L6386 HIGH-VOLTAGE HIGH AND LOW SIDE DRIVER

L6386 ® HIGH-VOLTAGE HIGH AND LOW SIDE DRIVER HIGH VOLTAGE RAIL UP TO 600V dV/dt IMMUNITY +- 50 V/nsec iN FULL TEMPERATURE RANGE DRIVER CURRENT CAPA...
Author: Cori Taylor
21 downloads 0 Views 135KB Size
L6386

®

HIGH-VOLTAGE HIGH AND LOW SIDE DRIVER HIGH VOLTAGE RAIL UP TO 600V dV/dt IMMUNITY +- 50 V/nsec iN FULL TEMPERATURE RANGE DRIVER CURRENT CAPABILITY: 400 mA SOURCE, 650 mA SINK SWITCHING TIMES 50/30 nsec RISE/FALL WITH 1nF LOAD CMOS/TTL SCHMITT TRIGGER INPUTS WITH HYSTERESIS AND PULL DOWN UNDER VOLTAGE LOCK OUT ON LOWER AND UPPER DRIVING SECTION INTEGRATED BOOTSTRAP DIODE OUTPUTS IN PHASE WITH INPUTS DESCRIPTION The L6386 is an high-voltage device, manufactured with the BCD "OFF-LINE" technology. It has a Driver structure that enables to drive indeBLOCK DIAGRAM

(s)

BOOTSTRAP DRIVER

VCC 4

HIN

UV DETECTION

o r P e

3

t e l o

SD

bs

O

LIN

2

ct

du

SO14

DIP14

ORDERING NUMBERS: L6386D

c u d

o r P

pendent referenced Channel Power MOS or IGBT. The Upper (Floating) Section is enabled to work with voltage Rail up to 600V. The Logic Inputs are CMOS/TTL compatible for ease of interfacing with controlling devices.

e t le

o s b O -

Vboot 14

UV DETECTION

H.V. HVG DRIVER

R R

LEVEL SHIFTER

) s t(

L6386

CBOOT

HVG

13

S

OUT VCC

LOGIC

12

TO LOAD LVG

LVG DRIVER

9 PGND 8

1 VREF

-

5

DIAG

+ SGND

7

6

CIN

D97IN520D

July 1999

1/10

L6386

ABSOLUTE MAXIMUM RATINGS Symbol

Value

Unit

Vout

Output Voltage

Parameter

-3 to Vboot - 18

V

Vcc

Supply Voltage

- 0.3 to +18

V

Vboot

Floating Supply Voltage

-1 to 618

V

Vhvg Vlvg

Upper Gate Output Voltage Lower Gate Output Voltage

- 1 to Vboot -0.3 to Vcc +0.3

V V

Vi Vdiag

Logic Input Voltage Open Drain Forced Voltage

-0.3 to Vcc +0.3 -0.3 to Vcc +0.3

V V

Vcin

Comparator Input Voltage

-0.3 to Vcc +0.3

V

dVout/dt

Allowed Output Slew Rate

50

V/ns

Total Power Dissipation (Tj = 85 °C) Junction Temperature

750 150

mW °C

-50 to 150

°C

Ptot Tj Ts

Storage Temperature

Note: ESD immunity for pins 12, 13 and 14 is guaranteed up to 900V (Human Body Model)

PIN CONNECTION LIN

1

14

Vboot

SD

2

13

HVG

HIN

3

12

OUT

c u d

e t le

VCC

4

11

N.C.

DIAG

5

10

N.C.

CIN

6

9

LVG

SGND

7

8

PGND

o s b O -

) s t(

o r P

D97IN521A

THERMAL DATA

) s ( ct

Symbol Rth j-amb

Parameter

Thermal Resistance Junction to Ambient

u d o

PIN DESCRIPTION N. 1 2 3 4 5 6 7 8 9 10, 11 12 13 14

Name LIN SD (*) HIN VCC DIAG CIN SGND PGND LVG (*) N.C. OUT HVG (*) Vboot

r P e

t e l o

s b O

Type I I I I O I

O O O

SO14

DIP14

Unit

165

100

°C/W

Function

Lower Driver Logic Input Shut Down Logic Input Upper Driver Logic Input Low Voltage Supply Open Drain Diagnostic Output Comparator Input Ground Power Ground Low Side Driver Output Not Connected Upper Driver Floating Driver High Side Driver Output Bootstrapped Supply Voltage

(*) The circuit guarantees 0.3V maximum on the pin (@ Isink = 10mA), with VCC >3V. This allows to omit the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low; the gate driver assures low impedance also in SD condition.

2/10

L6386 RECOMMENDED OPERATING CONDITIONS Symbol

Pin

Vout

12

Output Voltage

Note1

580

V

VbootVout

14

Floating Supply Voltage

Note1

17

V

4

Switching Frequency Supply Voltage

400 17

kHz V

125

°C

fsw Vcc

Parameter

Test Condition

Min.

HVG,LVG load CL = 1nF

Junction Temperature

Tj

Typ.

-45

Max.

Unit

Note 1: if the condition Vboot - Vout < 18V is guaranteed, Vout can range from -3 to 580V.

ELECTRICAL CHARACTERISTICS AC Operation (Vcc = 15V; Tj = 25°C) Symbol

Pin

ton

1.3 vs 9, 13

Parameter

Typ.

Max.

Unit

Vout = 0V

Test Condition

Min.

110

150

ns

Vout = 0V

105

150

ns

Vout = 0V

105

150

ns

tsd

2 vs 9,13

High/Low Side Driver Turn-On Propagation Delay High/Low Side Driver Turn-Off Propagation Delay Shut Down to High/Low Side Propagation Delay

tr

13,9

Rise Time

CL = 1000pF

50

tf

13,9

Fall Time

CL = 1000pF

30

toff

c u d

DC Operation (Vcc = 15V; Tj = 25°C) Symbol Pin Parameter Low Supply Voltage Section Vcc 4 Supply Voltage Vccth1 Vcc UV Turn On Threshold Vccth2 Vcc UV Turn Off Threshold Vcchys Vcc UV Hysteresis Iqccu Undervoltage Quiescent Supply Current Iqcc Quiescent Current Bootstrapped Supply Section Vboot 14 Bootstrapped Supply Voltage Vbth1 Vboot UV Turn On Threshold Vbth2 Vboot UV Turn Off Threshold Vbhys Vboot UV Hysteresis Iqboot Vboot Quiescent Current Ilk Leakage Current Rdson Bootstrap Driver on Resistance (*) Driving Buffers Section Iso 9, 13 High/Low Side Driver Short Circuit Source Current Isi High/Low Side Driver Short Circuit Sink Current Logic Inputs Vil 1,2,3 Low Level Logic Threshold Voltage Vih High Level Logic Threshold Voltage Iih High Level Logic Input Current Iil Low Level Logic Input Current

(s)

e t le

Test Condition

o s b O -

r P e

t e l o

s b O

(*) RDSON is tested in the following way: RDSON =

Min.

Typ.

11.5 9.5

12 10 2 200 250

Vcc ≤ 11V Vcc = 15V

ct

u d o

o r P

ns

Max.

Unit

17 12.5 10.5

V V V V µA µA

320

125 300

400

mA

500

650

mA

Vout = Vboot Vout = Vboot = 600V Vcc ≥ 12.5V; Vin = 0V

11.9 9.9 2

17 12.9 10.7 200 10

1.5 3.6 VIN = 15V VIN = 0V

ns

V V V V µA µA Ω

10.7 8.8

VIN = Vih (tp < 10µs)

) s t(

50

70 1

V V µA µA

(VCC − VCBOOT1) − (VCC − VCBOOT2) I1(VCC,VCBOOT1) − I2(VCC,VCBOOT2)

where I1 is pin 8 current when VCBOOT = VCBOOT1, I2 when VCBOOT = VCBOOT2.

3/10

L6386 DC OPERATION (continued) Symbol

Pin

Parameter

Test Condition

Min.

Typ.

Max.

Unit

10

mV

Sense Comparator Vio

Input Offset Voltage

-10 Vcin ≥ 0.5

Iio

6

Input Bias Current

Vol

2

Open Drain Low Level Output Voltage, Iod = -2.5mA

Vref

µA

0.2

Comparator Reference voltage

0.460

0.5

0.8

V

0.540

V

Figure 1. Timing Waveforms HIN LIN

SD

c u d

HOUT LOUT

e t le

VREF VCIN

DIAG

) s ( ct

) s t(

o r P

o s b O -

D97IN522A

Note: SD active condition is latched until next negative IN edge.

u d o

Figure 2. Typical Rise and Fall Times vs. Load Capacitance

Figure 3. Quiescent Current vs. Supply Voltage

time (nsec)

Iq (µA) 104

250

D99IN1054

t e l o

s b O 200

r P e

Tr

D99IN1057

103

150

Tf 100

102

50 0

4/10

10 0 1 2 3 4 5 C (nF) For both high and low side buffers @25˚C Tamb

0

2

4

6

8

10

12

14

16 VS(V)

L6386 BOOTSTRAP DRIVER A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (fig. 4a). In the L6386 a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low side driver (LVG), with in series a diode, as shown in fig. 4b An internal charge pump (fig. 4b) provides the DMOS driving voltage . The diode connected in series to the DMOS has been added to avoid undesirable turn on of it. CBOOT selection and charging: To choose the proper CBOOT value the external MOS can be seen as an equivalent capacitor. This capacitor CEXT is related to the MOS total gate charge : CEXT =

supply 1µC to CEXT. This charge on a 1µF capacitor means a voltage drop of 1V. The internal bootstrap driver gives great advantages: the external fast recovery diode can be avoided (it usually has great leakage current). This structure can work only if VOUT is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (Tcharge ) of the CBOOT is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor. The bootstrap driver introduces a voltage drop due to the DMOS RDSON (typical value: 125 Ohm). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account. The following equation is useful to compute the drop on the bootstrap DMOS: Vdrop = IchargeRdson → Vdrop =

Qgate Vgate

The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss . It has to be: CBOOT>>>CEXT

) s ( ct

d o r

u d o

r P e

Qgate

Tcharge

Rdson

where Qgate is the gate charge of the external power MOS, Rdson is the on resistance of the bootstrap DMOS, and Tcharge is the charging time of the bootstrap capacitor. For example: using a power MOS with a total gate charge of 30nC the drop on the bootstrap DMOS is about 1V, if the Tcharge is 5µs. In fact:

P e let

o s b O -

e.g.: if Qgate is 30nC and Vgate is 10V, CEXT is 3nF. With CBOOT = 100nF the drop would be 300mV. If HVG has to be supplied for a long time, the CBOOT selection has to take into account also the leakage losses. e.g.: HVG steady state consumption is lower than 200µA, so if HVG TON is 5ms, CBOOT has to

uc

) s t(

Vdrop =

30nC ⋅ 125Ω ~ 0.8V 5µs

Vdrop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode can be used.

Figure 4. Bootstrap Driver.

s b O

t e l o

DBOOT

VS

VBOOT

VBOOT

VS

H.V.

H.V. HVG

HVG

CBOOT VOUT

VOUT TO LOAD

TO LOAD

LVG

a

CBOOT

LVG

b

D99IN1056

5/10

L6386 Figure 5. Turn On Time vs. Temperature

Figure 8. VBOOT UV Turn On Threshold vs. Temperature 15

250

@ Vcc = 15V

13 Vbth1 (V)

Ton (ns)

@ Vcc = 15V

14

200 150 Typ.

100

12

Typ.

11 10 9

50

8 0

7 -45

-25

0

25 50 Tj (°C)

75

100

125

Figure 6. Turn Off Time vs. Temperature

-45

@ Vcc = 15V

14

Vbth2 (V)

Toff (ns)

13

150 Typ.

100

75

100

125

) s t(

e t le

12

o r P

@ Vcc = 15V

o s b O 11

Typ.

10 9

50

) s ( ct

0 -45

-25

0

25 50 Tj (°C)

75

100

r P e

Figure 7. Shutdown Time vs. Temperature

t e l o

250

-45

-25

0

25 50 Tj (°C)

75

100

125

3

@ Vcc = 15V

@ Vcc = 15V

Vbhys (V)

2.5

150 100

7

Figure 10. VBOOT UV Hysteresis

bs 200

8

125

u d o

tsd (ns0

25 50 Tj (°C)

c u d

15

200

Typ.

2

Typ.

1.5

50 0

1 -45

6/10

0

Figure 9. VBOOT UV Turn Off Threshold vs. Temperature

250

O

-25

-25

0

25 50 Tj (°C)

75

100

125

-45

-25

0

25 50 Tj (°C)

75

100

125

L6386 Figure 11. Vcc UV Turn On Threshold vs. Temperature

Figure 14. Output Source Current vs. Temperature

15

1000

14

800

13

current (mA)

Vccth1(V)

@ Vcc = 15V

Typ.

12 11

Typ.

400 200

10 9

0 -45

-25

0

25 50 Tj (°C)

75

100

125

Figure 12. Vcc UV Turn Off Threshold vs. Temperature

-45

-25

0

25 50 Tj (°C)

75

c u d

100 125

) s t(

Figure 15. Output Sink Current vs. Temperature

12

1000

11

800 current (mA)

Vccth2(V)

600

10 Typ.

9

Typ.

e t le

600

o r P

@ Vcc = 15V

o s b O 400 200

8 7 -45

-25

0

25

50

) s ( ct

75

u d o

Tj (°C)

100

125

0 -45

-25

0

25 50 Tj (°C)

75

100

125

r P e

Figure 13. Vcc UV Hysteresis vs. Temperature

t e l o

3

s b O Vcchys (V)

2.5

Typ.

2

1.5

1 -45

-25

0

25 50 Tj (°C)

75

100 125

7/10

L6386

mm

DIM. MIN. a1

0.51

B

1.39

TYP.

inch MAX.

MIN.

TYP.

MAX.

0.020 1.65

0.055

0.065

b

0.5

0.020

b1

0.25

0.010

D

20

0.787

E

8.5

0.335

e

2.54

0.100

e3

15.24

0.600

F

7.1

0.280

I

5.1

0.201

L

3.3

Z

1.27

2.54

0.050

r P e

8/10

o r P DIP14 e let

0.100

u d o

t e l o

c u d

0.130

) s ( ct

s b O

OUTLINE AND MECHANICAL DATA

o s b O -

) s t(

L6386 mm

DIM. MIN..

TYP.

A

inch MAX..

MIN..

TYP.. MAX..

a1

1.75 0.1

0.069

0.25

a2

0.004

0.009

1.6

0.063

b

0.35

0.46

0.014

0.018

b1

0.19

0.25

0.007

0.010

C

0.5

c1

OUTLINE AND MECHANICAL DATA

0.020 45˚ (typ.)

D (1)

8.55

8.75

0.336

0.344

E

5.8

6.2

0.228

0.244

e

1.27

0.050

e3

7.62

0.300

F (1)

3.8

4

0.150

0.157

G L

4.6

5.3

0.181

0.209

0.4

1.27

0.016

0.050

M

0.68

0.027

e t le

(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

) s ( ct

o r P

SO14

8˚ (max.)

S

c u d

) s t(

o s b O -

u d o

r P e

t e l o

s b O

9/10

L6386

c u d

e t le

) s ( ct

) s t(

o r P

o s b O -

u d o

r P e

t e l o

s b O

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com

10/10

Suggest Documents