Introduction on Agriculture Technologies for Mitigation to climate change. Climate Change and Watershed Program

Introduction  on  Agriculture  Technologies     for  Mitigation  to  climate  change       Climate  Change  and  Watershed  Program   Climate  Chang...
1 downloads 0 Views 21MB Size
Introduction  on  Agriculture  Technologies     for  Mitigation  to  climate  change       Climate  Change  and  Watershed  Program  

Climate  Change    (IPCC  2013)  

Negative   impacts   of   climate   change   on   crop   and   terrestrial   food   production   have  been  more  common  than  positive  impacts.         Food   production   systems   and   food   security.   Without   adaptation   local   temperature  increases  of  1.0C  (global  average  also  1.0C)  above  pre-­‐industrial   are   projected   to   negatively   impact   yields   for   major   crops   (wheat   rice   and   maize)  in  tropical  and  temperature  regions  (IPCC  AR5  2013  –  2014  WG2  SPM).    

IPCC  fifth  assessment  report  climate  change  2013   •  It   is   extremely   likely   that   human   influence   has   been   the   dominant   cause   of   the   observed   warming   since   the   mid-­‐20th   century     •  Warming   of   climate   change   is   unequivocal   and  will  continue  beyond  2100  under  all  RCP   scenarios  (except  RCP2.6.)  

•  Each   of   the   last   three   decades   has   been   successively   warmer   at   the   Earth´s   surface   than   any  preceding  decade  since  1850     •  The  amounts  of  snow  and  ice  have  diminished  

IPCC  AR5  (2013)  

• 

  • 

The   CO2   concentrations   of   GHGs   have   increased  by  40%  since  preindustrial  times  from   fossil   fuel   emissions   and   net   land   use   change   emissions   It   is   very   likely   that   the   length,   frequency,   and/ or   intensity   of   warm   spells   or   heat   waves   will   increase  over  most  land  areas  

• 

It   is   likely   that   the   frequency   of   heavy   precipitation  or  the  proportion  of  total  rainfall   from  heavy  falls  will  increase  over  many  areas   of  the  globe  

•    • 

Global  mean  sea  level    will  further  decrease   The   ocean   has   absorbed   about   30%   of   the   emitted   anthropogenic   CO2   causing   ocean   acidification  

IPCC  AR5  (2013)  

Impacts  of  climate  change:  Positive  impacts   Higher   CO2   levels   can   increase   yields   (p.e.   C3   crops   such   as   wheat,   rice   and   soybeans,   could   increase   by   30%   or   more.   C4   crops   such   as   corn,   exhibit   a   response   less   than   10%   increase)   (Cline,   2007);   horticultural  crops  are  likely  to  be  more  sensitive  to  CC  

www.ecosystems.wcp  

For  any  particular  crop,  the  effect  of  increased  temperature  will  depend   on  the  crop's  optimal  temperature  for  growth  and  reproduction  

Impacts  of  climate  change:  Positive  impacts  

•  The   areas   suitable   for   cropping   will   expand,   the   length   of   the   growing  period  will  increase.   •  The   costs   of   overwintering   livestock   will   fall,   crop   yields     will   improve   and   forests   may   grow  faster.   •  Increased   productivity   from   enhanced   CO2   and   warmer   temperatures  

Potential  impacts  of  CC  on  agriculture  

Negative  impacts   More   extreme   temperature   and   precipitation   can   prevent   crops   from  growing.       Extreme   events,   especially   floods   and   droughts,   can   harm   crops   and   reduce  yields  

www.ecosystems.wcp     www.ccafs.cgiar.org  

Impacts  of  CC  on  agriculture:  Negative  impacts  

…  

www.ecosystems.wcp  

…because  the  climate  impacts  is  affecting  crop  yields  

Many   weeds,   pests   and   fungi   thrive   under  warmer  temperatures,  wetter   climates,  and  increased  CO2  levels.     Low  effectiveness  of  pesticides,  crop   diversity   and   increased   water   and   heat  stress   www.ccafs.cgiar.org  

Role  of  agricultural  development  in  increasing  climate  change     The  global  food  system,  from  fertilizer  manufacture  to  food  storage  and  packaging,  is  responsible   for  up  to  one-­‐third  of  all  human-­‐caused  GHG  emissions  (Vermeulen,  2012  )     GHG  emissions  vary  markedly  across  the  different  activities  of  the  food  chain  at  the  global  level:  

Preproduction  

Stage  of  food  chain  

Emissions   (MtCO2e)  

Year  of   estimate  

Fertilizer  manufacture  

282–575  

2007  

Bellarby  et  al.  2008  

60  

2005  

Steinfeld  et  al.  2006  

3-­‐140  

2007  

Bellarby  et  al.  2008  

Direct  emissions  from  agriculture  

5120-­‐6116  

2005  

Smith  et  al.  2007  

Indirect  emissions  from  agriculture  

2198-­‐6567  

2008  

van  der  Werf  et  al.  2009   Blaser  et  al.  2007  

Primary  and  secondary  processing  

192  

2007  

Chen  et  al.    2010  

Storage,  packaging  and  transport  

396  

2007  

Chen  et  al.    2010  

Refrigeration  

490  

2004  

James,  S  &  James,  C  .  2010  

Retail  activities  

224  

2007  

Chen  et  al.    2010  

Catering  &  domestic  food  management  

160  

2007  

Chen  et  al.    2010  

Waste  disposal  

72  

2007  

Chen  et  al.    2010  

Energy  use  in  animal  feed  production     Pesticide  production  

Production  

Postproduction  

References  

IPCC  Technical  Paper  I  

Role  of  agricultural  development  in   increasing  climate  change    

Greenpeace  (2008)  

www.ccafs.cgiar.org  

World  GHG  emissions  by  sector  

IPCC  (2000)  

www.ccafs.cgiar.org  

GHG  emissions  percent  on  agriculture  sectors  

Source:  McKinsey  Climate  Change  Special  Initiative,  2007  (Global  GHG  Abatement  Cost  Curve  v2.1)  

Technologies  for  mitigating  agricultural  emissions    

Enhancing  soil  carbon  sequestration  

Conservation   agricultural   practices   (reduced   slash   and   burn  agriculture  and  pastureland  conversion  and  reduced   intensive   agriculture   conversion),   promote   soil   carbon   sequestration  by  increasing  the  time  and  amount  of  crop   residues   left   on   the   soil   surface;   and   reducing   soil   disturbance,   thereby   decreasing   CO2   emissions.     In   addition,     the   degraded   forest   reforestation   and     pastureland     afforestation   could   be   more   effective   with   the  inclusion  of  trees  in  their  farming    system.  

 

Conservation  agricultural  practices      

Tillage  and  residue  management:  establishing  crops  in  the   previous   crop´s   residues,   wich   are   purposely   left   on   the   soil  surface.  It  shields  the  soil  from  rain  and  wind    and  also   adds   organic   matter,   reduce   soil   compaction,   and   improves  soil  tilth  (NSAC,  2009)  

Technologies  for  mitigating  agricultural  emissions   Polyculture:   Technology   of   growing   multiple   crops   in   the   same   space,   the   crops   are   less   susceptible   to   disease   than   monoculture  crops,  and  also  increase  local  biodiversity.     Organic  and  degraded  soils  restoration:  Returning  soils  to   their  original  state  after  disturbance,  stopping  application   of  chemicals,  using  bacteria  to  break  down  pollutants,  and   applying  cover  crops.     Seeds   and   breeds:   Maintenance   of   genetic   resources   of   plant   varieties   and     animal   breeds   that   are   necessary   for   the  survival  of  agricultural  systems  for  current  and  future   generations.     Manure   composting:   Aerobical   decomposition   of   organic   m a t t e r   b y   m i c r o o r g a n i s m s   W i t h   h i g h   e n o u g h   temperatures,  pathogens  and  weeds  have  been  killed.     Integrated   pest   management:     Effective   and   environmentally   approach   to   pest   management     to   manage   pest   damage     with   the   least   possible   hazard   to   people  and  the  environment  (NSAC,  2009)  

Technologies  for  mitigating  agricultural  emissions  

Reducing  fuel  consumption     •  Harvesting   forage   by   livestock   grazing   rather   then  mechanically  (waste  recycling)   •  Designing   grain   cropping   systems   to   allow   full   drying  of  crops  in  the  field  prior  to  harvest   •  Reducing   the   amount   of   water   pumped   for   irrigation   •  Employing   cropland   nutrient   management   strategies   to     continually   adjust   fertilizer   application   rates   for   efficient,   sustainable   production  (rice  management)   •  Using   legume-­‐based   rotations   or   organic   agricultural   systems   to   reduce   N   fertilizer   applications  (Grassland  management).    

Technologies  for  mitigating  agricultural  emissions   Improving  nitrogen-­‐use  efficiency  (NUE)     •  •  • 

• 

•  • 

Soil   nitrate   tests   prior   to   N   fertilizer   applications   can   provide   land   managers  with  a  timely  understanding  of  actual  crop  need   Precisely   timing   fertilizer   application   to   match   the   period   of   time   when  plants  need  nutrients     The   conversion   of   molecular   nitrogen   (N2)   to   ammonia   (NH3)   through   biological   fixation   by   bacteria     is   incorporated   into   the   plant   biomass,  it  can  become  part  of  the  soil  reservoir  and  taken  up  again   by  plant  roots  as  nitrate  (NO2)   GIS   can   be   used   in   combination   with   variable-­‐rate   technology,   crop   monitoring,   and   other   technologies   to   apply   N   fertilizers   based   on   crop  need     Leguminous   green   manures   can   convert   nitrogen   gas   from   the   atmosphere  to    plant-­‐available  N  for  crop  use     Riparian  forest  can  intercept  N,  using  it  for  biomass  production  and   wildlife  habitat,  as  well  as  keeping  it  from  entering  aquatic  systems   and  transforming  into  N2O.  

Technologies  for  mitigating  agricultural  emissions  

Increasing  ruminant  digestion  efficiency     •  Adjusting  the  portions  of  animal                feed  to  decrease  digestion    time   •  Using    edible    oils    or    other  feed                additives      to      reduce    metabolic                activity  of    rumen    bacteria    that                  produce  CH4   •  Capturing  CH4  emissions  from  livestock  waste  using   covered  lagoons  and  converting  to  electricity     •  Applying   manure   to   the   soil   as   a   nutrient   source   rather  than  storing  it  as  waste.   •  Improving   pasture   quality,   rotational   grazing   to   increase  animal  productivity  

www.ccafs.cgiar.org  

Study  case  (VIDEO)  

Barriers  to  mitigation  technologies   •  Significant   technical   progress   has   been   made   in   the   last   five   years   in   áreas   such   as   underground   CO2   storage,   reducing   fuel   consumption,   restoration   of   degraded   soils,   integrated   pest   management,  seeds  and  breeds,  etc.   • 

B a r r i e r s   a d d   t o   t h e   c o s t   o f   implementation   and   reduce   the   realizable  potential.  

  •  Bariers   can   be   technical,   economic,   political,  cultural,  social,  behavioral  and   institutional.   •  The   opportunities   for   mitigation   differ   by  region  

Main  barriers  for  Agriculture  Mitigation   •  Lack   of   data,   information,   knowledge,   awareness     •  High  transaction  costs  and  trade  barriers   •  Poor   access   to   financing,   specially   for   smallholders   •  Risk  aversion  in  financial  institutions     •  Insufficient  human  and  institutional  capabilities   •  Poor  understanding  of  local  needs     •  Poor  practices  such  as  slash  and  burn  agriculture   and  mismanagement  of  forest  resources   •  Lack   of   enabling   policies   initiatives,   institutional   mechanism,  information  and  opportunities   •  Lack  of  coordination  among  different  groups   •  Barriers  to  the  development  and  transfer  of  new   technologies  

Opportunities  for  overcoming  agricultural  barriers   a)  Potential   mitigation   opportunities   and   types   of   barriers  vary  by  region,  sector  and  over  time.     b)  Opportunities  for  any  given  country  might  be  found   in  the  removal  of  any  combination  of  barriers.   c)  Agriculture  and  forestry  sector  options  are  relatively   low  cost,  which  helps  to  reduce  barriers.     d)  Farm-­‐level   Adoption   Constraints,   participatory   arrangements   that   fully   engage   all   the   involved   actors  may  help  to  overcome  many  barriers.   e)  The   expansion   of   credit   and   savings   schemes,   and   price  support,  to  assist  rural  people.      

www.eurocert.org.uk  

Opportunities  for  overcoming  agricultural  barriers   f)  The  improvement  of  food  security  and  disaster  early   warning  systems.     g)  The   development   of   institutional   linkage   between   countries   with   high   standards   in   certain   technologies.   h)  The   rationalization   of   input   and   output   prices   of   agricultural  commodities  which  would  lead  to  more   efficient  use  of  input  resources.    

Instruments  for  national  mitigation  planning   •  NAMAs  (Nationally  Appropriate  Mitigation  Actions)   •  LEDS  (low-­‐emission  development  strategies)   •  CTCN  (Climate  Technology  Center  Network)  

NAMA Nationally Appropiate Mitigation Actions

•  The   NAMAs   are   voluntary   mi.ga.on   proposals     submi6ed    by    non-­‐Annex  I  country  to  the  CMNUCC   •  Involve   an   measurable,   reportable   and   verifiable   effort   (MRV)   (Include   specific   ac.ons,   no   emission   targets  reduc2on)   •  The  NAMAs  can  be  supported  and  enabled  by  Annex   I   countries   through     technology   transfer,   financing   and  assistance  in  na.onal  capaci.es  building  

What    are  the  objec,ves  of  NAMAs?  

•  Recognize   mi2ga2on   efforts   in   developing   countries   •  Create  a  pla

Suggest Documents