Hydrogen production from water with solar energy

GIES2008 2008.3.14 Hydrogen production from water with solar energy Kazunari Domen Chemical Systems Engineering The University of Tokyo Chemical S...
Author: Oswald Atkinson
7 downloads 0 Views 2MB Size
GIES2008 2008.3.14

Hydrogen production from water with solar energy

Kazunari Domen

Chemical Systems Engineering The University of Tokyo

Chemical System Engineerin The University of Tokyo

Hydrogen Production from Water using Solar Energy

H2O



H2

+

1 ― O2 2

ΔG0 = 238 kJmol-1

▪ Solar cell + Electrolysis : pilot plants

▪ Photoelectrochemical Cell : good efficiencies with tandem cells

Chemical System Engineerin The University of Tokyo

Two examples of photoelectrochemical cells

Efficiency=12.4 % J. A. Turner et al., Science 1998,

Efficiency=18.3 % S. Licht et al., J. Phys. Chem. B 2000,

Chemical System Engineerin The University of Tokyo

Photoelectrochemical cells + PV

M. Grätzel, Nature 2001, 414, 338–344.

solar energy conversion efficiency = 3~4%

Chemical System Engineerin The University of Tokyo

H2O



H2

+

1 ― O2 2

ΔG0 = 238 kJmol-1

▪ Solar cell + Electrolysis ▪ Photoelectrochemical Cell ▪ Artificial Photosynthesis (Photocatalysis) Inorganic solid material metal complex organic material biomaterial

▪ Photosynthesis

Chemical System Engineerin The University of Tokyo

Available photons for water splitting H2O → H2 + 1/2O2 ΔG0 = 237 kJ/mol = n×F ×E0 = 2×96500 C/mol×1.23 V One electron energy = 1.23 eV Photon energy 1238 E (eV) = hν = λ (nm ) 1.23 eV

λ=1000 nm

Solar Energy Distribution Radiation Power kWm-2μm-1

3 UV

Vis

IR

1.23 eV =1000 nm

1.5

0 0

500

1000

Wavelength λ/nm

1500

2000

Solar Energy Conversion Efficiency

Solar energy conversion efficiency (Q.E.=100 %) Wavelength / nm

Energy efficiency /%

400

1.67

450

4.29

500

7.95

550

11.9

600

16.2

650

20.6

700

25.1

750

29.4

800

33.5

SEM Images of La-doped NaTaO3

0.1 µm

Prof. A. Kudo (Tokyo Univ. Sci.)

Overall water splitting on NiO(0.2wt%)/NaTaO3 :La

Layered photocatalyst

200W Xe-Hg Lamp

BG:4.1eV QY:50% (270nm)

Prof. A. Kudo (Tokyo Univ. Sci.)

Time Course of Overall Water Splitting on NiO(0.2wt%)/NaTaO3:La

Q.E. = 56 %

Challenge with Visible Light H2

H2O

+

1 ― O2 2

ΔG0 = 238 kJmol-1

Photocatalytic Materials with

?

・Sufficient Solar Energy (Visible Light) Absorption ・Potential for Overall Water Splitting ・Enough Stability

Chemical System Engineerin The University of Tokyo

GaN:ZnO solid solution RuO2 : 3.5 wt%

1 μm

GaN

GaN:ZnO

ZnO

Chemical System Engineerin The University of Tokyo

Visible Light-Driven Overall Water Splitting on Rh-Cr oxide/GaN:ZnO Amount of evolved gases / mmol

Evac. ▼

2.0

λ 400 nm nm λ >> 400 H2

1.5

Catalyst: Catalyst:0.3 0.3gg Cocat.: Cocat.:Rh Rh11wt%, wt%, Cr Cr1.5 1.5wt% wt% Reactant soln.: 370 mL (pH Reactant soln.: 370 mL (pH4.5) 4.5) Inner irradiation type cell Inner irradiation type cell with withaa22MMNaNO NaNO22aq. aq.filter filter 450 450W WHg Hglamp lamp

1.0 O2 450 W high pressure Hg lamp

0.5

0 0

5

10 15 20 25 Reaction time / h

30

N2

Water cooling

35

NaNO2 aq. Magnetic stirrer

Chemical System Engineerin The University of Tokyo

Electron micrographs of Rh-Cr oxide/GaN:ZnO

TEM image

SEM image

O2 H 2 O H2

H+

Rh-Cr mixed oxide 30 nm

eh+



Chemical System Engineerin The University of Tokyo

Overall water splitting on Rh-Cr oxide/GaN:ZnO λλ >> 300 300 nm nm

Chemical System Engineerin The University of Tokyo

Q.E. of overall water splitting on Rh-Cr oxide/GaN:ZnO 5.9 %

4.5 3.5

Absorbance / a.u.

Quantum efficiency / %

4.0 3.0

Q.E.

2.5 2.0 1.5 1.0

RuO2-loaded (Q.E. 0.23%)

0.5 0

300

350

400

450

500

Wavelength / nm

Chemical System Engineerin The University of Tokyo

Two approaches for overall water splitting One-step excitation

Two-step excitation (Z-scheme) e–

e–

H2

H+

H+

H+ / H2

e–



Red



Ox



O2 / H2O H2O H2O

h+

O2

H2

O2

h+

H2 evolution h+

O2 evolution

Chemical System Engineerin The University of Tokyo

Various Oxynitrides

BaTaO2N

Ta3N5

LaTaON2

LaTiO2N

SrTaO2N

CaTaO2N

Li2LaTa2O6N

CaLaTiON

Oxide

Chemical System Engineerin The University of Tokyo

Two-step overall water splitting under visible light e-

eIIO3H2O

H2 H+

e-

hν e-



O2 e

h+ h+

Pt/WO3 (λ < 450 nm)

H2 O2 N2

200

Pt/TaON (λ < 500 nm)

Amount of evolved gases / μmol

e-

150

100

50

0 0

5

10

15

20

25

Time / h (Reaction conditions) Pt/TaON: 0.2 g + Pt/WO3: 0.2 g 5 mM-NaI aqueous solution: 250 mL (pH = 6.5) 300 W Xe-lamp, L-42 cut-off filter

Chem. Commun. 2005, 3829

Chemical System Engineerin The University of Tokyo

eeee-

H+

I– IO3–



H2O O2

H2

hν eh+

e-

Pt/BaTaO2N

h+

(λ < 670 nm)

Pt/WO3

(λ < 450 nm)

Amount of evolved gases / μmol

Two-step overall water splitting on Pt/WO3+Pt/BaTaO2N λ > 420nm 70 60

H2 50 40

O2

30 20 10

N2

0 0

5

10

Time / h

15

20

Chemical System Engineerin The University of Tokyo

Available materials for two-step overall water splitting Ta3N5(O2 evolution) BaTaO2N(H2 evolution)

K-M function (a.u.)

4

BaNbO2N

3

2

1

0 300

400

500 600 Wavelength / nm

700

800

Chemical System Engineerin The University of Tokyo

Application of oxynitrides to PEC cell

N Ta O

Visible light

H2

e–

O2

oxynitride TaON 薄膜電極化 Potential / V vs NHE at pH0

-

(H+/H2)

C.B. Ta5d

-0.3

0

Pt electrode

TaON electrode

E.G. = 2.5 eV 1.23 (O2/H2O)

+2.2 V.B. O2p + N2p + K. Domen et al., J. Phys. Chem. B, 2003, 107, 1798 R. Abe et al., Chem. Commun., 2005, 3829

阿部(北海道大学)

1.2

(a) as-prepared TaON (b) treated with TaCl5 (c) treated with NH3

-2

1.0

Current density / mA cm

ephase boundaries

0.8

e-

0.6

TaCl5-calcination e-

0.4

Ta2O5 fine particles 0.2

e0.0 -0.4

-0.2

0.0 0.2 0.4 0.6 Potential / V vs. Ag/AgCl

0.8

NH3-treatment

1.0

e[Conditions] Supporting electrolyte: 0.1 mol-L-1 of Na2SO4 Potentiostat: PARSTAT 2263 Rate of scan: 50 mV / s Light source: Xe illuminator (300 W, 300 < λ < 500 nm)

TaON fine particles

e-

1.5

-2

Current density / mA cm

Potential (V vs. NHE)

WO3 TaON 1.0

- 0.3

Ta 5d

o

0.5

W 5d

+ 0.5 2.5 eV

0.0

2.6 eV -0.4

0.0 0.4 Potential / V vs. Ag/AgCl

0.8

[Conditions] Supporting electrolyte: 0.1 mol-L-1 of Na2SO4 Potentiostat: PARSTAT 2263 Rate of scan: 50 mV / s Light source: Xe illuminator (300 W, 300 < λ < 500 nm)

O2p + N2p

O2p

Two-room overall water splitting Amount of gas evolved / μmol

1200

Cell 2 Pt/WO3

20 mmol L NaI aq. 500 mL 300 W Xe lamp (λ > 300 nm)

I−



e

H+

h+

I− e− h+

IO3−

H2O O2

IO3−

IO3− TaON

800 600 400 200 0

10

300

-1

H2

H2 O2

0

WO3

Amount of gas evolved / μmol

Cell 1 Rh-Cr/GaN:ZnO

Cell 1 1000

20 Time / h

30

40

30

40

Cell 2 250

H2 O2

200 150 100 50 0 0

10

20

Overall water splitting with sacrificial reagents H2O

H2 + 1/2O2 ΔG0 = 238 kJmol-1

2H2O + Na2S H2O + CH3OH 6H2O + C6H12O6

H2 + S + 2NaOH 3H2 + CO2 12H2 + 6CO2

TEM TEM image image of of stratified stratified CdS CdS

CdS capsules (30 nm) consist of nanoparticles (5nm)

Prof. K. Tohji (Tohoku Univ.)

H2 production on stratified CdS from Na2S solution

Prof. K. Tohji (Tohoku Univ.)

Hydrogen Production from Water using Solar Energy ▪ Solar cell + Electrolysis vs

▪ Photoelectrochemical Cell materials

▪ Artificial Photosynthesis (Photocatalysis) Key Issues New materials Hybridization; structure Application to wide area; Reactor design

Chemical System Engineerin The University of Tokyo

Suggest Documents