IIIIIIIIIIIIIII~I~I~I~~I~~I~II~II~I~~I~IIIIIIIIIIIIIIII c I! ~ ~ ~; ~,. ~.- * *

I I I I I I I I~I~I~I~ I~ I~I ~I ~I~ I~I I I I I I I I *30000002343657* cI! ~ ~ ~; ~,.~ .- UNIVERSITI TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN...
Author: Nathan Patrick
0 downloads 2 Views 1MB Size
I I I I I I I I~I~I~I~ I~ I~I ~I ~I~ I~I I I I I I I I *30000002343657*

cI!

~ ~ ~; ~,.~

.-

UNIVERSITI TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: CONCEPTUAL DESIGN OF A SMALL NON-RIGID AIRS"'P WITII PARTICULAR ATTENTION TO ITS STATIC AND DYNAMIC STABILITY

SESI PENGAJIAN

2008/2009

Saya ______________A __ Z_IA_N__ B_IN_T_I_H_A_R_I_R_I_(7_8_0_82_7_-0_8_-6_3_8_4)______________ (HURUF BESAR) menga].,:u membenarkan tesis (PSM/Sarjana/Dslasr Falsafah)* ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut : I. 2. 3. 4.

Tesis adalah hak milik Universiti Tun Hussein Onn Malaysia. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran di antara institusi pengaj ian tinggi. "Sila tandakan (,I)

D

SULIT

D

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKT A RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telalzdite tukan oleh organisasi/ badan di mana penyelidikan dijalanka

D

TIDAK TERHAD

ck~d~ (TANDATANGAN PENULIS)

;~ h: I ka ?Ie~

Dis

~

Ala mat Tctap: 137, KAMPUNG PARIT SRI BAIIROM DARAT, 83100 RENGIT, BATU PAIIAT,JOHOR.

Tarikh:

I'd-

JANUARJ 2009

~

(TANDltr1\GAf PROF. DR.

..P"ENYELIA)

INJLR'~

BIN SEllA YANG (Nama Pcnyclia)

Tarikh:

i'2.

JANUARJ 2009

CATAT AN: * Potong yang tidak berkenaan . •• Jika Tesis ini SULIT atau TERHAD. sila lampirkan surat daripada pihak berkuasa! organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD. Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan. atau disertasi bagi pengajian secara kerja kursus dan penyelidikan. atau Laporan Projek Sarjana Muda (PSM).

"We declared that we had read this thesis and according to our opinion, this thesis is qualified in term of scope and quality for purpose of awarding the

Signature

Supervisor

Professor Dr. Ing. Darwin Sebayang

Date

...................................... ~ .l .................................. .

Signature

.........

Co-Supervisor:

Associate Professor Mohd. Ashraf Othman

Date

......... (.;:?,./ .... .I......... / ..Q.~l ............................... .

\2!

I

/

oei

~

........................................

CONCEPTUAL DESIGN OF A SMALL NON-RIGID AIRSHIP WITH PARTICULAR ATTENTION TO ITS STATIC AND DYNAMIC STABILITY

AZIAN BINTI HARlRI

A thesis submitted in fulfillment of the requirements for the award of the Degree of Master of Mechanical Engineering

Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

JANUARY, 2009

II

"I declare that this thesis entitled "Conceptual Design of A Small Non-Rigid Airship with Particular Attention to Its Static and Dynamic Stability" is the result of my own research except cited in references. This thesis has not been accepted for any degree and not concurrently submitted in candidature of any degree."

Signature

~1W~ . . .v.~.~ . 'Y.................................................... .

Name

Azian Binti !-Iariri

Date

....... \.~.. j .. ~ ... .!.9..q .......................................

iii

To Illy beloved husband, Hairul Nizat

For always being there when two hands were just not enough. To Illy precious, Harish Hallllall & Imrall Hallllall

For neverfailed to put a big slllile on Illy face even on tough day.

IV

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful. Alhal1ldulillah, all praise to Allah, the Most Beneficient and the Most

Merciful, who has give me the strength and grace to complete this study succesfully.

I would like to take this opportunity to put on record, my heartfelt thanks and deep appreciation to Professor Ing. Dr. Darwin Sebayang for his extraordinary patience, enduring optimism, guidance, invaluable advice and assistance in the completion of this master thesis.

I would also like to extend my gratitude to co-supervisor Associate Professor Mohd. AshrafOthman, Mr. Ignatius Agung Wibowo, Mr. Rosman Tukiman and Captain AI-Amin Said. They have assisted me in giving advices, ideas, and technical support to this project.

Last but not least, I would like to express my gratitude to my family and friends and to all who involved directly and indirectly in this study for all the support, endless encouragement and D'ua. They are truly my inspiration.

v

ABSTRACT

Small size airships are traditionally designed and built based on experience rather than scientific approaches. Hence, its design approach has only been discussed in a very limited number of literatures. Thus, with these challenges at hand, a conceptual design study of airship in Malaysia was done to identify and explore the basic technology of airship design. This study focused on the conceptual design, determination of basic specifications and preliminary design of small size non-rigid airship for monitoring missions in Malaysia. The preliminary design focused on static stability, dynamic stability and development of a virtual simulator. The mathematical model of the designed airship for dynamic stability was rederived based on literatures and is then programmed to Graphical User Interface (GUI) with the aid of Matlab software. The airship was designed to fulfill the design specification suitable for monitoring with maximum speed of 40 km/h, cruising speed of20 km/h, operating altitude of 120 m and able to carry payload of at least of 6 kg. The dimension of 10 m length with maximum diameter of2.3 m was chosen with a pair of 0.25 hp engines to accomplish the desired specification. The designed airship was statically stable with trimmed angle of attack of approximately 0.18 degree. Through mathematical model of airship dynamics, following a detailed procedure including stability considerations, the airship had been analyzed and found to be dynamically stable with low control power and the time taken for the longitudinal response of elevator and vectored thrust to become stable was in the order of approximately 80 seconds while the lateral response of rudder becomes stable in approximately 30 seconds. The result of this study concluded that the designed airship fulfilled the design specification for monitoring mission and the designed airship was statically and dynamically stable during cruising speed. The virtual simulator also effectively provides a better understanding of the response of the designed airship through visualization.

vi

ABSTRAK

Kapal udara bersaiz kecil secara tradisinya direkabentuk dan dibina menerusi pengalaman tanpa pendekatan saintifik. Oleh itu, pendekatan rekabentuknya hanya dibincangkan dalam bilangan literatur yang amat terhad. Walaupun dengan cabaran besar yang dihadapi, kajian rekabentuk konsep kapal udara di Malaysia ini dilakukan bagi mengenalpasti dan meneroka teknologi asas merekabentuk kapal udara. Kajian ini fokus kepada rekabentuk konsep, penentuan spesifikasi asas dan rekabentuk permulaan kapal udara untuk misi pengawasan di Malaysia. Rekabentuk permulaan ini pula fokus kepada kestabilan statik, kestabilan dinamik dan pembangunan penyelaku maya. Model matematik bagi kestabilan dinamik telah diterbitkan semula berdasarkan Iiteratur dan diprogramkan ke antaramuka grafik (GUI) dengan bantu an peri sian Mat/ab. Kapal udara direkabentuk bagi memenuhi spesifikasi misi pengawasan udara dengan halaju maksimum 40 km/h, halaju menjajap 20 km/h, altitud kendalian 120 m dan mampu membawa beban bayar sekurang-kurangnya seberat 6 kg. Dimensi panjang 10m dan diameter maksimum 2.3 m telah dipilih bersama sepasang enjin berkuasa 0.25 hp bagi mencapai spesifikasi yang dikehendaki. Kapal udara yang direka bentuk adalah stabil secara statik dengan sudut serang semasa trim adalah 0.18 darjah. Bagi analisa kestabilan dinamik, sebuah model matematik dinamik kapal udara dibangunkan. Menerusi model dinamik ini, yang melalui prosedur yang terperinci termasuk analisa kestabilan, adalah didapati kapal udara adalah stabil secara dinamik dengan kuasa kawalan yang rendah dan masa yang diambil untuk sambutan membujur bagi penaik dan tujah vector menjadi stabil adalah 80 saat manakala bagi sambutan sisi oleh kemudi menjadi stabil setelah 30 saat. Dapatan kajian ini menyimpulkan kapal udara yang direkabentuk memenuhi spesifikasi yang dikehendaki untuk pengawasan udara dan adalah stabil secara statik dan dinamik semasa menjajap. Penyelaku maya yang dibangunkan juga secara efektif dapat memberikan pemahaman terhadap respon kapal udara yang lebih baik menerusi visualisasi.

\'11

TABLE OF CONTENTS

CHAPTER

TOPIC

PAGE

ACKNOWLEDGEMENTS

iv

ABSTRACT

v

TABLE OF CONTENTS

VII

LIST OF TABLES

xii

LIST OF FIGURES

xiii

LIST OF SYMBOLS

xv

LIST OF APPENDICES

I

II

xxiii

INTRODUCTION

1.1

Overview

1.2

Problem Statement

3

1.3

Objectives of Study

5

1.4

Scope of Study

6

1.5

Research Significance

6

LITERATURE REVIEW

2.1

Overview

8

2.2

Existing Type of Airship

9

2.3

Literature Review

II

2.3.1

2.3.2

Derivation of Equations of Motion

16

2.3.1.1 Generalized Force Equations

20

2.3.1.2 Generalized Moment Equations

21

The Linearized Equations of Motion

23

viii

2.3.3

Drag

24

2.3.4 Approximate Models of the Longitudinal Stability Modes

2.3.5

Approximate Models of the Lateral Stability Modes

2.4 III

Summary

31 34

METHODOLOGY

3.1

Overview

35

3.2

Design Requirements

36

3.3

Conceptual Design

37

3.4

Baseline Specifications Determination

38

3.5

Static Stability of Airship

39

3.6

Mathematical Model of Airship Dynamic

40

3.6.1

IV

27

Equations of Motion

41

3.6.2 Linearization

42

3.6.3

42

Decoupled Equations of Motion

3.6.4 State Space Form

43

3.6.5

44

Stability in State Space Form

3.6.6 Stability Modes Approximation

46

3.6.7 Airship Transfer Function

46

3.6.8 Response

48

3.7

Airship Virtual Simulator

49

3.8

Summary

49

AIRSHIP CONCPETUAL DESIGN AND BASELINE SPECIFICATIONS

4.1

Overview

50

4.2

Conceptual Design

52

4.3

Baseline Specifications Determination

53

4.3.1

Envelope's Geometry

53

4.3.2 Fin's Geometry

54

4.3.3

56

Aerostatics

4.3.4 The Off Standard Atmosphere

56

IX

4.3.5

Lifting Gas

58

4.3.6

Reynolds Number

59

4.3.7

Power

59

4.3.7.1 Power Required

60

4.3.7.2 Thrust Available

60

4.3.8

Maximum Duration

60

4.3.9

Structures

61

4.3.9.1 Bending Moment

61

4.3.9.2 Envelope Pressure

63

4.3.10 Weight Estimation

64

4.3.11 Determination of Centre of Gravity 4.4

V

65

Summary

66

AIRSHIP STABILITY 5.1

Overview

67

5.2

Generalized Body Axes

67

5.3

Rectilinear Flight

69

5.4

Angular Relationships and Motion Variables

70

5.5

Axes Transformation

71

5.6

Static Stability

73

5.7

5.6.1

Static Equilibrium

74

5.6.2

Longitudinal Stability

76

5.6.3

Directional Stability

78

5.6.4

Lateral Stability

79

Dynamic Stability 5.7.1

80

Disturbance Forces and Moments

81

a) Aerodynamic Effects

81

b) Power Effects

83

c) Gravitational and Buoyancy Effects

84

5.7.2

Linearized Equations of Motion of Airship

86

5.7.3

Decoupled Equations of Motion

87

a) Longitudinal Equations

87

x

b) Lateral Equations 5.8 VI

Summary

89 91

RESULT AND DISCUSSION

6.1

Overview

92

6.2

Conceptual Design

92

6.2.1

Mission

93

6.2.2

Product Review

93

6.2.3

Designed Airship Specifications

95

6.2.4

Function of Airship

95

6.2.5

Function Structure of Designed Airship

96

6.2.6

Design Solutions and Evaluations

97

6.2.6.1 Design Solutions

97

6.2.6.2 Evaluation Criteria and Weight Factor 6.2.7 6.3

Selected Airship Design

Baseline Specifications

98 100 101 101

6.3.1

Envelope's Geometry

6.3.2

Fin's Geometry

102

6.3.3

Gondola's Geometry

103

6.3.4

Aerostatics

104

6.3.5

Drag

105

6.3.6

Thrust

106

6.3.7

Structure

107

6.3.8

Weight Estimation

108

6.3.9

Centre of Gravity

108

6.3.10 Preliminary Dimension

109

6.4

Static Stability

109

6.5

Mathematical Model of Airship Dynamic

III

6.5.1

State Space Equation

112

6.5.2

State Space Eigenvalues

113

6.5.3

Transfer Function

114

6.5.3.1 Longitudinal (elevator)

115

6.5.3.2 Longitudinal (thrust)

115

xi 6.5.3.3 Lateral (rudder) 6.5.4

Comparison Between Approximate and Actual Stability Modes

116

6.5.5

Response Analysis

117

6.5.6

Airship Simulator

120

Summary

122

CONCLUSION

124

REFERENCES

126

APPENDICES

131

6.6

VII

115

xii

LIST OF TABLES

TABLE

TABLE

PAGE

2.4

Moments and products of inertia

22

2.5

Approximate longitudinal stability modes

30

2.6

Approximate lateral stability modes

33

3.2

Airship's design requirements

37

4.2

Parameters derived from statistical data

55

4.3

Component weight breakdown formulae

64

5.4

Summary of perturbation variables

71

6.1

Product review of commercialized airship

94

6.2

Basic specifications of the designed airship

95

6.5

Morphological chart of airship

98

6.7

Evaluation criteria and weight factor of airship

100

6.12

Gross lift and net lift value according to altitude

104

6.15

Estimated weight

108

6.22

Comparison between exact and approximate solution

116

xiii

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1

Airship's basic components

2

2.1

Airship structural categories

10

2.2

Motion referred to generalized body axes

17

2.3

Acceleration terms due to rotary motion

18

3.1

Methodology used in this study

36

3.3

The VDI 2221 model of design process

37

3.4

The conceptual design process used in this study

38

3.5

Baseline specifications determination method

39

3.6

Flow chart of the mathematical model of airship dynamic

41

3.7

Roots on the s-plane

45

3.8

Airship input-output relationship

47

4.1

Schematic view of fin

55

5.1

General configuration body axes for airship

68

5.2

Trimmed steady rectilinear flight

69

5.3

Angular relationship

70

5.5

Inertial axis to body axis transformation

72

5.6

Resolution of velocity through angle of attack and sideslip

73

5.7

System axis transformation

73

5.8

Example of positive, neutral and negative static stability condition

73

xiv 5.9

Forces and moments acts on the longitudinal direction during steady trimmed flight

76

5.10

Plot ofM-a for a stable airship

77

5.11

Forces and moments acts on the directional direction

78

5.12

Forces and moments acts on the lateral direction

80

5.13

Steady-state aerodynamic model

82

5.14

Typical propulsion system geometry

83

6.3

Function of airship for aerial monitoring

96

6.4

Sub system of airship

97

6.6

Evaluation criteria method of airship

99

6.8

Selected airship solution

101

6.9

Basic envelope dimension

102

6.10

Fin's dimension

103

6.11

Gondola basic dimension

104

6.13

Power required

106

6.14

Thrust and drag value at various velocities

107

6.16

Preliminary dimension of designed airship

109

6.17

Longitudinal static stability analysis

1 10

6.18

Directional static stability analysis

110

6.19

Lateral static stability analysis

III

6.20

Eigenvalues s-plane for longitudinal equation

113

6.21

Eigenvalues s-plane for lateral equation

114

6.23

Longitudinal response owing to 1 degree elevator input

II8

6.24

Longitudinal response owing to I degree thrust input

118

6.25

Lateral response owing to I degree rudder input

119

6.26

Airship simulator layout

120

6.27

Setting the desired input

121

6.28

Response output

122

xv

LIST OF SYMBOL

Airship Conceptual Design and Baseline Specification

A

Referencel area (volume) 2/3

a

~

B

Buoyancy

b

Radius of cylinder

C

Coefficient

C

Chord

D

Drag

d

Maximum diameter

E

Endurance

e

Length from chord tip control to chord root control offins.

fl.!

Load or tension per unit width

h

Longitudinal membrane stress

g

Gravitational constant

Hp

Altitude

I

Membrane second moment of area

ISA

International Standard Atmosphere

k

Percentage of pure helium

kD

Percentage of total drag coefficient

length of envelope

Length Gross lift Net lift III

Mass

ME

Maximum bending moment

xvi

N

Number

P

Power

p

Pressure

Q

Fuel consumption rate

Re

Reynolds number

I'

Envelope radius

S

Surface area

SL

Sea level

T

Temperature Membrane thickness

Thrust -

Thrust

U

Upstream velocity

u

Gust velocity

V

Velocity

Va

Total speed

VDI

Vereb1 Deutscher Ingenieure

Vol

Volume

TV

Weight

11'e

Gross weight with fuel tanks empty

HI

Gross weight with fuel tanks full

x

x axis coordinate

y

y axis coordinate

Greek Letter

ae

Angle of attack at trim

fJ

Side slip

iJP

Total internal pressure

!Jp

Differential pressure

17p

Propeller efficiency

xvii Body altitude f1

Fluid viscosity

P

Density

Subscripts

0

Condition at ISA SL

aero

Aerodynamic

air

Air

m'a

Available

eg

Centre of gravity

eha

Characteristic

er

Cruising

etr

Control

eyl

Cylinder

D

Drag

e

envelope

f

fin

fie

Fin trailing edge

heliulIl -

Helium

int

Internal

lIlax

Maximum

p

Pressure

p

Propeller

req

Required

R

Root

T

Tip

V

Volumetric

xviii Airship Stability

A

State matrix

a

Aerodynam ic

a

Coordinate of centre of gravity

a I. a2, a3

Acceleration at arbitrarily point P relative to the body axes

Adj

Adjoint

B

Input matrix

B

Buoyancy force

b

Buoyancy

b

Coordinate of centre of buoyancy

C

Output matrix

C

Coefficient

c

Distance from centre of buoyancy to thrust

cb

Centre of buoyancy

cg

Centre of gravity

Cl'

Centre of volume

D

Feedfonvard matrix

d

Maximum diameter

d

Thrust coordinate

DCM

Direct cosine matrix

det

Determinant

c

Trim equilibrium

G

Transfer function matrix

g

Gravitational/Gravitational constant

GUI

Graphical User Interface

II

Distance from cb to cg

1

Moment of inertia Identity matrix Product of inertia Step magnitude Lamb's inertia ratio for rotation about lateral axis oy Lamb's inertia ratio for moment along longitudinal axis ox

xix Lamb's inertia ratio for moment along lateral axis oy Airship's length Distance from cb to cg of horizontal fin Normalised rolling moment J

Apparent product of inertia

L

Rolling moment

Lift

Lift

M

Pitching moment

m

Mass matrix

m

Airship mass

111

Normalised pitching moment

N

Matrix of numerator polynomials

N

Yawing moment

11

Normalised yawing moment

o

Origin of body axes

ox

Body axis

oy

Body axis

oz p

Body axis

p

Roll rate perturbation

power -

Power

q

Pitch rate perturbation

r

Yaw rate perturbation

S

Laplace operator

Ssd

Horizontal! vertical fin area

T

Thrust

T

Time constant

U

Axial velocity

u

Input or control vector

11

Axial velocity perturbation

v

Lateral velocity

Vo

Total velocity

Vol

Volume

Arbitrary chosen point

xx v

Lateral velocity perturbation

w

Airship weight

w

Normal velocity

w

Normal velocity perturbation

x

Axial force

i

Derivative of the state vector with the respect of trim

x

State vector

x

Body axis reference

x

Normalised axial force

y

Lateral force

y

Body axis reference

y

output vector

y

Normalised lateral force

Z

Normal force

z

Body axis reference

z

Normalised normal force

Greek Letter

a

Angle of attack

fJ

Sideslip

/';.

Characteristic polynomial

r5

Control angle

Jill

Incremental mass

e

Pitch attitude

AI

Eigenvalues

Aij

Elements ofDCM

!1

Thrust elevation angle

p

density

¢

Roll attitude