

Notched IDT 3025UA(1.5): PG 64-22

300

300

250

250

200

200 Load, lbs.

Load, lbs.

Notched IDT 3022LTA(1.5): PG 64-22

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

Defl., in.

0.06 Defl., in.

Notched IDT 3023LTA(1.5): PG 64-22

Notched IDT 3026UA(1.5): PG 64-22

300

300

250

250

200

200 Load, lbs.

Load, lbs.

0.06 Defl., in.

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0

Defl., in.

0.02

0.04

0.06 Defl., in.

155

Limestone PG 76-22

.5" Notched Samples ID

0%

10%

20%

30%

0101 0102 0103 Average STD Dev. COV 0104 0105 0105 Average STD Dev. COV 10101 10102 10103 Average STD Dev. COV 10104 10105 10106 Average STD Dev. COV 20101 20102 20103 Average STD Dev. COV 20104 20105 20106 Average STD Dev. COV 30101 30102 30103 Average STD Dev. COV 30104 30105 30106 Average STD Dev. COV

Notch in. 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0 0.5 0.5 0.5 0.5 0.00 0.0

Width mm 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0 12.7 12.7 12.7 12.7 0.00 0.0

in. 1.190 1.170 0.920 1.0933333 0.15 13.8 1.140 1.150 1.120 1.1366667 0.02 1.3 1.130 1.050 1.140 1.1066667 0.05 4.5 1.150 1.140 1.110 1.1333333 0.02 1.8 1.150 1.140 1.020 1.1033333 0.07 6.6 1.050 1.170 1.160 1.1266667 0.07 5.9 1.170 1.160 1.020 1.1166667 0.08 7.5 1.130 1.160 1.030 1.1066667 0.07 6.2

m 0.030 0.030 0.023 0.0277707 0.00 13.8 0.029 0.029 0.028 0.0288713 0.00 1.3 0.029 0.027 0.029 0.0281093 0.00 4.5 0.029 0.029 0.028 0.0287867 0.00 1.8 0.029 0.029 0.026 0.0280247 0.00 6.6 0.027 0.030 0.029 0.0286173 0.00 5.9 0.030 0.029 0.026 0.0283633 0.00 7.5 0.029 0.029 0.026 0.0281093 0.00 6.2

Peak lbs. newtons 298.98 1329.95 391.61 1741.97 246.90 1098.27 312.49833 1390.061336 73.29 326.03 23.5 23.5 345.44 1536.61 397.82 1769.57 433.65 1928.97 392.30233 1745.047085 44.36 197.33 11.3 11.3 293.07 1303.64 345.44 1536.59 313.06 1392.54 317.1887 1410.925119 26.43 117.56 8.3 8.3 412.29 1833.94 450.28 2002.93 575.60 2560.42 479.38917 2132.428479 85.46 380.16 17.8 17.8 412.00 1832.66 387.48 1723.59 442.61 1968.81 414.0277 1841.686296 27.62 122.86 6.7 6.7 514.96 2290.67 508.07 2260.02 465.35 2069.97 496.12753 2206.884416 26.88 119.56 5.4 5.4 430.20 1913.64 453.63 2017.86 503.74 2240.74 462.52453 2057.41088 37.56 167.10 8.1 8.1 588.70 2618.66 512.21 2278.41 624.53 2778.05 575.15 2558.37 57.38 255.22 10.0 10.0

Defl. in. 0.064 0.066 0.058 0.0629433 0.00 0.1 0.065 0.054 0.048 0.05539 0.01 15.6 0.057 0.072 0.063 0.0638047 0.01 11.5 0.054 0.055 0.070 0.059798 0.01 15.5 0.093 0.072 0.060 0.075013 0.02 22.0 0.014 0.050 0.052 0.038593 0.02 55.7 0.097 0.073 0.071 0.0801817 0.01 18.4 0.070 0.055 0.065 0.06 0.01 11.8

156

mm 1.632 1.685 1.479 1.5987607 0.11 6.7 1.645 1.361 1.214 1.4069052 0.22 15.6 1.453 1.820 1.589 1.6206385 0.19 11.5 1.366 1.400 1.790 1.5188692 0.24 15.5 2.359 1.825 1.532 1.9053302 0.42 22.0 0.350 1.269 1.322 0.9802622 0.55 55.7 2.469 1.847 1.794 2.0366143 0.38 18.4 1.773 1.400 1.650 1.61 0.19 11.8

Origin Area lb-in. 10.99 15.3662 13.25 13.20206667 2.19 16.6 17.304 13.99772 15.33 15.54390667 1.66 10.7 14.12 16.10858 13.48136 14.56998 1.37 9.4 13.86303 15.19587 18.22352 15.76080667 2.23 14.2 13.7672 17.66059 17.51909 16.31562667 2.21 13.5 18.27304 17.3969 17.16265 17.61086333 0.59 3.3 22.32 23.13913 24.86927 23.4428 1.30 5.6 27.07379 24.33 28.31128 26.57 2.04 7.7

Peak Load Origin Origin Area Strain Energy N-m lbs/in.^2 1.24170282 9.235 1.736146849 13.134 1.497048441 14.402 1.491632703 12.25699077 0.25 2.69 16.6 22.0 1.955088772 15.179 1.581529427 12.172 1.7320568 13.688 1.756224999 13.67945927 0.19 1.50 10.7 11.0 1.595345207 12.496 1.820024496 15.342 1.523188602 11.826 1.646186101 13.22094479 0.15 1.87 9.4 14.1 1.566311506 12.055 1.71690215 13.330 2.058980544 16.418 1.7807314 13.93403494 0.25 2.24 14.2 16.1 1.555484173 11.971 1.995378017 15.492 1.97939067 17.176 1.84341762 14.87960077 0.25 2.66 13.5 17.8 2.064575551 17.403 1.965585058 14.869 1.939118372 14.795 1.98975966 15.68914282 0.07 1.48 3.3 9.5 2.521820468 19.077 2.614369698 19.948 2.809849199 24.382 2.648679788 21.13536206 0.15 2.84 5.6 13.5 3.058926424 23.959 2.748919892 20.974 3.198743969 27.487 3.00 24.14 0.23 3.26 7.7 13.5

Origin Strain Energy J/m 41.081 58.421 64.064 54.52179147 11.98 22.0 67.519 54.143 60.885 60.8492443 6.69 11.0 55.583 68.242 52.604 58.80967103 8.30 14.1 53.622 59.293 73.029 61.98165288 9.98 16.1 53.252 68.911 76.401 66.18773773 11.81 17.8 77.412 66.141 65.813 69.78875889 6.60 9.5 84.858 88.731 108.455 94.01474024 12.65 13.5 106.575 93.298 122.267 107.38 14.50 13.5

1" Notched Samples ID

0%

10%

20%

30%

0201 0202 0203 Average STD Dev. COV 0204 0205 0206 Average STD Dev. COV 10201 10202 10203 Average STD Dev. COV 10204 10205 10206 Average STD Dev. COV 20201 20202 20203 Average STD Dev. COV 20204 20205 20206 Average STD Dev. COV 30201 30202 30203 Average STD Dev. COV 30204 30205 30206 Average STD Dev. COV

Notch in. 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0 1 1 1 1 0.00 0.0

mm 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0 25.4 25.4 25.4 25.4 0.00 0.0

Width in. m 1.130 0.029 1.150 0.029 1.010 0.026 1.0966667 0.0278553 0.08 0.00 6.9 6.9 1.170 0.030 1.150 0.029 1.050 0.027 1.1233333 0.0285327 0.06 0.00 5.7 5.7 1.060 0.027 1.170 0.030 1.110 0.028 1.1133333 0.0282787 0.06 0.00 4.9 4.9 1.150 0.029 1.130 0.029 1.070 0.027 1.1166667 0.0283633 0.04 0.00 3.7 3.7 1.150 0.029 1.160 0.029 0.980 0.025 1.0966667 0.0278553 0.10 0.00 9.2 9.2 1.130 0.029 1.180 0.030 1.130 0.029 1.1466667 0.0291253 0.03 0.00 2.5 2.5 1.180 0.030 1.170 0.030 0.970 0.025 1.1066667 0.0281093 0.12 0.00 10.7 10.7 1.160 0.029 1.140 0.029 1.090 0.028 1.13 0.028702 0.04 0.00 3.2 3.2

lbs. 191.09 207.62 221.40 206.70567 15.18 7.3 229.67 249.65 275.83 251.71667 23.15 9.2 235.18 142.00 229.67 202.28333 52.28 25.8 377.14 368.18 372.663 6.33 1.7 242.76 237.00 285.49 255.08367 26.49 10.4 334.00 337.00 449.00 373.33333 65.55 17.6 302.00 240.00 315.80 285.93333 40.37 14.1 428.00 324.00 463.28 405.09333 72.41 17.9

Peak newtons 850.02 923.54 984.85 919.4722806 67.51 7.3 1021.62 1110.50 1226.95 1119.691111 102.97 9.2 1046.13 631.65 1021.62 899.800769 232.55 25.8 1677.61 1637.76 1657.69 28.18 1.7 1079.85 1054.23 1269.93 1134.668268 117.84 10.4 1485.71 1499.05 1997.25 1660.6688 291.56 17.6 1343.36 1067.57 1404.75 1271.894372 179.59 14.1 1903.84 1441.22 2060.77 1801.944267 322.10 17.9

Defl. in. mm 0.051 1.288 0.049 1.252 0.049 1.252 0.0497477 1.2635907 0.00 0.02 1.6 1.6 0.028 0.704 0.035 0.892 0.038 0.967 0.0336253 0.8540835 0.01 0.14 15.9 15.9 0.059 1.501 0.021 0.523 0.063 1.600 0.0475653 1.2081595 0.02 0.60 49.3 49.3 0.038 0.973 0.033 0.845 0.0357715 0.9085961 0.00 0.09 10.0 10.0 0.030 0.766 0.055 1.392 0.046 1.168 0.0436527 1.1087794 0.01 0.32 28.6 28.6 0.051 1.302 0.031 0.791 0.041 1.033 0.0410217 1.0419503 0.01 0.26 24.5 24.5 0.056 1.426 0.033 0.836 0.028 0.721 0.0391557 0.9945539 0.01 0.38 38.0 38.0 0.035 0.888 0.060 1.536 0.052 1.330 0.0492737 1.2515511 0.01 0.33 26.4 26.4

157

Origin Area lb-in. 6.8398 6.905 6.904 6.882933333 0.04 0.5 4.083 4.67 4.9 4.551 0.42 9.3 9.26 3.65 7.73 6.88 2.90 42.2 9.79 7.99 8.89 1.27 14.3 4.29 7.19 7.49 6.323333333 1.77 27.9 6.99 5.61 11.61 8.07 3.14 38.9 7.436 4.63 4.85 5.638666667 1.56 27.7 8.701 12.53 16.701 12.644 4.00 31.6

Origin Area N-m 0.772793353 0.780159961 0.780046976 0.777666763 0.00 0.5 0.461316889 0.52763896 0.553625461 0.51419377 0.05 9.3 1.046239137 0.412394476 0.873372411 0.777335341 0.33 42.2 1.106121075 0.902748456 1.004434765 0.14 14.3 0.484704741 0.812360626 0.846256062 0.714440476 0.20 27.9 0.789763668 0.633844661 1.311753389 0.911787239 0.36 38.9 0.840154884 0.523119568 0.547976222 0.637083558 0.18 27.7 0.98308064 1.415699394 1.886958944 1.428579659 0.45 31.6

Origin Strain Energy lbs/in.^2 6.053 6.004 6.836 6.297637248 0.47 7.4 3.490 4.061 4.667 4.072426607 0.59 14.5 8.736 3.120 6.964 6.273157047 2.87 45.8 8.664 7.467 8.065503267 0.85 10.5 3.730 6.198 7.643 5.857189263 1.98 33.8 6.186 4.754 10.274 7.071471426 2.86 40.5 6.302 3.957 5.000 5.086319958 1.17 23.1 7.501 10.991 15.322 11.2713695 3.92 34.8

Origin Strain Energy J/m 26.925 26.709 30.406 28.01327596 2.08 7.4 15.523 18.064 20.758 18.11504948 2.62 14.5 38.859 13.877 30.977 27.90438264 12.77 45.8 38.538 33.216 35.87713294 3.76 10.5 16.594 27.571 33.997 26.05406642 8.80 33.8 27.516 21.148 45.703 31.45546063 12.74 40.5 28.031 17.603 22.241 22.62507016 5.22 23.1 33.365 48.891 68.156 50.13753122 17.43 34.8

1.5" Notched Samples ID

0%

10%

20%

30%

0301 0302 0303 Average STD Dev. COV 0304 0305 0306 Average STD Dev. COV 10301 10302 10303 Average STD Dev. COV 10304 10305 10306 Average STD Dev. COV 20301 20302 20303 Average STD Dev. COV 20304 20305 20306 Average STD Dev. COV 30301 30302 30303 Average STD Dev. COV 30304 30305 30306 Average STD Dev. COV

Notch in. 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0 1.5 1.5 1.5 1.5 0.00 0.0

mm 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0 38.1 38.1 38.1 38.1 0.00 0.0

Width in. m 1.130 0.029 1.100 0.028 1.140 0.029 1.1233333 0.0285327 0.02 0.00 1.9 1.9 1.150 0.029 1.130 0.029 1.010 0.026 1.0966667 0.0278553 0.08 0.00 6.9 6.9 1.130 0.029 0.980 0.025 1.170 0.030 1.0933333 0.0277707 0.10 0.00 9.2 9.2 1.170 0.030 1.140 0.029 1.040 0.026 1.1166667 0.0283633 0.07 0.00 6.1 6.1 1.040 0.026 1.160 0.029 1.130 0.029 1.11 0.028194 0.06 0.00 5.6 5.6 1.130 0.029 1.180 0.030 1.100 0.028 1.1366667 0.0288713 0.04 0.00 3.6 3.6 1.150 0.029 1.150 0.029 1.020 0.026 1.1066667 0.0281093 0.08 0.00 6.8 6.8 1.160 0.029 1.180 0.030 1.040 0.026 1.1266667 0.0286173 0.08 0.00 6.7 6.7

lbs. 148.35 145.60 142.57 145.50667 2.89 2.0 176.61 159.50 211.75 182.62 26.64 14.6 138.02 153.80 134.57 142.13 10.25 7.2 200.04 233.80 282.73 238.85667 41.58 17.4 174.50 118.03 159.38 150.63667 29.23 19.4 120.00 258.60 250.30 209.63333 77.74 37.1 137.33 164.90 114.00 138.74233 25.48 18.4 259.30 300.60 292.32 284.07333 21.85 7.7

Peak newtons 659.89 647.66 634.18 647.2456648 12.86 2.0 785.60 709.49 941.91 812.3339364 118.49 14.6 613.94 684.14 598.60 632.2255086 45.61 7.2 889.82 1039.99 1257.65 1062.487002 184.94 17.4 776.21 525.02 708.96 670.0650334 130.03 19.4 533.79 1150.31 1113.39 932.495186 345.79 37.1 610.87 733.50 507.10 617.156422 113.33 18.4 1153.42 1337.13 1300.30 1263.620683 97.19 7.7

Defl. in. mm 0.036 0.910 0.037 0.950 0.044 1.128 0.039209 0.9959086 0.00 0.12 11.6 11.6 0.031 0.796 0.031 0.792 0.031 0.783 0.031125 0.790575 0.00 0.01 0.0 0.8 0.027 0.674 0.036 0.917 0.026 0.665 0.0296077 0.7520347 0.01 0.14 19.0 19.0 0.027 0.687 0.035 0.879 0.028 0.712 0.0298967 0.7593753 0.00 0.10 13.7 13.7 0.025 0.639 0.027 0.696 0.046 1.164 0.03279 0.832866 0.01 0.29 34.6 34.6 0.020 0.498 0.038 0.965 0.025 0.643 0.02764 0.702056 0.01 0.24 34.1 34.1 0.023 0.594 0.035 0.888 0.023 0.573 0.0269817 0.6853343 0.01 0.18 25.7 25.7 0.027 0.687 0.037 0.949 0.030 0.772 0.03161 0.802894 0.01 0.13 16.7 16.7

158

Origin Area lb-in. 3.21 3.34 4.07 3.54 0.46 13.1 3.86 2.92 3.523 3.434333333 0.48 13.9 2.331 4.09 2.178 2.866333333 1.06 37.1 3.303 4.728 5.24 4.423666667 1.00 22.7 2.625 2.267 4.45 3.114 1.17 37.6 1.741 5.55 3.49 3.593666667 1.91 53.1 2.05 3.84 1.67 2.52 1.16 46.0 4.07 6.82 4.97 5.286666667 1.40 26.5

Origin Area N-m 0.362681169 0.377369192 0.459848087 0.39996615 0.05 13.1 0.436121282 0.329915581 0.398045408 0.388027424 0.05 13.9 0.263367541 0.462107783 0.246080868 0.323852064 0.12 37.1 0.373188755 0.534192078 0.592040289 0.499807041 0.11 22.7 0.296585069 0.256136514 0.502782307 0.35183463 0.13 37.6 0.196706516 0.627065573 0.39431691 0.406029666 0.22 53.1 0.231618815 0.433861586 0.188684596 0.284721666 0.13 46.0 0.459848087 0.770556254 0.561534396 0.597312913 0.16 26.5

Origin Strain Energy lbs/in.^2 2.841 3.036 3.570 3.149082347 0.38 12.0 3.357 2.584 3.488 3.142903782 0.49 15.5 2.063 4.173 1.862 2.699279903 1.28 47.4 2.823 4.147 5.038 4.002968961 1.11 27.8 2.524 1.954 3.938 2.805467301 1.02 36.4 1.541 4.703 3.173 3.138941689 1.58 50.4 1.783 3.339 1.637 2.252998011 0.94 41.9 3.509 5.780 4.779 4.68904262 1.14 24.3

Origin Strain Energy J/m 12.636 13.506 15.881 14.00781108 1.68 12.0 14.931 11.495 15.516 13.98032746 2.17 15.5 9.176 18.565 8.281 12.00699085 5.70 47.4 12.558 18.448 22.412 17.80608659 4.96 27.8 11.227 8.693 17.517 12.47933576 4.54 36.4 6.853 20.922 14.113 13.9627032 7.04 50.4 7.929 14.853 7.283 10.02183081 4.20 41.9 15.607 25.709 21.257 20.85789316 5.06 24.3

Notched IDT 0104LTA(.5): PG 76-22 700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

Notched IDT 0101UA(.5): PG 76-22 700

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

Notched IDT 0105LTA(.5): PG 76-22

700

700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

Notched IDT 0102UA: PG 76-22

300

300

200

200

100

100

0

0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl.,in.

0.08

0.1

0.12

0.14

0.16

Defl.,in.

Notched IDT 0103UA(.5): PG 76-22

Notched IDT 0106LTA(.5): PG 76-22

700

700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

0.08 Defl., in.

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl.,in.

159

0.1

0.12

0.14

0.16

Notched IDT 10101UA(.5): PG 76-22

Notched IDT 10104LTA(.5): PG 76-22

700

450

400 600 350 500

Load, lbs.

Load, lbs.

300 400

300

250

200

150 200 100 100 50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

0.12

0.14

0.16

0.12

0.14

0.16

Notched IDT 10105LTA(.5): PG 76-22

700

700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

Notched IDT 10102UA(.5): PG 76-22

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

Defl., in.

Notched IDT 10103UA(.5): PG 76-22

Notched IDT 10106LTA(.5): PG 76-22

700

700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

0.08 Defl., in.

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

160

0.1

Notched IDT 20104LTA(.5): PG 76-22 700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

Notched IDT 20101UA(.5): PG 76-22 700

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

0.12

0.14

0.16

0.12

0.14

0.16

Notched IDT 20105LTA(.5): PG 76-22

700

700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

Notched IDT 20102UA(.5): PG 76-22

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

Defl., in.

Notched IDT 20103UA(.5): PG 76-22

Notched IDT 20106LTA(.5): PG 76-22

700

700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

0.08 Defl., in.

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

161

0.1

Notched IDT 30104LTA(.5): PG 76-22 700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

Notched IDT 30101UA(.5): PG 76-22 700

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

0.12

0.14

0.16

0.12

0.14

0.16

Notched IDT 30105LTA(.5): PG 76-22

700

700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

Notched IDT 30102UA(.5): PG 76-22

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

Defl., in.

Notched IDT 30103UA(.5): PG 76-22

Notched IDT 30106LTA(.5): PG 76-22

700

700

600

600

500

500

400

400

Load, lbs.

Load, lbs.

0.08 Defl., in.

300

300

200

200

100

100

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

162

0.1

Notched IDT 0204LTA(1): PG 76-22 500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

Notched IDT 0201UA(1): PG 76-22 500

250

250

200

200

150

150

100

100

50

50 0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.16

0.02

0.04

0.06

0.12

0.14

0.16

500 450

450

400

400 350

350

300

300 Load, lbs.

Load, lbs.

0.1

Notched IDT 0205LTA(1): PG 76-22

Notched IDT 0202UA(1): PG 76-22 500

250

250

200

200

150

150

100

100

50

50 0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.16

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Defl., in.

Defl.,in.

Notched IDT 0203UA(1): PG 76-22

Notched IDT 0206LTA(1): PG 76-22

500

500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

0.08 Defl., in.

Defl., in.

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

163

0.1

0.12

0.14

0.16

Notched IDT 10205LTA(1): PG 76-22 500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

Notched IDT 10201UA(1): PG 76-22 500

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

0.12

0.14

0.16

0.12

0.14

0.16

Notched IDT 10205LTA(1): PG 76-22

500

500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

Notched IDT 10202UA(1): PG 76-22

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

Defl., in.

Notched IDT 10203(1): PG 76-22

Notched IDT 10206LTA(1): PG 76-22

500

500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

0.08 Defl., in.

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

164

0.1

Notched IDT 20204LTA(1): PG 76-22 500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

Notched IDT 20201UA(1): PG 76-22 500

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

0.12

0.14

0.16

0.12

0.14

0.16

Notched IDT 20205LTA(1): PG 76-22

500

500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

Notched IDT 20202UA(1): PG 76-22

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

Defl., in.

Notched IDT 20203UA(1): PG 76-22

Notched IDT 20206LTA(1): PG 76-22

500

500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

0.08 Defl., in.

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

165

0.1

Notched IDT 30201UA(1): PG 76-22

Notched IDT 30204LTA(1): PG 76-22

500

500

450

450 400

350

350

300

300 Load, lbs.

Load, lbs.

400

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

Notched IDT 30205LTA(1): PG 76-22

500

500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

Notched IDT 30202UA(1): PG 76-22

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

0.12

0.14

0.16

Defl., in.

Notched IDT 30203UA(1): PG 76-22

Notched IDT 30206LTA(1): PG 76-22

500

500

450

450

400

400

350

350

300

300 Load, lbs.

Load, lbs.

0.08 Defl., in.

250

250

200

200

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

166

0.1

Notched IDT 0304LTA(1.5): PG 76-22 300

250

250

200

200

Load, lbs.

Load, lbs.

Notched IDT 0301UA(1.5): PG 76-22 300

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.16

0.02

0.04

0.06

0.1

0.12

0.14

0.16

Notched IDT 0305LTA(1.5): PG 76-22

300

300

250

250

200

200

Load, lbs.

Load, lbs.

Notched IDT 0302UA(1.5): PG 76-22

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

0.12

0.14

0.16

Defl., in.

Notched IDT 0303UA(1.5): PG 76-22

Notched IDT 0306LTA(1.5): PG 76-22

300

300

250

250

200

200

Load, lbs.

Load, lbs.

0.08 Defl., in.

Defl., in.

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

167

0.1

Notched IDT 10304LTA(1.5): PG 76-22 300

250

250

200

200

Load, lbs.

Load, lbs.

Notched IDT 10301UA(1.5): PG 76-22 300

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.16

0.02

0.04

0.06

0.1

0.12

0.14

0.16

Notched IDT 10305LTA(1.5): PG 76-22

300

300

250

250

200

200

Load, lbs.

Load, lbs.

Notched IDT 10302UA(1.5): PG 76-22

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

0.12

0.14

0.16

Defl., in.

Notched IDT 10303UA(1.5): PG 76-22

Notched IDT 10306LTA(1.5): PG 76-22

300

300

250

250

200

200

Load, lbs.

Load, lbs.

0.08 Defl., in.

Defl., in.

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Defl.,in.

0

0.02

0.04

0.06

0.08 Defl., in.

168

0.1

0.12

0.14

0.16

Notched IDT 20304LTA(1.5): PG 76-22 300

250

250

200

200

Load, lbs.

Load, lbs.

Notched IDT 20301UA(1.5): PG 76-22 300

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.12

0.14

0.16

300

250

250

200

Load, lbs.

200

Load, lbs.

0.1

Notched IDT 20305LTA(1.5): PG 76-22

Notched IDT 20302UA(1.5): PG 76-22 300

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.16

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Defl., in.

Defl., in.

Notched IDT 20303UA(1.5): PG 76-22

Notched IDT 20306LTA(1.5): PG 76-22

300

300

250

250

200

200

Load, lbs.

Load, lbs.

0.08 Defl., in.

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

Defl., in.

0.02

0.04

0.06

0.08 Defl., in.

169

0.1

0.12

0.14

0.16

Notched IDT 30304LTA(1.5): PG 76-22 300

250

250

200

200

Load, lbs.

Load, lbs.

Notched IDT 30301UA(1.5): PG 76-22 300

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.1

0.12

0.14

0.16

0.12

0.14

0.16

Notched IDT 30305LTA(1.5): PG 76-22

300

300

250

250

200

200

Load, lbs.

Load, lbs.

Notched IDT 30302UA(1.5): PG 76-22

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

Defl., in.

0.08

0.1

Defl., in.

Notched IDT 30303UA(1.5): PG 76-22

Notched IDT 30306LTA(1.5): PG 76-22

300

300

250

250

200

200

Load, lbs.

Load, lbs.

0.08 Defl., in.

150

150

100

100

50

50

0

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Defl., in.

0

0.02

0.04

0.06

0.08 Defl., in.

170

0.1

0.12

0.14

0.16

Appendix D: Flexural Beam Fatigue Test Data

171

Limestone Mixtures PG 64-22 Beam Fatigue Test Summary Aged Specimens Cummulative Cycles, N Dissipated Energy (in-lbf/in^3) 16,196 2,703.168 10,364 1,804.834 12,613 2,048.549 13,058 2,186 2,941 465 23 21

Percent Rap

Specimen

0%

1 2 3 Avg. Std. COV

10%

1 2 3 Avg. Std. COV

56,229 32,324 65,002 51,185 16,913 33

20%

1 2 3 Avg. Std. COV

30%

1 2 3 Avg. Std. COV

Unaged Specimens Cummulative Cycles, N Dissipated Energy (in-lbf/in^3) 12,917 2,011.37 9,345 1,517.61 23,634 3,712.48 15,299 2,414 7,436 1,151 49 48

Stiffnes

Specimen

410,000.000 425,000.000 500,000.000 445,000 48,218 11

1 2 3 Avg. Std. COV

11,761.071 5,903.875 12,863.054 10,176.000 3,740.572 36.759

610,000.000 560,000.000 570,000.000 580,000.000 26,457.513 4.562

1 2 3 Avg. Std. COV

19,456 4,645 17,419 13,840 8,028 58

4,010.991 769.007 3,352.042 2,710.680 1,713.512 63.213

450,000.000 325,000.000 430,000.000 401,666.667 67,144.124 16.716

84,324 22,307 39,575 48,735 32,007 66

17,102.993 4,015.847 7,814.909 9,644.583 6,732.691 69.808

690,000.000 580,000.000 650,000.000 640,000.000 55,677.644 8.700

1 2 3 Avg. Std. COV

21,886 22,306 31,598 25,263 5,490 22

4,496.125 4,808.246 6,057.998 5,120.790 826.513 16.140

630,000.000 650,000.000 450,000.000 576,666.667 110,151.411 19.101

107,604 88,402 26,692 74,232.67 42,276.06 56.95

22,365.632 17,294.130 4,670.672 14,776.81 9,112.11 61.66

750,000.000 700,000.000 620,000.000 690,000.00 65,574.39 9.50

1 2 3 Avg. Std. COV

104,033 93,103 59,788 85,641.33 23,046.96 26.91

21,246.412 20,099.014 12,770.259 18,038.56 4,598.41 25.49

780,000.000 650,000.000 670,000.000 700,000.00 70,000.00 10.00

172

Stiffnes 310,000.000 315,000.000 320,000.000 315,000 5,000 2

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 3.500E+05 3.000E+05 2.500E+05 2.000E+05

001u64

1.500E+05 1.000E+05 5.000E+04 0.000E+00 100

2,100

4,100

6,100

8,100

10,100

12,100

14,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 3.500E+05 3.000E+05 2.500E+05 2.000E+05

002u64

1.500E+05 1.000E+05 5.000E+04 0.000E+00 100

2,100

4,100

6,100

8,100

10,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 3.500E+05 3.000E+05 2.500E+05 2.000E+05

003u64

1.500E+05 1.000E+05 5.000E+04 0.000E+00 100

5,100

10,100

15,100

Loading Cycles

173

20,100

25,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 5.000E+05 4.000E+05 3.000E+05 101u64 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

25,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 3.500E+05 3.000E+05 2.500E+05 2.000E+05

102u64

1.500E+05 1.000E+05 5.000E+04 0.000E+00 100

1,100

2,100

3,100

4,100

5,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 4.500E+05 4.000E+05 3.500E+05 3.000E+05 2.500E+05 2.000E+05 1.500E+05 1.000E+05 5.000E+04 0.000E+00 100

103u64

5,100

10,100 Loading Cycles

174

15,100

20,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

201u64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

25,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

202u64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

25,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 5.000E+05 4.000E+05 3.000E+05 203u64 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

Loading Cycles

175

25,100

30,100

35,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 9.000E+05 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05 3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

3011u64

20,100

40,100

60,100

80,100

100,100

120,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

302u64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

303u64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

Loading Cycles

176

50,100

60,100

70,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 4.500E+05 4.000E+05 3.500E+05 3.000E+05 2.500E+05 2.000E+05 1.500E+05 1.000E+05 5.000E+04 0.000E+00 100

001-a-64

5,100

10,100

15,100

20,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 4.500E+05 4.000E+05 3.500E+05 3.000E+05 2.500E+05 2.000E+05 1.500E+05 1.000E+05 5.000E+04 0.000E+00 100

002-a-64

2,100

4,100

6,100

8,100

10,100

12,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 004-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

2,100

4,100

6,100

8,100

Loading Cycles

177

10,100

12,100

14,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

101-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

60,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 102-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

25,100

30,100

35,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 103-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

Loading Cycles

178

50,100

60,100

70,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

201-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

202-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

25,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

203-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

Loading Cycles

179

40,100

50,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

301-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

120,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

302-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

303-a-64

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

Loading Cycles

180

25,100

30,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

001U76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100 40,100 60,100 80,100 100,100 120,100 140,100 160,100 Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

002u76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100

150,100

200,100

250,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 4.500E+05 4.000E+05 3.500E+05 3.000E+05 2.500E+05 2.000E+05 1.500E+05 1.000E+05 5.000E+04 0.000E+00 100

003u76

50,100

100,100 150,100 200,100 250,100 300,100 350,100 Loading Cycles

181

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

101U76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100 20,100 30,100 40,100 50,100 60,100 70,100 80,100 Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 5.000E+05 4.000E+05 3.000E+05 102u76 2.000E+05 1.000E+05 0.000E+00 100

10,100 20,100 30,100 40,100 50,100 60,100 70,100 80,100 Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

103u76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

Loading Cycles

182

80,100

100,100

120,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

201u76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100 150,100 200,100 250,100 300,100 350,100 Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 203u76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100 15,100 20,100 25,100 30,100 35,100 40,100 Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 5.000E+05 4.000E+05 3.000E+05 205u76 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

Loading Cycles

183

20,100

25,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

301u76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100 40,100

60,100 80,100 100,100 120,100 140,100 160,100 Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

304u76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100

150,100

200,100

250,100

300,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

305u76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

Loading Cycles

184

40,100

50,100

60,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 5.000E+05 4.000E+05 3.000E+05 001-a-76 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100

150,100

200,100

250,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 4.500E+05 4.000E+05 3.500E+05 3.000E+05 2.500E+05 2.000E+05 1.500E+05 1.000E+05 5.000E+04 0.000E+00 100

002-a-76

600

1,100

1,600

2,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 003-a-76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

Loading Cycles

185

40,100

50,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 101-a-76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100

150,100

200,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

102-a-76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100

150,100

200,100

250,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

103-a-76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100

150,100

Loading Cycles

186

200,100

250,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 5.000E+05 4.000E+05 3.000E+05 201-a-76 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 202-a-76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

60,100

70,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 202-a-76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

Loading Cycles

187

50,100

60,100

70,100

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

301-a-76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100 120,100 140,100

Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 9.000E+05 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05 3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

302-a-76

50,100

100,100 150,100 200,100 250,100 300,100 350,100 Loading Cycles

Flexural Stiffness (lbf/in^2)

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

303-a-76

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100 150,100 200,100 250,100 300,100 350,100 Loading Cycles

188

Gravel Mixtures PG 64-22 Beam Fatigue Test Summary Long-term Aged Specimens Cummulative Cycles, N Dissipated Energy (in-lbf/in^3) 19,778 4,211.429 23,541 5,560.499 10,159 2,255.543 17,826 4,009 6,901 1,662 39 41

Percent Rap

Specimen

0%

1 2 3 Avg. Std. COV

10%

1 2 3 Avg. Std. COV

7,506 15,370 24,142 15,673 8,322 53

20%

1 2 3 Avg. Std. COV

30%

1 2 3 Avg. Std. COV

Long-term Aged Freeze Thaw Specimens Cummulative Cycles, N Stiffnes Dissipated Energy (in-lbf/in^3) 4,443 948.15 560,000.000 6,288 1,389.30 560,000.000 4,239 901.61 490,000.000 4,990 1,080 536,667 1,129 269 40,415 23 25 8

Stiffnes

Specimen

540,000.000 660,000.000 610,000.000 603,333 60,277 10

1 2 3 Avg. Std. COV

1,529.435 3,120.721 5,321.412 3,323.856 1,904.132 57.287

570,000.000 660,000.000 570,000.000 600,000.000 51,961.524 8.660

1 2 3 Avg. Std. COV

11,694 17,004 16,389 15,029 2,905 19

2,755.658 3,633.505 3,433.561 3,274.241 460.099 14.052

620,000.000 490,000.000 490,000.000 533,333.333 75,055.535 14.073

66,238 40,292 34,268 46,933 16,988 36

15,924.691 9,186.100 6,959.164 10,689.985 4,668.128 43.668

760,000.000 690,000.000 560,000.000 670,000.000 101,488.916 15.148

1 2 3 Avg. Std. COV

7,508 14,046 12,919 11,491 3,495 30

1,441.844 2,753.662 2,334.500 2,176.669 670.000 30.781

610,000.000 600,000.000 510,000.000 573,333.333 55,075.705 9.606

44,157 26,192 86,104 52,151.00 30,745.57 58.95

8,097.088 5,348.758 15,304.217 9,583.35 5,141.45 53.65

640,000.000 620,000.000 780,000.000 680,000.00 87,177.98 12.82

1 2 3 Avg. Std. COV

38,641 31,902 36,819 35,787.33 3,485.94 9.74

8,045.471 5,752.847 7,066.024 6,954.78 1,150.35 16.54

710,000.000 600,000.000 640,000.000 650,000.00 55,677.64 8.57

189

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

L064

2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

25,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

m064

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

25,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

NL064

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

2,100

4,100

6,100 Loading Cycles

190

8,100

10,100

12,100

Dissipated Energy (in-lbf/i

Dissipated Energy vs. Loading Cycles 2.500E-01 2.000E-01 1.500E-01 L1064 1.000E-01 5.000E-02 0.000E+00 100

1,100

2,100

3,100

4,100

5,100

6,100

7,100

8,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

M1064

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

NL1064

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

Loading Cycles

191

25,100

30,100

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L2064

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

60,100

70,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

M2064

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

R2064

2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100 15,100 20,100 25,100 30,100 35,100 40,100 Loading Cycles

192

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L3064

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

M306411

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

25,100

30,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 9.000E+05 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05 3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

R3064

20,100

40,100

60,100

Loading Cycles

193

80,100

100,100

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

L064FT

2.000E+05 1.000E+05 0.000E+00 100

1,100

2,100

3,100

4,100

5,100

Loading Cycles

Dissipated Energy (in-lbf/i

Dissipated Energy vs. Loading Cycles 2.500E-01 2.000E-01 1.500E-01 M064FT 1.000E-01 5.000E-02 0.000E+00 100

1,100

2,100

3,100

4,100

5,100

6,100

7,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

NM064FT

2.000E+05 1.000E+05 0.000E+00 100

1,100

2,100

3,100

Loading Cycles

194

4,100

5,100

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L1064FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

2,100

4,100

6,100

8,100

10,100

12,100

14,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

NM1064FT

2.000E+05 1.000E+05 0.000E+00 100

1,000

10,000

100,000

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

NR1064FT

2.000E+05 1.000E+05 0.000E+00 100

1,000

10,000

Loading Cycles

195

100,000

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L2064FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

1,100

2,100

3,100

4,100

5,100

6,100

7,100

8,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

M2064FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

2,100

4,100

6,100

8,100 10,100 12,100 14,100 16,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

R2064FT

2.000E+05 1.000E+05 0.000E+00 100

2,100

4,100

6,100

8,100

Loading Cycles

196

10,100

12,100

14,100

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L3064FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

M3064FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

25,100

30,100

35,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

R3064FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100 15,100 20,100 25,100 30,100 35,100 40,100 Loading Cycles

197

PG 76-22 Beam Fatigue Test Summary Long-term Aged Specimens Cummulative Cycles, N Stiffnes Dissipated Energy (in-lbf/in^3) 56,151 8,757.028 670,000.000 135,398 30,926.331 630,000.000 84,301 18,236.245 540,000.000 91,950 19,307 613,333 40,173 11,123 66,583 44 58 11

Percent Rap

Specimen

0%

1 2 3 Avg. Std. COV

10%

1 2 3 Avg. Std. COV

58,163 91,151 91,954 80,423 19,282 24

12,877.079 19,535.876 21,262.021 17,891.659 4,427.686 24.747

20%

1 2 3 Avg. Std. COV

99,316 96,272 66,539 87,376 18,109 21

30%

1 2 3 Avg. Std. COV

Specimen

Long-term Aged Freeze Thaw Specimens Cummulative Cycles, N Dissipated Energy (in-lbf/in^3)

Stiffnes

1 2 3 Avg. Std. COV

66,339 65,506 65,923 589 1

11,965.57 13,602.00 12,784 1,157 9

490,000 550,000.000 520,000 42,426 8

600,000.000 620,000.000 670,000.000 630,000.000 36,055.513 5.723

1 2 3 Avg. Std. COV

92,469 90,230 27,613 70,104 36,815 53

20,357.32 19,471.070 5,203.218 15,010.535 8,504.938 56.660

660,000.000 600,000.000 530,000.000 596,666.667 65,064.071 10.905

17,055.561 19,783.464 9,279.480 15,372.835 5,450.422 35.455

710,000.000 610,000.000 580,000.000 633,333.333 68,068.593 10.748

1 2 3 Avg. Std. COV

135,455 33,857 27,417 65,576 60,602 92

28,584.126 6,386.977 5,423.445 13,464.849 13,102.538 97.309

620,000.000 500,000.000 510,000.000 543,333.333 66,583.281 12.255

201,577

36,621.648

760,000.000

299,952 167,176.33 69,561.63 41.61

42,697.205 39,659.43 4,296.07 10.83

630,000.000 695,000.00 91,923.88 13.23

1 2 3 Avg. Std. COV

102,993 27,221 36,922 55,712.00 41,232.84 74.01

22,228.418 5,194.660 6,856.946 11,426.67 9,391.43 82.19

690,000.000 590,000.000 560,000.000 613,333.33 68,068.59 11.10

198

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

60,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

M076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100 40,100 60,100 80,100 100,100 120,100 140,100 160,100 Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

NR076

2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

Loading Cycles

199

80,100

100,100

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

NL1076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

60,100

70,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

NM1076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

NR1076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

1,000

10,000

Loading Cycles

200

100,000

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L2076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

120,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

M2076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

120,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

r2076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

Loading Cycles

201

50,100

60,100

70,100

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L3076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

50,100

100,100

150,100

200,100

250,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

R3076

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

1,000

10,000 Loading Cycles

202

100,000

1,000,000

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

M076FT

2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

50,100

60,100

70,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

R076FT

2.000E+05 1.000E+05 0.000E+00 100

10,100

20,100

30,100

40,100

Loading Cycles

203

50,100

60,100

70,100

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L1076FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

M1076FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

R1076FT

2.000E+05 1.000E+05 0.000E+00 100

5,100

10,100

15,100

20,100

Loading Cycles

204

25,100

30,100

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L2076FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100 40,100 60,100 80,100 100,10 120,10 140,10 160,10 0 0 0 0 Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

NM2076

2.000E+05 1.000E+05 0.000E+00 100

1,000

10,000

100,000

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

NR2076FT

2.000E+05 1.000E+05 0.000E+00 100

1,000

10,000

Loading Cycles

205

100,000

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 8.000E+05 7.000E+05 6.000E+05 5.000E+05 4.000E+05

L3076FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

20,100

40,100

60,100

80,100

100,100

120,100

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 7.000E+05 6.000E+05 5.000E+05 4.000E+05

NL3076FT

3.000E+05 2.000E+05 1.000E+05 0.000E+00 100

1,000

10,000

100,000

Loading Cycles

Flexural Stiffness (lbf/in

Flexural Stiffness vs. Loading Cycles 6.000E+05 5.000E+05 4.000E+05 3.000E+05

NM3076FT

2.000E+05 1.000E+05 0.000E+00 100

1,000

10,000

Loading Cycles

206

100,000

Appendix E: MTS Test Templates

207

Indirect Tensile Strength Test Template (IDT) TestWare-SX Procedure Name = IDT Default Procedure File Specification = C:\WINNT\Profiles\All Users\Start Menu\Programs\MTS Pavement Testing\4 in. IDT.000 IDT : Step Step Done Trigger 1 = Retract Step Done Trigger 2 = Stop Pre-load : Monotonic Command Start Trigger = Step Start End Trigger = Segment Shape = Ramp Rate = 5 ( lbf/Sec ) Control Channel 1 Control Mode = Force sg End level = -10 ( lbf ) Hold : Hold Command Start Trigger = Pre-load End Trigger = Hold Time = 1 ( Sec ) Control Channel 1 Control Mode = Force sg Dectect : Operator Event Start Trigger = Hold End Trigger = Button ID = Button 2 Single Shot = Yes Button Label = Start Description = Begin IDT Grab Focus = Yes IDT Test : Monotonic Command Start Trigger = Dectect End Trigger = Fail Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = -1.0 ( in ) 208

Data : Data Acquisition Start Trigger = Hold End Trigger = Mode = Timed Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Data Header = IDT Time Increment = 0.1 ( Sec ) Buffer Size = 1024 Peak : Data Acquisition Start Trigger = Hold End Trigger = Mode = Valley / Peak Buffer Type = Single Master Channel = Force Data Header = Ultimate Force Sensitivity = 100 ( lbf ) Buffer Size = 1024 Fail : Failure Detector Start Trigger = Hold End Trigger = Input Signal = Force Record Data = 0 Data Header = Event Type = Minimum Noise Bandwidth = 100 ( lbf ) Event Trigger = 10 % Retract : Monotonic Command Start Trigger = IDT Test End Trigger = Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in ) Stop : Operator Event Start Trigger = Step Start End Trigger = 209

Button ID = Button 1 Single Shot = Yes Button Label = Stop Description = Grab Focus = Yes

Recovery : Step Step Done Trigger 1 = Recover Recover : Monotonic Command Start Trigger = Step Start End Trigger = Segment Shape = Ramp Rate = 1.0 ( in/Sec ) Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in )

210

Semi-Circular Bending Strength Test Template (SCB IDT) TestWare-SX Procedure Name = Idt_Semi Default Procedure File Specification = C:\WINNT\Profiles\All Users\Start Menu\Programs\MTS Pavement Testing\SCB IDT.000 SCB IDT : Step Step Done Trigger 1 = Retract Step Done Trigger 2 = Stop Plot : Run-time Plotting Start Trigger = Step Start End Trigger = Title = Plot Title X Axis =X Channel = Time Scaling = Linear Minimum = 0.000000 Sec Maximum = 1.000000 Sec Y Axis =Y Channel 1 = Force Color = Red Style = Solid Channel 2 = Color = Blue Style = Solid Channel 3 = Color = Black Style = Solid Scaling = Linear Minimum = 0.000000 lbf Maximum = 224.808945 lbf X Axis Level Cross = Not Enabled Y Axis Level Cross = Not Enabled Reduce Rate on Decimation = Not Enabled Pre-load : Monotonic Command Start Trigger = Step Start End Trigger = Segment Shape = Ramp Rate = 5 ( lbf/Sec ) Control Channel 1 Control Mode = Force sg 211

End level

= -10 ( lbf )

Dectect : Operator Event Start Trigger = Pre-load End Trigger = Button ID = Button 2 Single Shot = Yes Button Label = Start Description = Begin IDT Grab Focus = Yes IDT Test : Monotonic Command Start Trigger = Dectect End Trigger = Fail Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = -0.5 ( in ) Data : Data Acquisition Start Trigger = Dectect End Trigger = Mode = Timed Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Data Header = IDT Time Increment = 0.2 ( Sec ) Buffer Size = 16000 Peak : Data Acquisition Start Trigger = Pre-load End Trigger = Mode = Valley / Peak Buffer Type = Single Master Channel = Force Data Header = Ultimate Force Sensitivity = 100 ( lbf ) Buffer Size = 1024 Fail : Failure Detector Start Trigger = Pre-load End Trigger = 212

Input Signal = Force Record Data = 0 Data Header = Event Type = Minimum Noise Bandwidth = 100 ( lbf ) Event Trigger = 10 % Retract : Monotonic Command Start Trigger = IDT Test End Trigger = Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in ) Stop : Operator Event Start Trigger = Step Start End Trigger = Button ID = Button 1 Single Shot = Yes Button Label = Stop Description = Grab Focus = Yes

Recovery : Step Step Done Trigger 1 = Recover Recover : Monotonic Command Start Trigger = Step Start End Trigger = Segment Shape = Ramp Rate = 1.0 ( in/Sec ) Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in )

213

Semi-Circular Bending Fatigue Test Template (SCB Fatigue) TestWare-SX Procedure Name = 5 Hz SCB Fatigue Default Procedure File Specification = C:\WINNT\Profiles\All Users\Start Menu\Programs\MTS Pavement Testing\5 Hz SCB Fatigue.000 5 Hz SCB Fatigue Test : Step Step Done Trigger 1 = Unload Real Time Plot : Run-time Plotting Start Trigger = Step Start End Trigger = Title = Plot Title X Axis =X Channel = Time Scaling = Linear Minimum = 0.000000 Sec Maximum = 1.000000 Sec Y Axis =Y Channel 1 = LVDT B Color = Red Style = Solid Channel 2 = Color = Blue Style = Solid Channel 3 = Color = Black Style = Solid Scaling = Linear Minimum = 0.000000 in Maximum = 0.039370 in X Axis Level Cross = Not Enabled Y Axis Level Cross = Not Enabled Reduce Rate on Decimation = Not Enabled Pre Load : Monotonic Command Start Trigger = Step Start End Trigger = Segment Shape = Ramp Rate = 5 ( lbf/Sec ) Control Channel 1 Control Mode = Force sg End level = -10 ( lbf ) 214

Initial Cycles : Cyclic Command Start Trigger = Pre Load End Trigger = Segment Shape = Haversine Frequency = 5 ( Hz ) Repeats = 2 cycles Compensation = None Control Channel 1 Control Mode = Force sg End level 1 = -Enter Desired Load (From SCB IDT Test), ( lbf ) End level 2 = -10 ( lbf ) Initial Data : Data Acquisition Start Trigger = Pre Load End Trigger = Mode = Peak / Valley Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Slave Channel 3 = LVDT B Slave Channel 4 = Control Channel 1 Segments Data Header = Initial Data Sensitivity = 100 ( lbf ) Buffer Size = 6 Cycle Process : Cyclic Command Start Trigger = Initial Cycles End Trigger = Segment Shape = Haversine Frequency = 5 ( Hz ) Repeats = 200000 cycles Compensation = None Control Channel 1 Control Mode = Force sg End level 1 = - Enter Desired Load (From SCB IDT Test), ( lbf ) End level 2 = -10 ( lbf ) Counting Process : Data Acquisition Start Trigger = Initial Cycles End Trigger = Mode = Level Crossing Buffer Type = Trigger only Master Channel = Control Channel 1 Segments 215

Slave Channel 1 = Time Slave Channel 2 = Displacement Slave Channel 3 = Force Slave Channel 4 = LVDT A Data Header = Count Segments Level Increment = 100 cycles Buffer Size = 1 Data Acquisition Process : Data Acquisition Start Trigger = Counting Process End Trigger = Mode = Peak / Valley Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Slave Channel 3 = LVDT B Slave Channel 4 = Control Channel 1 Segments Data Header = Cycles of Data Sensitivity = 100 ( lbf ) Buffer Size = 6 Unload : Monotonic Command Start Trigger = Cycle Process End Trigger = Segment Shape = Ramp Rate = 1.0 ( in/Sec ) Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in )

216

Semi-Circular Bending Notched IDT Test Template (SCB Notched IDT)

TestWare-SX Procedure Name = Notched IDT Default Procedure (modified) File Specification = C:\WINNT\Profiles\All Users\Start Menu\Programs\MTS Pavement Testing\Notched IDT.000 SCB Notched IDT : Step Step Done Trigger 1 = Retract Step Done Trigger 2 = Stop Plot : Run-time Plotting Start Trigger = Step Start End Trigger = Title = Plot Title X Axis =X Channel = Time Scaling = Linear Minimum = 0.000000 Sec Maximum = 1.000000 Sec Y Axis =Y Channel 1 = Force Color = Red Style = Solid Channel 2 = Color = Blue Style = Solid Channel 3 = Color = Black Style = Solid Scaling = Linear Minimum = 0.000000 lbf Maximum = 224.808945 lbf X Axis Level Cross = Not Enabled Y Axis Level Cross = Not Enabled Reduce Rate on Decimation= Not Enabled Pre-load : Monotonic Command Start Trigger = Step Start End Trigger = Segment Shape = Ramp Rate = 5 ( lbf/Sec ) Control Channel 1 217

Control Mode = Force sg End level = -10 ( lbf ) Dectect : Operator Event Start Trigger = Pre-load End Trigger = Button ID = Button 2 Single Shot = Yes Button Label = Start Description = Begin IDT Grab Focus = Yes IDT Test : Monotonic Command Start Trigger = Dectect End Trigger = Fail Segment Shape = Ramp Rate = 0.02 in/Min Control Channel 1 Control Mode = Disp sg End level = -0.5 ( in ) Data : Data Acquisition Start Trigger = Dectect End Trigger = Mode = Timed Buffer Type = Single Master Channel = Force Slave Channel 1 = Time Slave Channel 2 = Displacement Data Header = IDT Time Increment = 0.2 ( Sec ) Buffer Size = 16000 Peak : Data Acquisition Start Trigger = Pre-load End Trigger = Mode = Valley / Peak Buffer Type = Single Master Channel = Force Data Header = Ultimate Force Sensitivity = 100 ( lbf ) Buffer Size = 1024 Fail : Failure Detector Start Trigger = Pre-load 218

End Trigger = Input Signal = Force Record Data = 0 Data Header = Event Type = Minimum Noise Bandwidth = 100 ( lbf ) Event Trigger = 10 % Retract : Monotonic Command Start Trigger = IDT Test End Trigger = Segment Shape = Ramp Rate = 2 in/Min Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in ) Stop : Operator Event Start Trigger = Step Start End Trigger = Button ID = Button 1 Single Shot = Yes Button Label = Stop Description = Grab Focus = Yes

Recovery : Step Step Done Trigger 1 = Recover Recover : Monotonic Command Start Trigger = Step Start End Trigger = Segment Shape = Ramp Rate = 0.9999999 ( in/Sec ) Control Channel 1 Control Mode = Disp sg End level = 0.1 ( in )

219

Flexural Beam Fatigue Test TestWare-SX Procedure Name = Asphalt Flexural Fatigue Test Default Procedure File Specification = C:\TS2\MTS Pavement Testing\Asphalt Flexural Fatigue Test.000 Software Version = 4.0C Pre-test Information : Step Step Done Trigger 1 = Operator Initiate Test Record Test Type : Program Control Start Trigger = Step Start End Trigger = Action = Message Only Message = KEY_TEST_TYPE ASPHALT_FLEX_FATIGUE

This is a keyword phrase that gets written to the data file only. Do not change it. Send To: Screen = No LUC Display = No Data File = Yes Pre-test Information : Operator Information Start Trigger = Step Start End Trigger = Form fields Label = ~~~Pre-test Specimen Characteristics~~~ Default Entry = Type = String Attribute = Non-Editable Label = Identifier Default Entry = Type = String Attribute = Non-Blank Label = Age Default Entry = Type = String Attribute = None Label

=

Width 220

Default Entry = 2.5 ( in ) Minimum = 0 ( in ) Type = Real Attribute = Non-Blank Label = Height Default Entry = 1.968504 ( in ) Minimum = 0 ( in ) Type = Real Attribute = Non-Blank Label = Distance Between Outside Clamps [L] Default Entry = 14.05512 ( in ) Minimum = 0 ( in ) Type = Real Attribute = Non-Blank Label = Distance Between Inside Clamps [a] Default Entry = 4.68504 ( in ) Minimum = 0 ( in ) Type = Real Attribute = Non-Blank Label = ~~~Additional Pre-test Information~~~ Default Entry = Type = String Attribute = Non-Editable Label = Test Date Default Entry = Type = String Attribute = Non-Blank Label = Test Temperature Default Entry = 67.99995 ( deg_F ) Type = Real Attribute = Non-Blank

Operator Initiate Test : Operator Event Start Trigger = Pre-test Information End Trigger = Button ID = Button 1 Single Shot = Yes Button Label = Start 221

Description Grab Focus

= Press to start the test. = Yes

Test Execution : Step Step Done Trigger 1 = Cyclic Command Step Done Trigger 2 = Operator Terminate Test Cyclic Command : Cyclic Command Start Trigger = Step Start End Trigger = Dynamic Properties Monitor Segment Shape = Haversine Frequency = 5 -10 ( Hz ) Repeats = 1000000 cycles Compensation = Phase/Amplitude (PAC) Control Channel 1 Control Mode = Disp sg End level 1 = -Enter Desired Strain Level ( in ) End level 2 = Enter Desired Strain Level ( in ) Trigger Dynamic Properties Monitor : Data Limit Detector Start Trigger = Step Start End Trigger = Data Channel = Control Channel 1 Segments Limit Value = 50 cycles Limit Value is = Relative Detector Options = Greater than Limit Value Trigger Option = Trigger Once Dynamic Properties Monitor : Dynamic Property Monitor Start Trigger = Trigger Dynamic Properties Monitor End Trigger = Control Channel = Control Channel 1 Force Sensor = Force Length Sensor = Displacement Plot Update Rate = 20 cycles Reduce Plot Rate When Decimation Occurs = Yes Save Data = Yes X Axis Scaling = Logarithmic K* Axis Scaling Minimum = 0 ( lbf/in ) Maximum = 5.710147 ( lbf/in ) Limit Detector = Relative Minimum = 50 % 222

Maximum Auto Scaling Phase Axis Scaling Minimum Maximum Limit Detector Minimum Maximum Auto Scaling Displacement Axis Scaling Minimum Maximum Limit Detector Minimum Maximum Auto Scaling Load Axis Scaling Minimum Maximum Limit Detector Minimum Maximum Auto Scaling Total Energy Axis Scaling Minimum Maximum Limit Detector Minimum Maximum Auto Scaling

= Off = Yes

= -1 ( deg ) = 1 ( deg ) = Absolute = Off = Off = Yes

= 0 ( in ) = 0.0003937008 ( in ) = Absolute = Off = Off = Yes

= 0 ( lbf ) = 2.248089 ( lbf ) = Absolute = Off = Off = Yes

= 0 ( in-lbf ) = 0.0008850746 ( in-lbf ) = Absolute = Off = Off = Yes

Operator Terminate Test : Operator Event Start Trigger = Step Start End Trigger = Button ID = Button 1 Single Shot = Yes Button Label = Terminate Description = Press to terminate the test. Grab Focus = Yes

223

Go To Zero Load : Step Step Done Trigger 1 = Go To Zero Load Go To Zero Load : Monotonic Command Start Trigger = Step Start End Trigger = Segment Shape = Ramp Time = 2 ( Sec ) Control Channel 1 Control Mode = Disp sg End level = 0 ( in )

Post-test Information : Step Step Done Trigger 1 = Post-test Information Post-test Information : Operator Information Start Trigger = Step Start End Trigger = Form fields Label = ~~~Post-test Observations~~~ Default Entry = Type = String Attribute = Non-Editable Label = Specimen Appearance Default Entry = Type = String Attribute = None Label = Test Completion Status Default Entry = Normal Type = String Attribute = None Label = Additional Comments Default Entry = Type = String Attribute = None

224

Vita William R. Kingery III was born in Roanoke, Virginia on October 18, 1978. He attended Franklin County High School where he graduated in 1997. Upon completion of high school he attended Virginia Western Community College for one year. In the fall of 1998 he enrolled at the University of Tennessee, Knoxville (UTK) to pursue a degree in Civil Engineering. While in college he worked part time for Stone Engineering, Inc. of Rocky Mount, VA. In May of 2002 he received a Bachelor of Science degree in Civil Engineering from UTK. After graduation he enrolled in graduate school at UTK to pursue a degree in Pavement Engineering. He received his Master’s of Science in Civil Engineering from UTK in May 2004.

225

Suggest Documents