Kinematics of Particles

Dynamics FE Review For rectilinear motion - motion in a straight line - where the position is defined by s: Mechanics Response of mass (body) to me...
Author: Hugo Heath
2 downloads 0 Views 4MB Size
Dynamics FE Review

For rectilinear motion - motion in a straight line - where the position is defined by s:

Mechanics

Response of mass (body) to mechanical disturbance

Statics

Dynamics

Analysis of body at rest

Kinematics

Video 2011

v

Analysis of body in motion

Kinetics

Geometry of motion— no concern for forces that caused motion

1

Find: v(t) and a(t) Solution:

dv dt

Where v is the instantaneous velocity, a is the instantaneous acceleration, and t is time. 2011

3

Given: Position of a car is described by s  3t 3  t 2 m.

For a particle whose position is defined by the vector r:

a

a ds  v dv

2011

• Fundamental equations of motion

dr dt

dv dt

Example Problem:

Kinematics of Particles

v

a

Note: Instead of s, the position could be defined by x, y, etc.

Relation between force, mass, and motion

Figures and problems taken from the textbook Dynamics, 5th edition, Meriam and Kraige, Wiley.

ds dt

2

2011

v

ds : dt

v  9t 2  2t m/s

a

dv : dt

a  18t  2

m/s 2 4

1

Example Problem:

So, we start with

Given: Acceleration of a car is given by:

a(t ) 

dv dt

Note we wrote the acceleration as a(t) to emphasize the fact that a is a function of t.

Then: dv  a( t ) dt

a( t )  3t 2  5t  1 m/ m/s2

v

t

v0

0

 dv   a(t ) dt

At t = 0, v0 = 4 m/s Find: Velocity (v) when t=3 s.

t

v  v0   a( t ) dt 0

This gives us v as a function of time or v(t) 2011

5

2011

t

v( t )  v0   a(t ) dt 0

7

t

First, look for a fundamental equation that contains both a, t and v.

v( t )  v0   a(t ) dt 0

So for a(t) = 3t2+5t+1 5t 1, v0 = 4 m/s, and t = 3 s

v

ds dt

a

dv dt

t

v  4   (3t 2  5t  1) dt

a ds  v dv

0

3

 3t 3 5t 2    t v  4 2  3 0 v  56.5 m/s 2011

6

2011

8

2

For uniformly accelerated rectilinear (UARM) motion (a=constant) the following equations apply:

– If the acceleration is constant, we can apply the UARM equations in the x and y directions. For the x direction

v  v0  a (t  t0 )

a (t  t0 ) s  s0  v0 (t  t0 )  2

vy   vy   ayt

vx   vx 0  axt

2

at x  x0   vx 0 t  x 2

v  v  2a  s  s0  2

For the y direction 0

2

y  y0   v y  t 

ayt 2

0

2

vx 2   vx 0  2ax  x  x0  v y 2   v y 0  2a y  y  y0 

2 0

2

2

THESE ONLY APPLY IF THE ACCELERATION IS CONSTANT!!! 2011

9

2011

Note: This is for t0 = 0. If t0 = 0 then replace t with t-t0

– Projectile Motion using Rectangular Coordinates

• Curvilinear Motion Using Rectangular Coordinates (x-y) – Useful when the position (r) is given in rectangular coordinates

ax = 0 ay = -g

Fig 2/7 Meriam and Kraige

v

11

dr  xi  y j dt

Fig 2/8 Meriam and Kraige

For the x direction

vx   vx 0

dv a   xi   yj dt

x  x0   vx 0 t

For the

y direction

v y   v y   gt 0

y  y0   v y  t  0

gt 2 2

v y 2   v y   2 g  y  y0  2

2011

10

2011

0

12

3

• Curvilinear Motion Using NormalTangential (Path) Coordinates (n-t)

Example: Given: Projectile fired off a cliff as shown

– Useful when the path is given, especially the curvature of the path

y

et

180 m/s

o

ymax

30º

x

en

150 m

x at impact Fig g 2/9 Meriam and Kraige g

Find: x at impact and

v  vet

ymax 2011

13

a

v2



en  vet

an 

v2



at  v

2011

15

– Special Case: Circular motion using n-t coordinates  = constant = r Angular position given i b by 

v  r v2  r 2  v r at  v  r an 

note:    and    Fig 2/12 Meriam and Kraige 2011

14

2011

16

4

Example: Car on the circular part of track

For Curvilinear Motion Using Polar Coordinates:

Given: FAS, r = 200 m, v = 50 m/s, at = 2 m/s2

v  rer  reθ

et





er

e

en



For circular motion:

r  0  r 0

r

note:   

Find: a Fig P2/144 Meriam and Kraige

2011



a   r  r 2 er  r  2r eθ

17

and   

2011

19

Kinetics of Particles • Kinetics: Relations between forces and motion. • Newton’s Second Law: The acceleration of a particle is proportional to the resulting force acting on it and is in the direction of this force. force (assumes m is constant) F  ma



• FBD: You must be able to draw good free body diagrams! 2011

18

2011

20

5

• Rectangular Coordinates (Cartesian)

• Polar Coordinates (Radial/Transverse)

For particle P: y

F2

For particle A:

 F  ma  F  ma i  ma j

F3

x

F3

F2

y

 F  ma  F  ma e

r r

 ma e

P F1

Scalar components: x

F F

x y

 ma y

r

Fig 2-13 Meriam and Kraige

21

• Normal/Tangential Coordinates (Path) F2

F1

n n

r

2011

23

– Units

For particle C:

 F  ma  F  ma e

 F  ma  m  r  r   F  ma  m  r  2r  2

 ma x

2011

F3

Scalar components:

F1

Force A Acceleration l ti Mass g

 mat et

Scalar components:

SI

US

N m/s / 2 kg 9.81 m/s2

lb 2 ft/ ft/sec slug (32.2 lbm) 32.2 ft/sec2

Fig 2-9 Meriam and Kraige

F

n

 ma n  m

 F  ma t

2011

t

v2

a = 1 m/s2



F=1N m=1 kg

 mv 22

2011

a = 1 ft/sec2 F

F = 1 lb m=1 slug

24

6

Example Problem: Textbook 3/12

Example Problem: Textbook 3/1

2011

2011

25

3/1

Given:

Find:

2011

27

3/12

FAS v0 = 7 m/s at x0 = 0 k = 0.4, m = 50 kg

Given:

FAS, W = 100 lb ft/sec c2 up incline nc n a = 5 ft/s k = 0.25

Find:

P

t and x when v = 0

26

2011

28

7

Example Problem: Textbook 3/54

Example Problem:Textbook 3/50

2011

29

3/50

Given:

FAS, m = 2 kg vB = 3.5 m/s  = 2.4 24m

Find:

NB and vA such that NA = 0

2011

2011

31

3/54

30

Given:

FAS, W = 0.2 lb  = 30  = 3 rad/sec ccw r = -4 ft/sec

Find:

N

2011

32

8

Example Problem: Textbook 3/56

Work/Energy • We have been using the direct application of Newton’s Second Law to solve kinetics problems.

 F  ma

Forces

Acceleration

Motion

This method of solution can be very difficult sometimes! 2011

33

3/56

2011

35

• Work/Energy methods: – These methods will make it MUCH EASIER to solve some kinetics problems! – Definition of work:

Given:

FAS,, W = 3000 lb r = 100 ft, v = 35 mi/hr

Find:

aN, FN

2011

U

• Component of force acting in the direction of motion times the displacement. • Units: SI N•m = J US

34

2011

ft•lb

36

9

– Conservative force: Work done by a conservative force is independent of path.

Consider a particle moving along the path from A to A r2

• The work only depends on the starting and ending positions! • When a p particle moves under the influence f of fa conservative force:

SCALAR!

U   F  dr r1

If we let |dr| = ds

U 1 2  V1  V2

s2

U   Ft ds Sign convention: Positive if active force (Ft) is in the direction of motion and negative if it is in the opposite direction

2011

Then:

37

V g  mgh from the datum. + if above datum - if below datum

Ve 

39

T1  V g 1  Ve1  U 1 2  T2  V g 2  Ve 2

h is measured

Spring:

T1  V g 1  Ve1  U 1 2  T2  V g 2  Ve 2

This is the fundamental equation for applying the work/energy method.

• Energy available due to position

datum

U12

2011

– Potential Energy: (V) Gravity:

T1  V1  T2  V2

•Work done by nonconservative forces:

s1

Fig 3-2 Meriam and Kraige

and

The FE reference handbook gives the equation in this form:

1 2 kx 2

T1  U 1  W1 2  T2  U 2

Fig 33-6 6 Meriam and Kraige

- Kinetic Energy: (T) 2011

T 

Whenever you have conservative forces doing work -- gravity and springs -- consider using the work/energy method.

1 mv 2 2 38

2011

40

10

Example Problem: Textbook Sample 3/17

Example Problem: Textbook 3/104

2011

2011

41

Sample 3/17

3/104

Given: FAS, vA = 5 m/s, hA = 0, hB = 0.8 m Find: vB

Given: FAS, mg = 6 lb, k = 2 lb/in, unstretched length = 24 in, vA = 0 Find:

2011

43

42

vB

2011

44

11

Example Problem: Textbook 3/144

Impulse/Momentum

• In some situations, the FORCES are described as acting over an interval of TIME. Impulse/Momentum methods work well in these cases.

2011

45

3/144

2011

47

•Linear Impulse - Linear Momentum Define:

t2

  Fdt  Linear Impulse

VECTOR!

t1

m v  G  Linear Momentum Then:

Given: FAS, m = 4 kg, vA = 0 unstretched length = 24 in Find:

vB, x at max deformation

t2

  Fdt  G

2

VECTOR!

 G 1  G

t1

Linear Impulse = Change of Linear Momentum 2011

46

2011

48

12

Rearranging:

3/179

t2

G 1    Fdt  G 2 t1

Scalar Components:

t2

G x1    Fx dt  G x2

Given:

FAS, For projectile: M=75 g, v1=600 m/s For block: M=50 kg v1 = 0

Find:

E during impact

t1

t2

G y1    Fy dt  G y2 t1

Conservation of Linear Momentum:

If

If F  0 

then G 1  G 2

2011

49

2011

Example Problem: Textbook 3/179

2011

51

Example Problem: Textbook 3/188

50

2011

52

13

3/188

y

Given: FAS, For tanker: M=10.43x106 slugs, v1=0, Cable tension = 50,000 lb Find: Time required to bring speed of tanker to 1 knot

O x

Fig 3-11 Meriam and Kraige

For plane motion in the x-y plane:

H o  r  mv  mvr sin  k 2011

53

• Angular Impulse - Angular Momentum

2011

Define Angular Impulse:

– Angular Momentum: H0 • The moment of the linear momentum about a point

It can be shown:

55

t2

M

o

dt  Angular Impulse

o

dt  H O2  H O1   H O

t1

t2

M t1

Rearranging:

O

t2

H O1    M o dt  H O2 t1

Conservation of Angular Momentum:

If

M

O

 0 then H O 1  H O 2

Fig 3-11 Meriam and Kraige 2011

54

2011

56

14

Kinetics of Particles Impact

Example Problem: Textbook 3/227

• Impact: Collision between two bodies. bodies Direct Central Impact: Centers of mass located on Line L ne of Impact (LOI). Velocities in direction of LOI. 2011

57

3/277

LOI

LOI

Fig 3-14 Meriam and Kraige

2011

59

If we have no external impulsive forces, TOTAL linear momentum of the system is conserved.

G Before  G After Along the LOI:

m 1 v1  m 2 v 2  m 1 v1'  m 2 v 2' Coefficient of Restitution (e)

Given: FAS, N1 = 0 N2 = 150 rpm T = 20 N Find:

2011

e

t 58

2011

Relative velocity after Relative velocity before



v2'  v1' v1  v2 60

15

Plane Kinematics of Rigid Bodies - Plane Motion

Example Problem: Textbook 3/247

• Rigid Body: System of particles for which the distances between the particles remain unchanged. • Plane Motion: All parts of the body move in parallel planes. planes – Plane of Motion: Plane that contains the center of mass. 2011

61

3/247

2011

63

• Types of Plane Motion: Translation: All points on the rigid body have the same velocity and acceleration. l Kinematic concepts from Chapter 2 apply

Gi Given: FAS e = 0 FAS, 0.6 6 Find:

2011

v1’ and v2’

62

2011

Fig 5-1 Meriam and Kraige

64

16

– Rotation Concepts:

Example Problem: Textbook 5/2

d   dt d      dt  d    d



Fig 5-2 Meriam and Kraige

Angular velocity

Angular acceleration

For  = constant:

   O   (t  t 0 )    O2  2    O  1 2

   O   (t  t 0 )   (t  t 0 ) 2 2011

65

2011

67

5/2

– Fixed Axis Rotation: For any point on the rigid body,

v  r

a n  r 2  v

2

a t  r

r

 v

In vector form,

Given: FAS, =10 rad/s

v  r  ω  r Fig 5-3 Meriam and Kraige

2011

Find: F

a n  ω   ω  r    2 r

vA an and aA

at  α  r 66

2011

68

17

Relative Motion -Translating Axes (Velocity)

Plane Kinematics of Rigid Bodies Relative Motion Method •G Generall Plane Pl Motion M ti can be b considered id d as Translation + Rotation

(Translating Frame)

Absolute velocity of A wrt fixed frame (X,Y)

y

vA  vB  vA B

A/B

Y

x

(Fixed Frame)

X

2011

Relative Motion:

rA  rB  rA rA  rB  rA  rA   rB   rA

If A and B are on the same rigid body, vA/B =   rA/B

y ((Translating ranslat ng Frame)

A/B

B

B

Absolute acceleration of A wrt fixed f frame (X,Y)

x

B

or v A  v B  v A or a A  a B  a A

B

aA  aB  aA B

Y (Fixed Frame)

B

X

2011

Relative R l velocity l of f A wrt a translating frame (x,y) attached to B. 71

Relative Motion -Translating Axes (Acceleration)

XY Fixed xy Translating with B

Fig. g 2-17 Meriam and Kraige g

Fig 5/6 Meriam and Kraige

2011

69

Absolute velocity of origin of the translating frame at B wrt fixed frame (X,Y)

70

2011

Fig 5/9 Meriam and Kraige

Absolute acceleration of origin of the t translating l ti frame at B wrt fixed frame (X,Y)

Relative acceleration of A wrt a translating frame (x,y) attached to B. Due to rotation about B 72

18

Relative Motion Translating Axes. To summarize:

5/120

vA  vB  vA B or v A  v B  ω  rA B

y (Translating Frame)

or A/B

x

v A  v B  ω  rrel aA  aB  aA B or

Y (Fixed Frame)

X

a A  a B  ω   ω  rA B   α  rA B

Given:

FAS,  = 2 rad/s,  = 0, a0=3 m/s2

Find:

aA when  = 0º, 90º, and 180º

or a A  a B  ω   ω  rrel   α  rrel

2011

73

2011

Example Problem: Textbook 5/120

75

Example Problem: Textbook 5/141

100

60

180

Y

80

80

X

2011

74

2011

76

19

5/141

• Relative Motion - Rotating Axes – This method works best when sliding occurs relative to two rigid bodies. – Consider the following:

100 180

60 80Y

80

A

Given:

FAS,

P

OA = 10 rad/s CCW

Find:

AB

Fig 5/11 Meriam and Kraige 2011

77

5/141

2011

79

Relative Motion -Rotating Axes (Velocity)

100 180

60 80Y

v A  v B  v P B  v A/ P

80

Or:

v A  v B  ω  rrel  v rel Given:

FAS,

OA = 10 rad/s CCW

Find:

AB

2011

78

2011

80

20

5/174

Relative Motion -Rotating Axes (Acceleration)

a A  aB  aP B  a A/ P Given:

Or:

a A  a B  α  rrel  ω   ω  rrel   2ω  v rel  a rel 2011

81

Find:

FAS,

OA = 10 rad/s

CW  = 30 BC , arel

2011

83

Example Problem: Textbook 5/174

Given:

Find:

2011

82

2011

FAS,

OA = 10 rad/s

CW  = 30 BC , arel

84

21

IC Method Steps: 1. Identify directions of velocity vectors of two points. 2. At these two points draw lines perpendicular to the velocity vectors. 3. These lines intersect at the IC point C. Given:

Find:

Fig 5/7 Meriam and Kraige

FAS, OA = 10 rad/s CW  = 30 BC , arel

2011

4. If we know the magnitude of vA or vb you can solve for . 85

v A  rA v B  rB 

2011

87

Example Problem: Textbook 5/97

Plane Kinematics of Rigid Bodies - Instantaneous Center of Zero Velocity Method For plane motion, at any instant, the motion may be considered as pure rotation about a point called the instantaneous center of zero velocity (IC) Works well if we know the directions of the velocity vectors of two points on the rigid body 2011

86

2011

88

22

5/97

For general Plane Motion:

Video

 F  ma  M  Iα :  M  I G

G

Given: Find:

Or:

FAS, FAS OB = 0.8 rad/sec cw vA and vC

2011

 F  ma M  I

Where C refers to the center of mass, shown as G in the figures 89

C

C C

α

2011

91

Plane Kinetics of Rigid Bodies Newton’s Second Law

If we take moments about an arbitrary point, P, then the moment equation becomes:

• All of the concepts of particle kinetics apply to kinetics of rigid bodies.

M M

• However, we must account for the rotational effects of the rigid body.

P

 Iα  ρ  m a

P

 I   mad

Or:

• We will use the overbar to indicate a quantity reverenced to the center of mass, G.

M

P

 I C α  ρ PC  m a C

Where C refers to the center of mass 2011

90

2011

92

23

6/33

For Fixed Axis Rotation about point O:

 F  ma  M  Iα  M  I M  I α M  I 

Given:

G

Find:

G

O

O

O

O

2011

93

FAS, M = 20 kg, released from rest Reaction forces at pin O

2011

Example Problem: Textbook 6/33

2011

95

Example Problem: Textbook 6/77

94

2011

96

24

6/77

Kinetic Energy: Translation:

T 

1 mv 2 2

T 

1 I O 2 2

T 

1 1 mv 2  I  2 2 2

T 

1 I IC  2 2

Fixed Axis Rotation:

Given:

General Plane Motion:

FAS, released from rest, =40 s=0.3, =40, =0 3 k=0.2 =0 2 aG, friction force

Find:

2011

97

Plane Kinetics of Rigid Bodies Work/Energy Methods

2011

99

Potential Energy: Same as for Particles

Gravity:

h is measured

• All of the work/energy concepts of particle kinetics apply to kinetics of rigid bodies.

from the datum. + if above datum - if below datum

• However, we must account for additional rotational effects . • Recall: R ll

T1  V g 1  Ve1  U 1 2  T2  V g 2  Ve 2

Spring:

Or: 2011

T1  U 1  W1 2  T2  U 2

V g  mgh

98

2011

Ve 

1 2 kx 2 100

25

Example Problem: Textbook 6/122

Plane Kinetics of Rigid Bodies Impulse/Momentum Method • All of the Impulse/Momentum concepts of particle kinetics apply to kinetics of rigid bodies. • However, once again, we must account for additional rotational effects . • Linear Impulse/Momentum t2

G 1 r:   Fdt  G 2

G  mv

t1

2011

101

6/122

2011

103

Angular Momentum: Angular Impulse:

HG  I  t2

M

G

dt

t1

Then: Given:

FAS, W=12 lb kspring = 3 lb/in

2011

H G1    M G dt  H G2 t1

kO= 10 in, 1=90, 2=0, 1 = 0 2 = 4 rad/s M

Find:

t2

For Fixed Axis Rotation About O: 102

2011

t2

H O  I O  H O1    M O dt  H O2 t1

104

26

Example Problem: Textbook 6/173

Vibration and Time Response • Mechanical and structural systems are often oft n su subjected j ct to vibratory ratory mot motion. on. – – – –

Automobiles on a rough road Power lines and bridges on a windy day Aircraft wings experiencing flutter Buildings during an earthquake

• Here we have a brief introduction to undamped, free vibration of particles. 2011

105

6/173

2011

Undamped Free Vibration: Consider what happens when the spring mounted cart is disturbed from its equilibrium position a distance x.

107

From the FBD and Newton’s Second Law:

F

x

 ma x

O Or:

 kx  mx

mx  kx  0 Given: Find:

2011

FAS

 at t=4s for each case

Fig 8/1 Meriam and Kraige

106

2011

108

27

mx  kx  0 Let’s define the following:

n  k m

Fig 8/2 Meriam and Kraige

Then:

Displacement

 x x  0

x  x0 cos  n t 

2 n

Fig 8/1 Meriam and Kraige

This equation describes simple harmonic motion. The acceleration is proportional to the displacement, but of opposite sign.

Let

2011

109

A  x0

x0

n

and

Natural Frequency

sin  n t

B

x 0

n

n  k m

Period

 n  2 

n

Then the amplitude is

C

A2  B 2

2011

111

Example Problem: Textbook 8/4 - p 601

 x   n2 x  0 This is a linear, homogeneous, second order, differential equation The solution is as equation. follows: Initial velocity

Fig 8/1 Meriam and Kraige

x  x0 cos  n t 

x0

n

sin  n t

Position Initial displacement 2011

Natural frequency

Time 110

2011

112

28

8/4

8/17

Given: FAS, x0 = -2 in v0 = 7 in/sec

Given: Weight = 120 lb Deflection = 0.9 in Find: n

Find: Amplitude

2011

113

2011

115

Torsional Vibration

Example Problem: Textbook 8/17

   0 cos  n t 

0 sin  n t n

 n  kt I kt  GJ

L

I = Mass moment of inertia G = Shear modulus J = Polar moment of inertia 2011

114

2011

116

29