Introduction to Neuroscience. Memory mechanisms

Introduction to Neuroscience Memory mechanisms What is memory? Psychology Neuroscience What is memory? Memory is an organism's ability to store, ...
Author: Jasmine Parrish
1 downloads 0 Views 5MB Size
Introduction to Neuroscience Memory mechanisms

What is memory?

Psychology Neuroscience

What is memory? Memory is an organism's ability to store, retain, and  recall Knowledge Behaviors Values or Preferences contextual (explicit) or non‐contextual (implicit) resulting from single or repeated presentation of  stimuli facilitated by motivation and emotion consciously or without conscious awareness

Pavlovian conditioning

Ring!

Ivan Pavlov (1849‐1936) Ring!

Classification of memory in  Neuroscience • Declarative memory formation • Procedural memory formation • Emotional memory formation

Multiple memory systems Sensory inputs

Declarative (Stimulus‐Stimulus) Hippocampus Cerebral cortex

Procedural (Stimulus‐Response) Striatum Cerebellum

Output

Emotional (Stimulus‐Affect) Amygdala

Behavioral evidence for the multiple memory  systems (8‐arm radial maze )

Lesions, FF: Hippocampus, DS: Striatum, LNA Amygdala McDonald & White (1993), Behavioral Neuroscience

How can you detect memory formation in the brain? Changes in neural activity  detected with BOLD (blood‐oxygen‐level‐dependent) contrast in fMRI magnetic fields in MEG electric activity in EEG radioactivity of chemicals in PET multi‐unit recording, extracellular field potential recording intracellular recording (voltage clamp, current clamp) in vivo calcium or voltage imaging Changes in neural structure real‐time in vivo imaging one‐shot imaging by (immuno)histochemistry in LM and EM  Changes in biochemical activity real‐time in vivo imaging with various fluorescence reporters one‐shot analyses of amount, phosphorylation or other modifications

Synaptic Connections in Neuronal Cells

What is neuronal substrates of memory? Molecular alterations expression/trafficking of receptors/ion channels phosphorylation of receptors or enzymes

Structural alterations in neuronal cells depletion of vesicles spine/synapse enlargement/shrinkage synaptic formation and elimination

Synaptic Connections in Neuronal Cells

Ionotropic glutamate receptors

Synaptic Connections in Neuronal Cells

Voltage‐gated  calcium channels

Synaptic Connections in Neuronal Cells

Voltage‐gated  pottassium channels

LTP and LTD: necessary for learning? • Hebb predicted strengthening of specific  synaptic connection after associative learning  (1949). • Bliss and Lømo discovered long‐term  potentiation of hippocampal field excitatory  postsynaptic potentials after tetanus (1973). • Lynch and Baudry proposed NMDA receptor  hypothesis (1984).

NMDA receptor‐dependent LTP in CA1 Useful for exploring how patterns of  synaptic activity drive changes in efficiency  of neuronal communication

AMPA

axon

dendrite

NMDA

The postsynaptic NMDA receptor

• binds glutamate • voltage‐dependent block by Mg2+ • Ca2+ permeable

Antagonists: • AP5 • MK801

A N

synapse strength 0

60 time (min)

A A N

synapse strength 0

60 time (min)

A A N

synapse strength 0

60 time (min)

A A N

synapse strength 0

60 time (min)

A AA NN

A A N

synapse strength 0

60 time (min)

A A N

synapse strength 0

60 time (min)

Synaptic plasticity is bidirectional  LTP and LTD

High frequency train

Long term potentiation (LTP)

synapse strength 0

60 time (min)

Synaptic plasticity is bidirectional  LTP and LTD

Low frequency train

Long term depression (LTD)

synapse strength 0

60 time (min)

Different patterns induce different changes

LTP 0.1

1

10

100

Frequency Hz LTD

Synapse strength 1 hour after trains of  action potentials

LTP

wild type 0.1

1

10

100

Hz

AP5, NR1CA1

LTD

All activity patterns fail to produce plasticity  when NMDAR is blocked.

Multiple memory systems Sensory inputs

Declarative (Stimulus‐Stimulus) Hippocampus Cerebral cortex

Procedural (Stimulus‐Response) Striatum Cerebellum

Output

Emotional (Stimulus‐Affect) Amygdala

Spatial learning

Spatial learning Deficit – NMDA Block

Inhibitory avoidance training alters AMPAR phosphorylation and trafficking in the hippocampus

J R Whitlock et al. Science 2006;313:1093-1097

Inhibitory avoidance training results in an enhancement of fEPSPs in area CA1 of the hippocampus in vivo

J R Whitlock et al. Science 2006;313:1093-1097

Multiple memory systems Sensory inputs

Declarative (Stimulus‐Stimulus) Hippocampus Cerebral cortex

Procedural (Stimulus‐Response) Striatum Cerebellum

Output

Emotional (Stimulus‐Affect) Amygdala

Fear conditioning

Input and output pathways for fear  conditioning

Fear conditioning induces associative long‐term  potentiation in the amygdala

Rogan et al. (1997)

Fear‐conditioned animals show a presynaptic facilitation of  AMPA‐receptor‐mediated transmission

McKernan and Shinnick‐Gallagher (1997)

Blocking synaptic incorporation of GluR1-receptors by overexpression of the plasticity-block construct impairs memory formation.

S Rumpel et al. Science 2005;308:83-88

Molecular mechanisms of  fear conditioning

Multiple memory systems Sensory inputs

Declarative (Stimulus‐Stimulus) Hippocampus Cerebral cortex

Procedural (Stimulus‐Response) Striatum Cerebellum

Output

Emotional (Stimulus‐Affect) Amygdala

Motor Learning ------- Repetition of Training Short-term Memory

Long-Term memory

Acquisition of Motor Skill

Consolidation

Autonomic Behavior (Unconscious)

小脳皮質 Granule cell layer

分子層

白質

Purkinje cell

Granule cell

Long‐Term Depression of Parallel Fiber EPSP  in Cerebellar Slices

Conjunctive stimulation of parallel and climbing fibers

(Karachot et al., 2001)

Molecules Involved in Long‐Term Depression  at Parallel Fiber‐Purkinje Cell Synapses

PKG

CaMK

Molecules Involved in Long‐Term Depression  at Parallel Fiber‐Purkinje Cell Synapses

PKG

Depolarization

CaMK

Molecules Involved in Long‐Term Depression  at Parallel Fiber‐Purkinje Cell Synapses

PKG

Depolarization

CaMK

Molecules Involved in Long‐Term Depression  at Parallel Fiber‐Purkinje Cell Synapses

PKG

Depolarization

CaMK

Molecules Involved in Long‐Term Depression  at Parallel Fiber‐Purkinje Cell Synapses

PKG

Depolarization

CaMK

Molecules Involved in Long‐Term Depression  at Parallel Fiber‐Purkinje Cell Synapses

PKG

Depolarization

CaMK

Molecules Involved in Long‐Term Depression  at Parallel Fiber‐Purkinje Cell Synapses

PKG

Depolarization

CaMK

LTD is not essential for motor learning

(Schonewille et al., Neuron 2011)

Adaptation of HOKR

HOKR: Horizontal OptoKinetic Response

HOKR training induces adaptation

Short‐term (STA)

Long‐term (LTA)

Neural circuit of the HOKR Screen Movement

FL PF

LTD MF CF Vestibular complex

IV III

RtTg

Retinal slip signal Inferior olive

Pretectal area

CF: Climbing fibre FL: Flocculus HOKR: horizontal optokinetic response RtTg: Reticulotegmental nucleus of the pons MF: mossy  fibre PF: parallel fibre III: the third cranial nerve  IV: the fourth cranial nerve 

Neural circuit of the HOKR Screen Movement

FL PF

LTD MF CF Vestibular complex

IV III

RtTg

Retinal slip signal Inferior olive

Pretectal area

CF: Climbing fibre FL: Flocculus HOKR: horizontal optokinetic response RtTg: Reticulotegmental nucleus of the pons MF: mossy  fibre PF: parallel fibre III: the third cranial nerve  IV: the fourth cranial nerve 

Neural circuit of the HOKR Screen Movement

FL PF

LTD MF CF Vestibular complex

IV III

RtTg

Retinal slip signal Inferior olive

Pretectal area

CF: Climbing fibre FL: Flocculus HOKR: horizontal optokinetic response RtTg: Reticulotegmental nucleus of the pons MF: mossy  fibre PF: parallel fibre III: the third cranial nerve  IV: the fourth cranial nerve 

Anatomy of flocculus

FL PFL internal control

1mm

1mm

FL Synapses from control (A) or trained (B) animal 15 nm gold for GluR2 5 nm gold for pan AMPAR Parallel Fibre Parallel Fibre A: Control

Purkinje cell spine

B: Trained

Purkinje cell spine

Density of AMPA receptor particles:                       771.68547 /m2            

530.70547 /m2

Neural substrate for STA ‐ Quantification of AMPAR density  by SDS freeze‐fracture replica labeling (FRL) Massed 1h training

AMPAR density in FL transiently reduces after 1 hr HOKR training Wang et al

Selective decrease of PF‐PC synapses in FL after  long‐term adaptation

‐33.3%

Spine Density Analysis on Golgi Stained Sections by Ultra High Voltage EM Control

FL

PF‐PC synapse density negatively correlates with LTA

CONCLUSION  Regulation of different AMPA receptor subunits dynamics in synapses may underlie short‐ and long‐term memory in the hippocampus.  Regulation of AMPA receptor dynamics in synapses and presynaptic release may underlies some kinds of long‐ term memory in the amygdala.  Regulation of AMPA receptor dynamics and synapse structure may underlie short‐ and long‐term memory in the cerebellum.

Suggest Documents