Journal of Infectious Diseases Advance Access published April 15, Human α amylase present in lower genital tract mucosal fluid processes

Journal of Infectious Diseases Advance Access published April 15, 2014 1  Human α­amylase present in lower genital tract mucosal fluid processes  gly...
Author: Dwight Grant
1 downloads 2 Views 872KB Size
Journal of Infectious Diseases Advance Access published April 15, 2014

1  Human α­amylase present in lower genital tract mucosal fluid processes  glycogen to support vaginal colonization by Lactobacillus 

cr ipt

 

Gregory T. Spear1, Audrey L. French2, Douglas Gilbert1, M. Reza Zariffard1,  Paria Mirmonsef1, Thomas H. Sullivan1, William W. Spear1, Alan Landay1,  Sandra Micci2, Byung­Hoo Lee3, and Bruce R. Hamaker3 

us

1Department of Immunology/Microbiology, Rush University Medical Center, 

Chicago. IL. 60612 

Center, Chicago, IL, 60612 

an

2CORE Center of Cook County Health and Hospitals System, Rush University Medical 

M

3Whistler Center for Carbohydrate Research, Department of Food Science, Purdue 

University, West Lafayette, IN, 47907 

Corresponding author: Greg Spear, Dept. of Immunology/Microbiology, Rush 

pt ed

University Medical Center, 1735 W. Harrison, Cohn 626, Chicago, IL 60612,  [email protected]     

ce

   

Ac

       

© The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society  of America. All rights reserved. For Permissions, please e‐mail: [email protected]

2  Abstract.  Lactobacillus colonization of the lower female genital tract provides protection from 

cr ipt

acquisition of sexually transmitted diseases including HIV and from adverse 

pregnancy outcomes.  While glycogen in vaginal epithelium is thought to support  Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize 

glycogen in vitro.  This study investigated how glycogen could be utilized by vaginal 

us

lactobacilli in the genital tract.  Several Lactobacillus isolates were confirmed to not  grow in glycogen, but did grow in glycogen breakdown products including maltose, 

an

maltotriose, maltopentaose, maltodextrins and glycogen treated with salivary ‐ amylase.  A temperature‐dependent glycogen‐degrading activity was detected in 

M

genital fluids that correlated with levels of α‐amylase.  Treatment of glycogen with  genital fluids resulted in production of maltose, maltotriose and maltotetraose, the  major products of α‐amylase digestion.  These studies show that human α‐amylase 

pt ed

is present in the female lower genital tract and elucidates how epithelial glycogen  can support Lactobacillus colonization in the genital tract.   

Footnote page 

ce

 

The authors do not have a commercial or other association that might pose a conflict 

Ac

of interest.   

Funding for this study was provided by NIH grants P01 AI08297 and P30 AI 082151.   

3  Introduction.       Colonization of the lower genital tract with Lactobacillus is an important 

cr ipt

component of the reproductive health of women.  Lactobacillus inhibits other  microbes in the genital tract, primarily by creating a low genital pH through 

production of lactic acid [1‐4].  This inhibition results in a genital microbiota that is  predominantly composed of Lactobacillus in many women. 

us

    Factors that disrupt Lactobacillus colonization can lead to a shift of the genital  microbiota to bacterial vaginosis (BV) in which Lactobacillus is no longer the 

an

predominant type of bacteria [1, 5‐7].   Epidemiologic studies show that a genital  microbiota dominated by Lactobacillus is protective from acquisition of HIV when 

M

compared to BV (reviewed in [8]).  In HIV‐infected women, a Lactobacillus‐ dominated microbiota is also associated with decreased shedding of virus,  decreased risk of heterosexual transmission to men and vertical transmission to the 

pt ed

fetus during birth [9‐14].  Further, a genital microbiota dominated by Lactobacillus  is associated with a lowered risk of acquiring other STDs such as HSV‐2, chlamydia  and gonorrhea [15, 16].  Finally, Lactobacillus also protects against developing BV,  pelvic inflammatory disease and adverse fetal outcomes [17‐21].  Certain species of 

ce

Lactobacillus have been found to be more protective [4, 22]. 

     Although Lactobacillus is recognized as important for genital tract health, the 

Ac

factors responsible for its colonization are not well understood.   For example, while  BV can be treated with antibiotics, Lactobacillus does not always become re‐ establish as the dominant bacteria type, and BV recurs in 60‐80% of cases after one  year [23, 24].  However, a relationship between vaginal epithelial glycogen and 

4  Lactobacillus colonization in the female lower genital tract has been recognized for  many decades. Thus, Cruickshank and others [25, 26] observed that at puberty, 

cr ipt

glycogen becomes expressed in the vaginal epithelium and at the same time 

colonization with Lactobacillus becomes apparent.  Those studies showed that both  glycogen expression and colonization by Lactobacillus persist through life until at  menopause, both Lactobacillus colonization and glycogen expression decline. 

us

      Despite the evidence that glycogen promotes colonization by lactobacilli, most  isolates of Lactobacillus do not grow in vitro in media containing glycogen as the 

an

carbohydrate source.  Thus, Stewart‐Tull [27] reported in 1964 that a number of  isolates of Lactobacillus did not ferment glycogen.  Later in that decade, Wylie and 

M

Henderson [28] showed that 39 of 42 isolates of Lactobacillus did not ferment  glycogen, even when the glycogen was isolated from the genital tract of women.   More recently Martin et al. [29] showed 45 strains of vaginal Lactobacillus could not 

pt ed

use glycogen.  The lack of Lactobacillus growth in vitro in the presence of glycogen  leaves open the question of how glycogen could be utilized in vivo by Lactobacillus.   The goal of this study was to investigate how glycogen could be utilized by genital  lactobacilli in the environment of the lower female genital tract. 

ce

   

Ac

 

5  Materials and Methods.  Subjects. 

cr ipt

Genital cervical‐vaginal lavage (CVL) samples were obtained from women who had 

provided written informed consent.  All procedures followed Department of Health  and Human Service guidelines. The study was approved by the Cook County Health  and Hospitals System Institutional Review Board.  Samples were collected weekly 

us

over a 1‐3 month period.  All women reported not douching and not engaging in sex  within the 48 h before sample collection.  Trichomonas, yeast and bacterial 

an

vaginosis were not detected at the time of sample collection as determined by wet  mount, KOH and Amsel criteria [30].  The CVL samples were obtained by irrigation 

from the posterior fornix.  Bacterial cultures.   

M

of the cervix with 10 ml of nonbacteriostatic sterile saline, followed by aspiration 

pt ed

All reagents were purchased from Sigma (Sigma‐Aldrich, St. Louis, MO) unless  noted.  A basal MRS medium contained proteose peptone #3 (10.0 g, Remel, Thermo  Fisher Scientific, Lenexa, KS), beef extract (10.0 g, Remel), yeast extract (5.0 g,  Fisher), sorbitan monooleate (1.0 g), ammonium citrate (2.0 g), sodium acetate (5.0 

ce

g), MnSo4xH2O (0.05 g), and Na2HPO4 (2.0 g) per liter.  Medium was supplemented  with 2% glucose or other carbohydrates including glycogen (from oyster), 

Ac

maltodextrins, maltose, maltotriose and maltopentaose.  In some experiments  normal saliva collected from one donor was immediately filtered (0.45µm), and  aliquots frozen.  Upon thawing saliva was added to glycogen‐containing MRS  medium immediately before the addition of bacteria to give concentrations of 2.5% 

6  or 0.25% of the culture volume.  Most cultures were in ambient air, except some run  under anaerobic conditions using the Anaero Pack System (Mitsubishi Gas Chemical 

cr ipt

Co, Tokyo).   

     Bacteria tested included L. jensenii (ATCC #25258), L. gasseri (ATCC #9857), and  L. johnsoni (ATCC # 33200).  Cultures (4 ml) were initiated from frozen stocks with 

intervals.   

an

Glycogen Degradation by Genital Fluids. 

us

50 µl PBS‐washed bacteria at time 0 and the OD at 600 nm was taken at 24 h 

Genital fluid samples collected by CVL were centrifuged at 4°C in a microfuge for 10 

M

min to pellet bacteria.  The supernatants (25 µl) were added to oyster glycogen (75  µl of 5 mg/ml) dissolved in phenol‐red‐free RPMI‐1640 medium.  Aliquots were  incubated at either 37°C or 4°C for 90 min and the amount of glycogen then 

pt ed

measured using a colorometric assay [31] by adding 50 µl of each of the following  solutions; 10% potassium iodide; 0.01 N potassium iodate; and 1 N Acetate.  The  mixture was incubated for 10 minutes and read at 565 nm.  In some experiments no  extra glycogen was added to genital fluid samples so that degradation of 

ce

endogenous glycogen could be observed.   

Ac

Analysis of Oyster Glycogen Degradation Products.  Oyster glycogen (20 mg/mL,  w/v) was hydrolyzed by adding saliva (see above) at 2.5% or 0.5% of the final 

volume for 10, 30 and 120 min at 37°C . Hydrolyzed samples were diluted 10x with  de‐ionized water. Molecular weight (MW) distributions of salivary α‐amylase‐treated 

7  glycogen samples were obtained by high performance size exclusion  chromatography (HPSEC) using a Varian model 9012 HPLC pump system connected 

cr ipt

to a Varian Star 9040 refractive index detector (Agilent Technologies, Santa Clara,  CA) at room temperature.  Injected samples (100 µL, 0.45 µm filtered) were 

separated using Sephacryl TM S‐500 HR gel filtration (GE Healthcare, Piscataway,  NJ).  The eluent was purified water (18.2 MΩ) with 0.02% sodium azide [32]. 

us

Pullulan standards (Polymer Laboratories Inc. Amherst, MA) were used as a  standard curve. 

an

 

Oligosaccharide Analysis by High‐Performance Anion‐Exchange Chromatography 

M

(HPAEC). Hydrolysis products from oyster glycogen treated with either the collected saliva or the vaginal fluids were determined by an HPAEC system equipped with an electrochemical detector (Dionex, Sunnyvale, CA). The filtered (0.45 µm) samples were

pt ed

separated using a CarboPac PA-1 pellicular anion-exchange column (Dionex, Sunnyvale, CA) with gradient elution from 100% eluent A (150 mM NaOH) to 100% eluent B (600 mM NaOAc in 150 mM NaOH) [33].   

ce

Bacterial PCRs. 

Bacteria specific quantitative PCR (qPCR) assays were performed on isolated CVL 

Ac

genomic DNA [34].  Each 20 µl qPCR reaction contained Supermix (Bio‐Rad  Hercules, CA), primers, probes (IDT, Coralville, IA), and 1‐10 ng template DNA.   Primers and probes for the bacteria were described previously [34, 35].  Known  quantities of 16S rRNA plasmid targets were used as standards [34, 35].   

8    Enzyme detection.  ELISA was used to quantify Human pancreatic α‐amylase 

cr ipt

(AbCam, Cambridge, UK) and Acidic alpha‐glucosidase (MyBiosource, San Diego,  CA).     

us

Results. 

Growth of Lactobacillus in glucose, glycogen and other glucose polymers.  We first 

an

performed experiments to confirm previous reports that some genital Lactobacillus  isolates do not grow in media with glycogen as the source of carbohydrate [27‐29].  

M

L. gasseri (ATCC #9857) was cultured in medium containing either 2% glucose, 2%  glycogen or no added carbohydrate (Fig. 1).    Over a 72 h period a relatively large  increase in absorbance was observed for glucose cultures, while the OD of cultures 

pt ed

with either no carbohydrate or glycogen were similar.  A similar lack of growth in  glycogen when compared with no carbohydrate was observed with L. jensenii (ATCC  #25258) and L. johnsonii (ATCC # 33200) (Fig. 2).  The lack of growth in glycogen  was seen under both aerobic and anaerobic conditions (data not shown).  Soluble 

ce

starch (2% w/v) was also tested since its structure is similar to that of glycogen.  No  growth was observed using starch as the sole carbohydrate (Fig. 1). 

Ac

     The lactobacilli tested above were able to utilize glucose for growth, but not  glycogen, a high molecular weight polymer of glucose.   Smaller polymers of glucose  were also tested for their ability to support growth of lactobacilli.  All three isolates  of Lactobacillus were able to use 2% maltose for growth (Fig. 2a, b, c).  L. jensenii 

9  grew to relatively high levels by 48 h in both maltotriose (polymer of three glucose  units) and maltopentaose (five glucose units) (Fig. 2d). 

cr ipt

     Maltodextrins are derived from partial hydrolysis of starch and maltodextrins  that are the least hydrolyzed have the lowest dextrose equivalent (DE) values.   Growth of L. gasseri, L. jensenii and L. johnsonii was also assessed in media 

containing 2% of one of three different maltodextrin preparations; DE 4‐7, 13‐17 

us

and 16‐19.  All three of the species grew in the maltodextrins as a source of 

that for glucose.    

an

carbohydrates (Fig. 2a, b and c), although the level of growth was generally less than 

M

Growth of lactobacilli in α‐amylase‐treated glycogen. 

The above experiments indicated that some genital lactobacilli cannot utilize  glycogen or starch for growth but can utilize smaller glucose polymers (dimers, 

pt ed

trimers, pentamers).  Therefore, the effect of glycogen breakdown by α‐amylase on  Lactobacillus growth over 72 h was tested by adding a small amount of filtered  saliva (2.5% or 0.25%) to the culture medium as a source of α‐amylase.  While L.  gasseri did not grow in glycogen alone, it grew at a rate similar to cultures with 

ce

glucose when cultured in glycogen with 2.5% filtered saliva added (Fig. 3a).  No  growth above the control was seen with 2.5% saliva only.  Similar rapid growth of L. 

Ac

gasseri was seen when 0.25% saliva was added to glycogen in cultures (data not 

shown). 

  Growth of L. johnsonii in glycogen with 2.5% saliva was also similar to growth in  glucose (Fig. 3b).  In contrast, L. jensenii grew slowly in glycogen with saliva for the 

10  first 48 h when compared to glucose, but growth increased by 72 h to a level similar  to glucose (Fig. 3c).  

cr ipt

    The characteristics of the saliva‐treated and control‐treated glycogen were 

analyzed (Fig. 4).  HPSEC showed a peak at approximately 45 min that corresponded  to un‐degraded glycogen.  As little as 10 minutes of incubation with 2.5% saliva 

resulted in the appearance of a peak at 69 min that was not present in untreated 

us

glycogen (Fig. 4a).  Longer incubation times (30 min, 120 min) led to an increase in  the size of this peak.  Analysis of the smaller carbohydrates in the 120 min tube by 

an

HPAEC (Fig. 4b) showed the appearance of peaks corresponding to maltose (G2)  and maltotriose (G3) with some maltotetraose (G4) which are known major 

M

products of the α‐amylase reaction [36, 37].   

Vaginal fluid from normal women contains an activity that degrades glycogen.  

pt ed

The above experiments showed that salivary ‐amylase could process glycogen into  products that could be used by vaginal lactobacilli for growth.   Experiments were  next performed to determine if any α‐amylase‐like activity was present in the  genital fluid of women [31].  Samples were obtained from women that were all pre‐

ce

menopausal with ages ranging from 34 to 48.  Ten were African American and the  race of one classified as "other".   Aliquots of two genital mucosal fluid samples 

Ac

(collected by lavage) with detectable glycogen were incubated at either 4°C or 37°C  for 90 min and a colorimetric iodine assay was then used to detect glycogen [31].   Sample A had more detected glycogen than sample B after incubation at 4°C (Fig.  5a).  For both of the samples, less glycogen was detected in the aliquot incubated at 

11  37°C than in the portion incubated at 4°C indicating temperature‐dependent  degradation of glycogen.   

cr ipt

     Several other genital fluid samples were tested (not shown) for glycogen 

breakdown in a similar manner.  However, many of the samples had very low or no 

detectable glycogen and so glycogen degradation could not be assessed.  Therefore,  in further experiments, exogenous glycogen was added to genital fluids collected 

us

from women to ensure that degradation could be detected.  Figure 5b shows the 

results from incubating genital fluid from four different individuals with exogenous 

an

glycogen at 4°C and 37°C.  Less glycogen was detected for all four samples after  incubation at 37°C compared to incubation at 4°C, with sample F exhibiting the most 

M

glycogen degradation and C having the least.   Twenty‐one samples from a total of  11 women were tested in this manner and the % degradation was calculated using  the following formula: 1 ‐  glycogen 37/glycogen 4 x 100.  The median degradation 

(Fig. 5c). 

pt ed

for the 21 samples was 73% with only three samples having values less than 20% 

    To investigate whether the source of the glycogen‐degrading activity could be  bacterial, PCR was used to quantify several types of bacteria in the same samples.  No 

ce

significant relationships were observed between either L. crispatus, L. iners or G.  vaginalis and the glycogen degradation activity in women (p>0.05, Spearman rank 

Ac

correlation, Fig. 6a, b and c).   Similarly, no relationships were observed between  either L. jensenii, Mycoplasma hominis, or Sneathia (not shown).  Further, the vaginal  pH that was measured for diagnosing bacterial vaginosis was not significantly  associated with α‐amylase activity (p>0.05, Fig. 6d).  These experiments therefore 

12  showed no obvious relationship between the types of microbiota in genital tract  samples and the levels of the glycogen degradation activity. 

cr ipt

     To investigate a possible human source of the glycogen degradation activity, the  genital fluid samples were tested for human α‐amylase using an ELISA for 

pancreatic ‐amylase.   All tested samples had ELISA‐detectable α‐amylase and the  median α‐amylase detected in genital fluids was 1.86 mU/ml (range 0.02 to 12.7 

us

mU/ml).  The pancreatic α‐amylase levels were strongly associated (Spearman 

r=0.73, p=0.0002) with the amount of glycogen degradation (Fig. 6e).  Acidic alpha‐

an

glucosidase was also detected in some of the samples (Fig. 6f).  However, its  presence was not significantly associated with glycogen degradation (p>0.05). 

M

 

Glycogen breakdown products generated by genital fluids.       Since the above experiments suggested that glycogen produced by the genital 

pt ed

epithelium could be degraded into smaller glucose polymers such as maltose and  maltotriose in genital fluids, genital fluids from several women were analyzed by  HPAEC for small carbohydrates.  However, only trace amounts of small sugars were  detected and these levels were too low to determine the characteristics of these 

ce

sugars.  Therefore, in further experiments, exogenous glycogen was added to genital  fluids and the types of carbohydrates that were generated were analyzed by HPAEC.  

Ac

The glycogen used for this experiment had only trace peaks corresponding to  glucose, maltose, maltotriose and maltotetraose (Fig. 7a).  After incubation for 48 h  in buffer with no added genital fluids there was essentially no change in these peaks  (Fig. 7b).  However, incubation for 48 hours with genital fluid from two different 

13  subjects resulted in substantial increases in peaks corresponding to maltose (G2),  maltotriose (G3) and maltotetraose (G4), the major known α‐amylase digestion 

cr ipt

products (Fig. 7c and 7d).   Trace peaks corresponding to glucose and 

maltopentaose were also observed.  Similar results were observed after 24 hours of 

incubation, although the size of each of the peaks was reduced when compared with  the 48 hour peaks (not shown).  No peaks were detected in genital fluids with no 

us

added glycogen (not shown). 

Discussion. 

an

 

Genital colonization with Lactobacillus has been associated with protection from 

M

STDs, bacterial vaginosis and adverse pregnancy outcomes [1, 5, 6, 8‐21].  However,  the factors that promote and maintain Lactobacillus colonization are not well  understood.  Glycogen is synthesized in the vaginal epithelium and has long been 

pt ed

postulated to provide an energy source for genital Lactobacillus [25, 26].  However,  it has not been clear how Lactobacillus uses glycogen since most genital isolates do  not grow on glycogen in vitro [27, 28].   This study shows that 1) isolates of  Lactobacillus that cannot use glycogen can grow in glycogen breakdown products 

ce

including maltose and maltotriose; 2) an activity that breaks down glycogen to  maltotose and maltotriose is present in the lower genital tract fluid of women; 3) 

Ac

human α‐amylase is present in the genital fluids of women; 4) the glycogen  breakdown activity in genital fluid correlates with genital levels of α‐amylase; and  5) incubation of genital fluids with glycogen generated products such as maltose,  maltotriose and maltotetraose.  This study therefore supports a model where α‐

14  amylase present in the genital tract breaks down glycogen into smaller polymers,  such as maltose and maltotriose, that are then utilized by Lactobacillus to aid its 

cr ipt

colonization.  

     Glycogen is composed mainly of 1,4‐linked chains of glucose but also has 1,6‐ linked branches. Human α‐amylase (both salivary and pancreatic) preferentially 

processes glycogen to 1,4‐linked multimers such as maltose and maltotriose but 

us

also results in production of ‐dextrins that contain 1,6 branches and 1,4 

linkages [36, 37].  This study shows that genital lactobacilli can grow well in the 

utilize branched carbohydrates.  

an

small unbranched glucose polymers.  It is not clear, however, if lactobacilli can 

M

     There are some previous studies of utilization of maltose by Lactobacillus in the  food and beverage industries such as L. casei,  L. reuteri, etc.  [38, 39].  However, 

pt ed

those Lactobacillus species are different than the ones found in the genital tract,  including L. crispatus, L. jensenii, L. iners and L. gasseri [4, 20, 40, 41].  There is a  paucity of studies on utilization of small glucose polymers by genital tract  lactobacilli.  This study suggests that the small glucose polymers can support growth 

ce

by genital Lactobacillus in vivo and the consequent acid production suppresses  growth of non‐lactobacilli.  The low genital pH found may vary somewhat depending  on the species of Lactobacillus that is dominant [4].   The pH can be neutralized by 

Ac

factors such as sexual activity due to semen or by douching [42‐44].  During periods  of increased pH, other bacteria may utilize the glycogen breakdown products and  due to competition for this food source and production of pH buffering amines [45],  prevent Lactobacillus from acidifying the genital environment. 

15      Starch and glycogen have similar structures and there are reports of non‐genital  lactobacilli such as L. fermentum, L. plantarum, etc. degrading starch [46].    While 

cr ipt

there have been some reports of genital Lactobacillus isolates breaking down 

glycogen, this was later discovered in some cases to have been due to serum added  to the culture medium which likely was a source of α‐amylase [27][47].  However,  some genital Lactobacillus isolates can directly utilize glycogen [28].   

us

      We observed in this study that α‐amylase and Lactobacillus levels were not 

correlated (Fig. 6).  However, we recently observed that there are variable levels of 

an

glycogen in the genital fluids of different women and that the levels of glycogen  correlate strongly with the level of colonization by Lactobacillus (manuscript in 

M

preparation).   Based on that observation, we postulate that women must have two  conditions met to be dominantly colonized by Lactobacillus; 1) an adequate amount  of glycogen in genital fluid, and; 2) α‐amylase to cleave the glycogen into smaller 

pt ed

carbohydrates.  If glycogen is low, then Lactobacillus levels will also be low.   Potentially, if α‐amylase levels were low but glycogen high, this could also lead to  low Lactobacillus.  Our studies do not rule out the possibility that other enzymes,  including bacteria‐derived enzymes, could process glycogen in some women.  Also, since 

ce

these experiments were conducted with women consisting mostly of one ethnic group, it is  possible that women from other groups could have differing genital amylase activity.   

Ac

    This study has implications for measurement of glycogen in genital secretions  since α‐amylase acts on glycogen resulting in a mixture of glycogen and smaller  glucose polymers.  Glycogen is made in the epithelium, but it has not been clearly  established how glycogen in epithelial cells becomes available for Lactobacillus 

16  utilization.  Factors such as the amount of glycogen in cells, the rate of cell release,  and the rate of glycogen breakdown are unknown.  In our study, samples were 

cr ipt

collected on ice so that glycogen breakdown was arrested relatively quickly but  even so, many women had glycogen levels too low to measure with the iodine 

method.   Further, glycogen breakdown products were too low to measure, possibly  due to rapid uptake by bacteria. 

us

   While this study showed that human α‐amylase was in genital fluid, the source for  it was not established.  As mentioned above, α‐amylase is produced in both the 

an

pancreas and salivary glands, and essentially all of the extracellular α‐amylase  activity in the body is produced by those two glands [47, 48]. Both pancreatic and 

M

salivary α‐amylase are in serum and urine at relatively high levels that can become  elevated during certain clinical conditions such as alcoholism or trauma.  The  salivary and pancreatic enzymes are closely related with only about 3% difference 

pt ed

in the protein sequence [47].  Since the protein sequences are so similar, the ELISA  for pancreatic α‐amylase may have cross‐reactivity with salivary α‐amylase.  Therefore, it is possible that the α‐amylase in genital fluids is from one or both of  these glands. 

ce

    In conclusion, this study provides evidence that human α‐amylase in the genital  tract processes epithelial glycogen. This in turn suggests a mechanism for how 

Ac

glycogen can support genital colonization by strains of Lactobacillus that cannot  directly use glycogen.  Further studies are needed to clarify the source of the  enzyme and whether too much or too little α‐amylase could affect levels of  Lactobacillus. 

17  References.   

cr ipt

1. Lamont RF, Sobel JD, Akins RA, et al. The vaginal microbiome: new information 

about genital tract flora using molecular based techniques. BJOG 2011; 118:533‐49.  2. O'Hanlon DE, Moench TR, Cone RA. Vaginal pH and microbicidal lactic acid when  lactobacilli dominate the microbiota. PLoS ONE 2013; 8:e80074. 

us

3. Aldunate M, Tyssen D, Johnson A, et al. Vaginal concentrations of lactic acid  potently inactivate HIV. J Antimicrob Chemother 2013; 68:2015‐25. 

an

4. Ravel J, Gajer P, Abdo Z, et al. Microbes and Health Sackler Colloquium: Vaginal  microbiome of reproductive‐age women. Proc Natl Acad Sci U S A 2010; 108 

M

Suppl1:4680‐7. 

5. Marrazzo JM. Interpreting the epidemiology and natural history of bacterial  vaginosis: are we still confused? Anaerobe 2011; 17:186‐90. 

pt ed

6. Li J, McCormick J, Bocking A, Reid G. Importance of vaginal microbes in  reproductive health. Reprod Sci 2012; 19:235‐42.  7. Macklaim JM, Cohen CR, Donders G, et al. Exploring a road map to counter  misconceptions about the cervicovaginal microbiome and disease. Reprod Sci 2012; 

ce

19:1154‐62. 

8. Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV 

Ac

acquisition: a meta‐analysis of published studies. AIDS 2008; 22:1493‐501.  9. Coleman JS, Hitti J, Bukusi EA, et al. Infectious correlates of HIV‐1 shedding in the  female upper and lower genital tracts. Aids 2007; 21:755‐9. 

18  10. Sha BE, Zariffard MR, Wang QJ, et al. Female genital‐tract HIV load correlates 

Mycoplasma hominis. J Infect Dis 2005; 191:25‐32. 

cr ipt

inversely with Lactobacillus species but positively with bacterial vaginosis and 

11. Cu‐Uvin S, Hogan JW, Caliendo AM, Harwell J, Mayer KH, Carpenter CC.  Association between bacterial vaginosis and expression of human 

immunodeficiency virus type 1 RNA in the female genital tract. Clin Infect Dis 2001; 

us

33:894‐6. 

12. Mitchell C, Balkus JE, Fredricks D, et al. Interaction Between Lactobacilli, 

an

Bacterial Vaginosis‐Associated Bacteria, and HIV Type 1 RNA and DNA Genital  Shedding in U.S. and Kenyan Women. AIDS Res Hum Retroviruses 2012. 

M

13. Cohen CR, Lingappa JR, Baeten JM, et al. Bacterial vaginosis associated with  increased risk of female‐to‐male HIV‐1 transmission: a prospective cohort analysis  among African couples. PLoS medicine 2012; 9:e1001251. 

pt ed

14. Watts DH. Mother to child transmission of HIV‐‐another complication of  bacterial vaginosis? J Acquir Immune Defic Syndr 2012; 60:221‐4.  15. Cherpes TL, Meyn LA, Krohn MA, Lurie JG, Hillier SL. Association between  acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin 

ce

Infect Dis 2003; 37:319‐25. 

16. Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL. Bacterial vaginosis 

Ac

is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection.  Clin Infect Dis 2003; 36:663‐8. 

19  17. Wiesenfeld HC, Hillier SL, Krohn MA, et al. Lower genital tract infection and  endometritis: insight into subclinical pelvic inflammatory disease. Obstet Gynecol 

cr ipt

2002; 100:456‐63. 

18. Hillier SL, Nugent RP, Eschenbach DA, et al. Association between bacterial 

vaginosis and preterm delivery of a low‐birth‐weight infant. The Vaginal Infections  and Prematurity Study Group [see comments]. N Engl J Med 1995; 333:1737‐42. 

us

19. Goldenberg RL, Klebanoff MA, Nugent R, Krohn MA, Hillier S, Andrews WW. 

Bacterial colonization of the vagina during pregnancy in four ethnic groups. Vaginal 

an

Infections and Prematurity Study Group. Am J Obstet Gynecol 1996; 174:1618‐21.  20. Antonio MA, Hawes SE, Hillier SL. The identification of vaginal Lactobacillus 

M

species and the demographic and microbiologic characteristics of women colonized  by these species. J Infect Dis 1999; 180:1950‐6. 

21. Eschenbach DA, Davick PR, Williams BL, et al. Prevalence of hydrogen peroxide‐

pt ed

producing Lactobacillus species in normal women and women with bacterial  vaginosis. J Clin Microbiol 1989; 27:251‐6.  22. Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, Vaneechoutte  M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. 

ce

crispatus promotes the stability of the normal vaginal microflora and that L. gasseri  and/or L. iners are more conducive to the occurrence of abnormal vaginal 

Ac

microflora. BMC microbiology 2009; 9:116.  23. Larsson PG, Forsum U. Bacterial vaginosis‐‐a disturbed bacterial flora and  treatment enigma. APMIS 2005; 113:305‐16. 

20  24. Mehta SD. Systematic review of randomized trials of treatment of male sexual  partners for improved bacteria vaginosis outcomes in women. Sex Transm Dis 

cr ipt

2012; 39:822‐30. 

25. Rogosa M, Sharpe ME. Species differentiation of human vaginal lactobacilli. J Gen  Microbiol 1960; 23:197‐201. 

26. Cruickshank R, Sharman A. The biology of the vagina in the human subject. II. 

us

The bacterial flora and secretion of the vagina at various age‐periods and their  relation to glycogen in the vagind epithelium. J Obstet Gynaec Brit Emp 1934; 

an

41:208. 

27. Stewart‐Tull DE. Evidence That Vaginal Lactobacilli Do Not Ferment Glycogen. 

M

Am J Obstet Gynecol 1964; 88:676‐9. 

28. Wylie JG, Henderson A. Identity and glycogen‐fermenting ability of lactobacilli  isolated from the vagina of pregnant women. J Med Microbiol 1969; 2:363‐6. 

pt ed

29. Martin R, Soberon N, Vaneechoutte M, Florez AB, Vazquez F, Suarez JE.  Characterization of indigenous vaginal lactobacilli from healthy women as probiotic  candidates. Int Microbiol 2008; 11:261‐6.  30. Amsel R, Totten PA, Spiegel CA, Chen KC, Eschenbach D, Holmes KK. Nonspecific 

ce

vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J  Med 1983; 74:14‐22. 

Ac

31. Morris DL. Colorimetric determination of glycogen; disadvantages of the iodine  method. J Biol Chem 1946; 166:199‐203. 

21  32. Ao Z, Quezada‐Calvillo R, Sim L, et al. Evidence of native starch degradation with  human small intestinal maltase‐glucoamylase (recombinant). FEBS Lett 2007; 

cr ipt

581:2381‐8. 

33. Lee CK, Le QT, Kim YH, et al. Enzymatic synthesis and properties of highly 

branched rice starch amylose and amylopectin cluster. J Agric Food Chem 2008;  56:126‐31. 

us

34. Fredricks DN, Fiedler TL, Thomas KK, Mitchell CM, Marrazzo JM. Changes in  vaginal bacterial concentrations with intravaginal metronidazole therapy for 

an

bacterial vaginosis as assessed by quantitative PCR. J Clin Microbiol 2009; 47:721‐6.  35. Srinivasan S, Liu C, Mitchell CM, et al. Temporal variability of human vaginal 

M

bacteria and relationship with bacterial vaginosis. PLoS ONE 2010; 5:e10197.  36. Gray GM. Starch digestion and absorption in nonruminants. J Nutr 1992;  122:172‐7. 

pt ed

37. Larson SB, Day JS, McPherson A. X‐ray crystallographic analyses of pig  pancreatic alpha‐amylase with limit dextrin, oligosaccharide, and alpha‐ cyclodextrin. Biochemistry 2010; 49:3101‐15.  38. Ganzle MG, Zhang C, Monang BS, Lee V, Schwab C. Novel metabolites from cereal‐

ce

associated lactobacilli ‐ novel functionalities for cereal products? Food Microbiol  2009; 26:712‐9. 

Ac

39. Meroth CB, Walter J, Hertel C, Brandt MJ, Hammes WP. Monitoring the bacterial  population dynamics in sourdough fermentation processes by using PCR‐denaturing  gradient gel electrophoresis. Applied and environmental microbiology 2003;  69:475‐82. 

22  40. Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria  associated with bacterial vaginosis. N Engl J Med 2005; 353:1899‐911. 

cr ipt

41. Gajer P, Brotman RM, Bai G, et al. Temporal dynamics of the human vaginal  microbiota. Sci Transl Med 2012; 4:132ra52. 

42. O'Hanlon DE, Lanier BR, Moench TR, Cone RA. Cervicovaginal fluid and semen 

lactobacilli. BMC Infect Dis 2010; 10:120. 

us

block the microbicidal activity of hydrogen peroxide produced by vaginal 

43. Boskey ER, Telsch KM, Whaley KJ, Moench TR, Cone RA. Acid production by 

Infect Immun 1999; 67:5170‐5. 

an

vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. 

M

44. Cherpes TL, Meyn LA, Krohn MA, Hillier SL. Risk factors for infection with herpes  simplex virus type 2: role of smoking, douching, uncircumcised males, and vaginal  flora. Sex Transm Dis 2003; 30:405‐10. 

pt ed

45. Hillier SL. Diagnostic microbiology of bacterial vaginosis. Am J Obstet Gynecol  1993; 169:455‐9. 

46. Ganzle MG, Follador R. Metabolism of oligosaccharides and starch in lactobacilli:  a review. Front Microbiol 2012; 3:340. 

ce

47. Pieper‐Bigelow C, Strocchi A, Levitt MD. Where does serum amylase come from  and where does it go? Gastroenterol Clin North Am 1990; 19:793‐810. 

Ac

48. Vissers RJ, Abu‐Laban RB, McHugh DF. Amylase and lipase in the emergency  department evaluation of acute pancreatitis. J Emerg Med 1999; 17:1027‐37.     

23  Figure legends.   

cr ipt

Fig. 1.  Lack of L. gasseri growth in glycogen. L. gasseri was cultured in MRS 

 medium that contained either no added carbohydrates (No Carb), 2% glucose, 2% 

glycogen or 2% starch for 72 hours.  The OD at 600 was read each day.   Each culture  condition was run in duplicate and the duplicates averaged.  Each culture 

us

experiment was performed at least three times with similar results.   

an

Fig. 2. Growth of lactobacilli in glucose polymers. L. gasseri (a), L. jensenii (b, d) and  L. johnsonii (c) were cultured in MRS broth that contained either no added 

M

carbohydrates (No Carb) or 2% of either glucose, maltose, maltodextrin 4‐7,   maltodextrin 13‐17, maltodextrin 16‐19, maltotriose or maltopentaose for 72 hours.  

 

pt ed

The OD at 600 was read each day. 

Fig. 3. Growth of lactobacilli in salivary α‐amylase‐treated glycogen. L. gasseri (a), L.  jensenii (b) or  L. johnsonii (c) were cultured in MRS broth that contained either no  added carbohydrates (No Carb), 2% glucose, 2% glycogen, 2.5% saliva alone, or 

ce

glycogen plus saliva for 72 h.  The OD at 600 was read each day.   

Ac

Fig. 4.  Degradation of glycogen by salivary α‐amylase. Glycogen   (2% oyster) was incubated for 10 minutes with no saliva (Oyster) or for 10, 30 or  120 min with 2.5% saliva. The size of the degraded glycogen was determined by  HPSEC (a) and the products analyzed by HPAEC (b). 

24    Fig. 5.  Temperature‐dependent degradation of glycogen in genital fluid.  A.  Aliquots 

cr ipt

of genital fluid collected from two subjects (A and B) were incubated at either 37°C  or 4°C for 90 min and the level of endogenous glycogen was measured with a 

colormetric iodine assay.  B. Glycogen was added to genital fluids collected from four  other women (C, D, E and F) or saline and aliquots were incubated at either 4°C or 

us

37°C for 90 min.  At the end of the incubation, the amount of glycogen in the samples 

was measured with the colorometric iodine assay.  C.  Degradation in 21 genital fluid 

an

samples was measured as in figure 5b and the % degradation was calculated by the  following formula; 1 – glycogen@37°/glycogen@4° x 100.  

M

 

Fig. 6.  Relationship of glycogen degradation with genital bacteria, vaginal pH, α‐ amylase and α ‐glucosidase.  The percent of glycogen degradation (Fig. 5c) in 21 

pt ed

samples was plotted along with either genital tract levels of L. iners (a), L. crispatus  (b), G. vaginalis (c), vaginal pH (d) pancreatic α‐amylase (e) or α ‐glucosidase (f).   

Fig. 7.  Breakdown of glycogen by genital fluids.  Glycogen was incubated for 0 h (a) 

ce

or 48 h (b) with saline or 48 h with genital fluid collected in saline from two  different subjects (c,d).  After incubation the size of small carbohydrates was 

Ac

determined by HPAEC.       

rip t sc

2.5

M an u

No Carb Glycogen Glucose Starch

2

OD

1.5

ed

1

0 0

ep t

0.5

10

20

30

40

Ac c

Time (hours)

50

60

70

80

1.6

No Carb Glycogen Glucose Maltose MD 4-7 MD 13-17 MD 16-19

a  

rip t

2

No Carb Glycogen Glucose Maltose MD 4-7 MD 13-17

b   1.4

1.5

1.2

sc

1

OD

OD

1 0.8

M an u

0.6 0.4

0.5

0.2

0

0 0

20

30 40 50 Time (hours)

No Carb Glycogen Glucose Maltose MD 4-7 MD 13-17 MD 16-19

70

1.2

0.6

Ac c

0.4

10

20

30

40

50

60

70

80

Time (hours)

No Carb Glucose Triose Pentose

d  

OD

ep t

0.8

0

80

2

1

OD

60

ed

1.4

c  

10

1.5

1

0.5

0.2

0

0

10

20

30

40

50

Time (hours)

0 60

70

80

0

10

20

30 40 50 Time (hours)

60

70

80

rip t No carb Glycogen Glucose Saliva (2.5%) Glycogen + Saliva

2.5

1.5

2

b  

a   1.5

OD

OD

1

1

0.5

No carb Glycogen Glucose Saliva (2.5%) Glycogen + Saliva

2.5

2

..                          .          .  

L. johnsonii 7.26 exp copy

c  

1.5

OD

No carb Glycogen Glucose Saliva (2.5%) Glycogen + Saliva

sc

2

M an u

..                        .          .  

L. gasseri 7.26 exp copy

1

ed

0.5

0.5

0

0 20

30

40

Time (hours)

50

60

70

0

10

ep t

10

Ac c

0

20

0

30

40

Time (hours)

50

60

70

0

10

20

30 40 Time (hours)

50

60

70

Ac c B  

ed

ep t

rip t

sc

M an u

A  

1

0

8.1

B

sample

ep t

Ac c

Degradation (%)

60

8.5

ed

A

80

rip t

1

0.5

0.5

C  

1.5

M an u

1.5

Glycogen (mg/ml)

Glycogen (mg/ml)

4 37

100

4 37

2

2

0

2.5

sc

A  

B  

2.5

40

20

0

4-3 2-2 2-3 4-211-2b13-113-2 4-1 8-1 8-2 8-4 5-1 7-2 2-1 2-4 3-2 8-3 10-110-213-420-1

C

D

E

Sample

F

Saline  

106

104

100

1 0

20

40

60

80

100

108

106

104

100

1 0

20

Degradation (%)

60

80

108

106

104

100

1

100

0

20

12

40

60

80

100

Degradation (%)

Degradation (%)

d  

7

40

ed

7.5

c  

1010

sc

L. Crispatus (16S gene copies)

L iners (16S gene copies)

108

b  

G. vaginalis (16S gene copies)

a  

rip t

1010

M an u

1010

0.7

e  

f  

0.6

Amylase (mU/ml)

6.5

5.5

Ac c

pH

6

5 4.5 4 3.5 0

20

40

60

Degradation (%)

80

100

Alpha Glucosidase (ng/ml)

ep t

10

8

6

4

2

0

0.5

0.4

0.3

0.2

0.1

0

20

40

60

80

100

0 0

20

40

60

Degradation (%) Degradation (%)

80

100

Ac c ed

ep t

rip t

sc

M an u

Suggest Documents