HPC in the Cloud - a Match Made in Heaven?

DEUTSCH-FRANZÖSISCHE SOMMERUNIVERSITÄT FÜR NACHWUCHSWISSENSCHAFTLER 2011 UNIVERSITÉ DʼÉTÉ FRANCO-ALLEMANDE POUR JEUNES CHERCHEURS 2011 CLOUD COMPUTI...
Author: Paulina Lee
2 downloads 0 Views 23MB Size
DEUTSCH-FRANZÖSISCHE SOMMERUNIVERSITÄT FÜR NACHWUCHSWISSENSCHAFTLER 2011

UNIVERSITÉ DʼÉTÉ FRANCO-ALLEMANDE POUR JEUNES CHERCHEURS 2011

CLOUD COMPUTING : HERAUSFORDERUNGEN UND MÖGLICHKEITEN

CLOUD COMPUTING : DÉFIS ET OPPORTUNITÉS

HPC in the Cloud - a Match Made in Heaven? 17.7.  –  22.7.  2011 Dr. Helmut Heller, Dr. Matteo Lanati Leibniz Supercomputing Centre Munich, Germany

Donnerstag, 21. Juli 2011

Thank you for the invitation and the great week here! 2 Donnerstag, 21. Juli 2011

3 Donnerstag, 21. Juli 2011

4 Donnerstag, 21. Juli 2011

Overview

• Leibniz Supercomputing Centre • What is a Supercomputer? • Grid Computing, Globus, IGE • Why not HPC in the cloud? • Cloud investigations at LRZ • Summary

5 Donnerstag, 21. Juli 2011

The Leibniz Supercomputing Centre is… •





Computer Centre (~170 employees) for all Munich Universities with

-

more than 80,000 students and more than 26,000 employees approximately 8,500 scientists

Regional Computer Centre for all Bavarian Universities

-

Capacity computing Special equipment Backup and Archiving Centre (more than 5,000 TeraByte) Distributed File Systems Competence centre (Grid, Networks, HPC, IT Management)

National Supercomputing Centre

-

Member of Gauss Centre for Supercomputing Integrated in European HPC and Grid projects 6

Donnerstag, 21. Juli 2011

Research at LRZ • • • • •

IT Management

-

Service Management, ITIL (Process Refinements, Mapping to tools, Benchmarking), Security Management in Federations,Virtualization

Piloting new Network Technologies

-

100 Gbit Ethernet WANs

Long-term Archiving Grids

-

Management of Virtual Organizations, Grid Monitoring, Grid Middleware (Globus), Security and Intrusion Detection on the Grid Projects: IGE, D-Grid, DEISA, PRACE, EGI, MAPPER, eIRGSP3, DGSI, …

HPC

-

Energy efficiency Application scaling 7

Donnerstag, 21. Juli 2011

Where Are We Located? Garching, Munich, Alps

View from the roof of LRZ

Located between Munich airport (MUC) and city centre

8 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

Leibniz Supercomputing Centre

Donnerstag, 21. Juli 2011

The LRZ Buildings Before and After Extension

10 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

LRZ Building Extension Facts • Ground-breaking Ceremony: October 2009 • Completion of building extension: Q2 2011 • Dedicated (maximum): 13 MW 20 kV power line • Extension of current (3 MW) power and cooling



capacities to 10 MW (2011) Computer room floor space extension:

Compute cube: 1,764 m2 -> Compute cuboid: 3,160 m2

• 1.6 MW diesel generator and 300 kW static USV •

for highly critical LRZ services, not for HPC 9 x 1.2 MW fly wheel UPS (20 secs autonomy, short interruptions and spikes)

11 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

… and Amazon?

• Former supermarket warehouse near Dublin bought in 2011 for new data center

LRZ

Amazon

3,160 m2 22,300 m2

12 Donnerstag, 21. Juli 2011

Amazon Cluster Compute Instance

• 23 GB of memory • 33.5 EC2 Compute Units (2 x Intel Xeon

X5570, quad-core “Nehalem” architecture)

• 1,690 GB of instance storage • 64-bit platform • I/O Performance: Very High (10 Gigabit Ethernet)

• Name: cc1.4xlarge • Maximum of 8 instances => 64 cores 13 Donnerstag, 21. Juli 2011

Evolution of Peak Performance and Memory

Linux-Cluster

x 15,000

Cluster

EC2 CU

14 Donnerstag, 21. Juli 2011

What is a PetaFlop? K

Kilo M

Mega G

Giga T

Tera P

Peta E

Exa

1.000 1.000.000 1.000.000.000 1.000.000.000.000 1.000.000.000.000.000 1.000.000.000.000.000.000

Tausend

Million

Milliarde

Billion

Billiarde

Trillion

103 106 109 1012 1015 1018

Thousand Million Billion Trillion Quadrillion Quintillion

Flop/s: Floating Point Operations per Second

1 TB =1 Million books each with 500 pages => 20 km height! 1 TFlop/s (a human needs 1 second per Flop) => hammer 25

rows of 1 mm nails around the equator in 1 second 15

Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

LRZ as Supercomputing Centre -

-

National supercomputing system SGI Altix 4700 - 9,728 compute cores (Intel Itanium2 Montecito) - 62.3 TFlop/s peak performance - 56.5 TFlop/s Linpack benchmark - 39 TByte Total Memory - 660 TByte attached Disk space - Weighs 103 metric tons - Consums ~1 MVA - On 24 m x 12 m footprint

- To be replaced by IBM iDataplex (Sandy Bridge based): SuperMUC

SGI Altix 4700 Linux IA64 Large Shared Memory SGI Altix (IA64) SGI UV (X86)

Linux X86 (Intel & AMD) heterogeneous Cluster

256 core SGI Ultraviolet, 512 core ICE for scientists in the state of Bavaria Linux Hosting and Housing 128 dual core cpu SGI Altix 4700 for scientists in the state of Bavaria Linux cluster with more than 4000 cores (> 6000 cores incl. attended housing) mainly for the Munich universities and for scientists in the state of Bavaria More than 500 virtual and 100 physical servers for general IT services

16 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

Where does HPC start?

• Capability computing => HPC • Capacity computing => HTC • Top500 list of fastest machines

17 Donnerstag, 21. Juli 2011

Top 10 HPC Machines

18 Donnerstag, 21. Juli 2011

HPC Performance

19 Donnerstag, 21. Juli 2011

China Catching Up!

20 Donnerstag, 21. Juli 2011

Where does HPC start?

• Capability computing => HPC • Capacity computing => HTC • Top500 list of fastest machines

LRZ: SuperMIG: 166, HLRB2: 198

• Lifetime of an HPC machine: 6 years only!

• Amazon at very low end: 451 • Public cloud not really HPC! 21 Donnerstag, 21. Juli 2011

Cloud, Grid, HPC

• Cloud is the culmination of the journey towards utility computing that started in HPC with

-

remote computing (telnet!) Grid computing (Globus, Unicore, gLite) virtualization, true on-demand

• Cloud should complement Grid

22 Donnerstag, 21. Juli 2011

INITIATIVE FOR GLOBUS IN EUROPE

The European Grid Ecosystem Software providers

Computing Centers

gLite ARC dCache UNICORE

23

Donnerstag, 21. Juli 2011

INITIATIVE FOR GLOBUS IN EUROPE

Tier-0: PRACE-1IP

• PRACE: Top level HPC, Petaflop computing • Six European supercomputers of highest performance

Computing Centers

• Globus tools used: – Gsissh for interactive access – GridFTP for high speed data transfer

24

Donnerstag, 21. Juli 2011

INITIATIVE FOR GLOBUS IN EUROPE

Tier-1: PRACE-2IP

• Globus tools used in PRACE – Gsissh as primary interactive access method to PRACE through Gsissh door nodes – GridFTP as primary high performance data transfer tool through door nodes to GPFS – MyProxy @ LRZ – GRAM (GT5) available on request

25

Donnerstag, 21. Juli 2011

INITIATIVE FOR GLOBUS IN EUROPE

Tier-2: EGI

• IGE is a middleware provider and will bring Globus components into UMD – Service Level Agreement (SLA) signed with EGI

• Service provider for European Grids • Third level support for Globus in Europe • Globus can act as bridge between tiers • EGI is developing a Cloud strategy

UNICORE gLite ARC dCache

26

Donnerstag, 21. Juli 2011

INITIATIVE FOR GLOBUS IN EUROPE

IGE Meetings

• European Globus Community Forum (EGCF) – sign up for it here: http://www.ige-project.eu/hub/egcf

• GlobusEurope conference – 19th of September 2011 – Lyon, co-located with EGI Technical Forum – registration form: http://www.ige-project.eu/

27

Donnerstag, 21. Juli 2011

INITIATIVE FOR GLOBUS IN EUROPE

Cloud and Grid

• Cloud computing – commercial (Amazon, Google, Microsoft, SUN, ...) – virtualization (your job is your VM) – environment provisioning – emphasis on resource management

• Cloud and Grid – a cloud can be part of a Grid (MoU with StratusLab!) – cloud does not emphasize the “sharing”: proprietary technologies (vendor lock-in), commercial

• Grid – federation of many distributed resources – emphasis on job management 28

Donnerstag, 21. Juli 2011

Matthias Brehm, LRZ High Performance Group Donnerstag, 21. Juli 2011

Compute Resources at LRZ •





HLRB2 (2012: SuperMUC)

-

SGI Altix 4700 9728 cores 62.3 TFlop/s peak

Linux Cluster

-

3054 cores 22 TFlop/s peak

Remote Visualization:

-

RVS1, GVS1, GVS2 http://www.lrz.de/services/compute/visualisation/visualisation_2/

30 Donnerstag, 21. Juli 2011

… and Amazon?

31 Donnerstag, 21. Juli 2011

Why Do We Need Faster and Bigger Computers ? •

Simulations in Science, Engineering and Technology

-

-

-



Astrophysics: Formation of galaxies, nuclear burning, star atmosphere

/-physics

Biochemistry : Molecular dynamics of complete cells Chemistry: Structure and properties of molecules, catalysts Geophysics: Understanding earthquakes inner structure of the earth, seismic waves Engineering: Coupled fluid dynamics and structural simulations Aerodynamics of airplanes, cars, and trains

Crash simulations Fluid Dynamics Understanding and modeling turbulence Combustion Medicine: Imaging, blood flow Material Sciences: Melting processes and crystal growth Meteorology/Climatology: Weather forecast, human impact on climate Physics: Superconductivity, high energy physics Computer Science/Informatics: Software engineering methods for parallel applications Mathematics: Adaptive methods of differential equations

Other Disciplines also need bigger computers

-

Databases Data-mining WebServices

32 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

HLRB II Usage by Research Areas

33 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

Case: Pouring Water Rüde et al., University of Erlangen

34 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

Case: Falling Drop Rüde et al., University of Erlangen

35 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

(Tsunami) Waves Krafczyk, TU Braunschweig

36 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

(Tsunami) Waves and Buildings Krafczyk, TU Braunschweig

37 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

The Aquarius Project: Cold Dark Matter under a Numerical Microscope Max-Planck-Institute for Astrophysics, Garching, S. White,V. Springel •

First ever one-billion particle simulation of a Milky Way-sized dark matter halo (i) for exploring the formation of our Galaxy; (ii) for searching for signals from dark matter annihilation; and (iii) for designing experiments for direct detection of dark matter.



This is an extremely ambitious project feasible only with the unique capabilities of HLRB-II. The large number of fast processors, the large amount of memory, and the extremely fast communication can all be harnessed effectively by our code in a worldleading effort to address science of major professional and public impact.

Volker Springel MPI for Astrophysics

38 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

Cholesterol in a Biomembrane •

• •



39 Donnerstag, 21. Juli 2011

Long range Coulomb forces make long range communication necessary Many particles (millions) Small time step of femtoseconds dictated by fast motions in the system Biologically relevant processes take microseconds to hours

Why Special HPC Computers?

Why HPC?

40 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

Why “Super” Computers?

• Molecular dynamics: -

Atoms n=106

Timesteps m = 106 (femto to micro seconds) O(n2 * m) * 20 variables * 100 operations/time step = 20 * 1020 operations => 200 000 hours on 4096 CPUs: 22 years! not possible!

• The long-range coupling (Coulomb or

gravity) necessitates a strong coupling on the computational side

• This coupling means a low latency high

bandwidth interconnect in the computer 41

Donnerstag, 21. Juli 2011

HPC: Parallel and High Bandwidth

• 10,000s of CPU cores needed to crack the computational problem of 20 * 1020 operations => parallel

• The computational load has to be divided between the CPU cores

-

either distributing particles onto CPUs or distributing force computations (and each CPU has a complete data set)

• Physical long-range forces necessitate data exchange in every time step between all nodes => high bandwidth and low latency 42 Donnerstag, 21. Juli 2011

SuperMUC System Overview Peak: 3 PF expected: 8000 cores)

1 Fat node island (>8000 cores) 43

Donnerstag, 21. Juli 2011

nodes

Slide from M. Brehm, LRZ

New LRZ Computer SuperMUC 2

are e c n a n inte a m . l c 6 m (in

a) 21m

44 Donnerstag, 21. Juli 2011

Financing Scheme for Investment and Operating Costs (gross, incl.VAT) 50% Free State of Bavaria, 50% Federal German Gov. 2010-2014 Phase 1

2014-2016 Phase 2

High End System Investment Costs (Hardware and Software)

53 Mio €

~ 19 Mio €

Operating Costs

32 Mio €

~ 29 Mio €

Fixed SUM

85 Mio €

~48 Mio €

+ Extension buildings (construction and infrastructure)

49 Mio €

Total sum

134 Mio € Funding for Phase 2 is announced but not legally secured

45 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

Growth of power consumption 35.000

30.000

power consumption in MWh

25.000

20.000

15.000

10.000

5.000

46 Donnerstag, 21. Juli 2011

12 20

11 20

10 20

09 20

08 20

07 20

06 20

05 20

20

04

03 20

02 20

01 20

00 20

99 19

98 19

97 19

19

96

0

Facing the Petascale Challenge: Power & Cooling 8.000.000 !

LRZ Power & Cooling Budget

7.000.000 !

Annual Power Costs

6.000.000 !

Energy Cost 2010: 0.158 € / kWh

5.000.000 !

Today: PUE ~1.4 Goal: PUE ~1.15

4.000.000 !

3.000.000 !

2.000.000 !

1.000.000 !

0! 1998

1999

2000

2001

2002

2003

2004

47 Donnerstag, 21. Juli 2011

2005

2006

2007

2008

2009

2010

2011

2012

Leibniz Supercomputing Centre: Facing the Peta-scale Challenge • •

• •





LRZ as a part of GCS shall become a European centre for supercomputing Current peta-scale systems have a power requirement of several MW, power is becoming the biggest issue for supercomputing centres ~100 m2/MW of floor space for power distribution equipment System power needed to operate supercomputing systems still increases Desire to drive PUE to as close to 1 as possible

Use new cooling technologies (direct liquid cooling, highly optimized indirect cooling technologies)

48 Donnerstag, 21. Juli 2011

Pillars of Energy Efficient Computing • Latest semi-conductor technology • Use of energy-saving processors • Choice of most appropriate hardware for the scientific problem at hand

• Reduction of power drain in the power supply chain • Improved & energy saving cooling technologies (e.g., direct water cooling) • Re-use of waste heat

• Monitoring of computers and Infrastructure • Energy aware scheduling • Dynamic frequency and voltage scaling • Monitoring and optimization of scientific applications • Resource sharing

Energy efficient hardware

Energy efficient Energy aware infrastructure software environment 49

Donnerstag, 21. Juli 2011

SuperMUC Hardware Data Node Islands

SuperMUC  System  Parameters  (Q2,  2012)  

Number  of  Islands  (thin+fat) Number  of  nodes Number  of  cores Processor  Types  (Thin  +  Fat) Peak  Performance  [PF]  (proj.  enAre  system) Linpack  [PF] Total  size  of  memory  (TByte) Expected  electrical  power  consumpAon  of  total  system  (kW) Maximum  tolerable  supply  termperature  of  cooling  Loop  2 Outlet  temperature  of  compute  node  coolant  (range)  (°C) Topology  (pruned  tree,  pruning  factor) IB  Technology Parallel  File  System  (SCRATCH,  WORK):  GPFS NAS  User  Storage  (HOME):  NetApp Size  of  parallel  storage  (Pbyte) Size  of  NAS  user  storage  (TByte) Aggregate  theoreAcal  bandwidth  to/from  GPFS  (GByte/s) Aggregate  theoreAcal  bandwidth  to/from  NAS  storage  (GByte/s)

  18+1 >9,000 >140,000 SB-­‐EP+WM-­‐EX 3.02 2.21 >300 2782 45 33  to  50 Island  1:4 FDR10 GPFS NetApp 10.7 2+2 200 10

Number

18

Nodes per Island >500 Cores per Node 16 Processors Dual socket Intel SB-EP Memory

2 GB/core, 32 GB/node

MigraTonssystem  (will  be  Fat  Node  Island,  July  2011)  

  1 205 8200 WM-­‐EX 79 32.03 160

Number  of  Islands Number  of  nodes   Number  of  cores  (40  cores/node) Type  of  processor  chips   Peak  Performance  (TF) Total  size  of  memory  (TByte) Shared  Memory  per  node  [GB] 50 Donnerstag, 21. Juli 2011

Slide from M. Brehm, LRZ

„Deep Hierarchy“ Architecture  Indicating relevant parameters  MPI/HW latencies, „moderately saturated“ bandwidths per core  values give impression of general magnitude

Note: SB will have 8 cores/socket

IB core switch

~0.5 GB/s ~3 GB/s ?

IB leaf switch

~2000 ns

IB leaf switch

90 ns ~0.12 GB/s ~3000 ns

chipset

socket

memory

socket

memory

node

node

ccNUMA node I/O to disk:

6.4 GB/s 50 ns

intra-socket:

~0.0012 GB/s

~80 GB/s

~10000 ns

< 5 ns © 2011 Donnerstag, 21. Juli 2011

Leibniz Supercomputing Centre, R. Bader

51

… and Amazon?

• Amazon Cluster Compute Instances -

I/O Performance: Very High (10 Gigabit Ethernet)

-

no clear numbers available

-

typical HW-latency: 10,000 ns to 20,000 ns (MPI via TCP slow!)

Bandwidth: 1 GB/s (10 Gb/s) BUT: what is the switch topology? Fat tree? Or blocking?

high latency kills parallel, tightly coupled simulations

• SuperMUC -

Bandwidth: 80 GB/s, 6.4 GB/s, 0.5 GB/s, 0.12 GB/s HW-latency: 5 ns, …, 3,000 ns (specialized MPI implementation)

• => no true HPC at Amazon (or elsewhere)! 52 Donnerstag, 21. Juli 2011

for the inter node measurements, the two processes are each placed on a differe node, forcing the benchmark to use the interconnect; the multi inter node test runs multiple sets of PingPong benchmarks, with each pair processes placed on different nodes using an 8x2 mapping.

DEISA Benchmarks: Latency

Figure 12 – Timings for the PingPong benchmark on EC2 and XT4.

When running the PingPong benchmark with both processes placed on the same node, t performance exhibited by both EC2 and XT4 is comparable. For message larger than 12 53 is in fact not surprising and due to the differen Bytes, EC2 shows better performance. This Donnerstag, Juli 2011 in21.the architecture and size of the nodes between the two systems: an XT4 node consists of

on most platforms we have tested them on: SU3_AHiggs, GENE2 and GADGET. The maximum size of high-performance cluster jobs you can run on the EC2 infrastructure is 8 nodes (i.e. 64 cores). Given the poor scaling behaviour of the IMB benchmarks, we decided to use small datasets to be able to run jobs on a single node.

DEISA Benchmarks: Applications

All three applications behaved in a very similar way: the single node performance of the EC2 is very good and is comparable to both the performance you can achieve on either JUROPA or HECToR XT4. However, increasing the job size to two nodes, the performance immediately stalls. Table 13 summarise the performance of GENE on the high-performance cluster compute images.

GENE: time per time step Cyclone dataset SU3_AHIGGS: total time 323 lattice, 10.000 iterations GADGET: 2nd + 3rd iteration Small dataset

4 cores

8 cores

16 cores

32 cores

1.054s

0.629s

0.625s

0.791s

-

661.90s

612.60s

-

97.54s

49.12s

47.65s

-

Table 13 – Performance of GENE, SU3_AHIGGS and GADGET on Amazon EC2's high-performance cluster compute images

Based on the results from the IMB benchmarks, this performance exhibited by the three scientific codes is no surprise. While EC2 can hold its own in terms of straight computing power inside a single node, the lack of a low-latency, high-bandwidth network will result in very poor scalability for tightly coupled HPC applications, which rely on fast communication more than on fast computing. 54 Donnerstag, 21. Juli 2011

Problem: Access Times! Getting data from:

Getting some food from:

CPU register

1ns

fridge

L2 cache

10ns

microwave

100s ~ 2min

Memory

80 ns

pizza service

800s ~ 15min

Network(IB)

200 ns

city mall

GPU(PCIe)

50.000 ns

mum sends cake 500.000 s~1 week

Harddisk

500.000 ns

grown in own garden

10s

2000s ~ 0.5h

5Ms ~ 2months Slide from F. Jamitzky, LRZ

55 Donnerstag, 21. Juli 2011

Cloud Ingredients

• NIST Cloud definition: -

On-demand self-service

-

Performance loss around 10% for I/O (disk, network)

Broad network access Resource pooling (multi-tenant model) Rapid elasticity Measured Service (pay-as-you-go) All of the above in combination

• Virtualization (to realize IaaS) 10 % not acceptable for top end HPC

56 Donnerstag, 21. Juli 2011

Why is Cloud Uptake Slow? (1) • Virtualization overhead (10%) -

need to understand the hardware (CPU architecture)

-

data protection (Patriot Act!)

need to understand network (RDMA, bandwidth) need to know hardware layout (topology) no oversubscription in HPC

• Security of Clouds doubted compliance (German data protection agency does not allow personal data in the Cloud) loosing control over data in the cloud access to low ports (root!) user’s VM images can be old and open to attack (hacker!)

57 Donnerstag, 21. Juli 2011

Why is Cloud Uptake Slow? (2)

• Commercial Cloud deficiencies -

limited capabilities and power of the typical underlying hardware

-

public Cloud still far more expensive than HPC center (Rutrell Yasin)

HW is not homogenous lack of high-speed, low latency interconnects (MPI!) sharing leads to (unpredictable) load imbalances Failures when creating large instances

• Commercial Cloud too expensive

getting big data in/out/stored is expensive private Cloud (NERSC, NASA AMES) adoption is higher

• Software licensing: no licensing model for on-demand access (Matlab, Ansys, ...) 58 Donnerstag, 21. Juli 2011

Why is Cloud Uptake Slow? (3)

• Operational concerns -

part of workflow has to be lifted into the Cloud

-

SLAs needed, how to get agreements

• Managerial concerns (industry!) in case of problems: operators of Amazon are not directly accessible

• Verifiability/reproducibility of results • No cloud bursting possible for real HPC applications

-

they already oversubscribe the HPC computers, long queue waiting times! 59

Donnerstag, 21. Juli 2011

Why is Cloud Uptake Slow? (4)

• Depending on type of application -

embarrassingly parallel type works well in Cloud strongly coupled (weather forecast, molecular dynamics, astrophysics, …) is not well suited

• Long runs subject to node instability -

in LBNL tests 1 out of 10 runs on EC2 failed

60 Donnerstag, 21. Juli 2011

HPC Cloud Efforts •

EGI (low end of performance pyramid) is developing a cloud strategy!



CSC, SARA, HLRS started a public cloud. SARA provides free access for industry, but only some demo projects going.

• • •

USA: Cloud first strategy (political level)



NERSC Magellan Cloud experiments Countries, like China, where there is not yet an established HPC infrastructure are more engaged in Cloud+HPC as they try to jump the development

-

Public cloud for free in China, yet very little interest from Chinese companies.

Most cloud uptake in SME, government (highest level of evaluation, lowest acceptance), and universities, not in big companies. SME up to now have not even taken to HPC at all.

61 Donnerstag, 21. Juli 2011

Cloud Investigation in DEISA

• CSC, Finnland, built their own, script

based SW to manage a Cloud on their Linux cluster.

-

No IB due to missing drivers for virtualization

-

No IB at the moment, only 1 Gb ethernet

• HLRS, Germany used OpenNebula • SARA, The Netherlands, used

OpenNebula and did network speed tests:

-

20 Gb IB but only with IPoIB (Virtio driver) 10 Gb ethernet 62

Donnerstag, 21. Juli 2011

DEISA Cloud Results

• Network speed tests (iperf ) were disappointing

-

IPoIB reached 2.4 Gb/s 10 GbE with Virtio driver: 2.4 Gb/s 10 GbE pass through: 8.5Gb/s

-

but has severe security implications and can’t be used

• Final verdict:

Cloud currently (April 2011) not usable in HPC

63 Donnerstag, 21. Juli 2011

Cloud Investigations at LRZ • • •

No public true HPC cloud available Cloud types:

-

public (Amazon, Google, Azure, …) private (the cloud YOU build!) hybrid (bring public/other resources in if needed: bursting)

What do the users want?

-

HPC (but at the low end) IaaS to run “their” flavor of OS Controlled environment: Supernova Factory codes have sensitivity to OS/compiler version at LRZ requests from

-

LCG community => Scientific Linux biophysicists => Debian mathematicians => Hadoop 64

Donnerstag, 21. Juli 2011

Cloud Investigations at LRZ

• Build our own cloud for our users • Use familiar Grid interface to give IaaS => Nimbus!

• Nimbus overview and components • Advanced scenarios (Grid and cloud) • Short comparison with Eucalyptus and Open Nebula

65 Donnerstag, 21. Juli 2011

NIMBUS Overview

• Open Source tools • Infrastructure as a Service • Scientists’ needs • Grid (Globus) interface

66 Donnerstag, 21. Juli 2011

Components

Site Manager Service

Image Repository

Workspace Service

Cumulus

Protocols Webservices or HTTP

Amazon’s S3 REST API implementation

Platforms Apache Axis or Apache CXF

No image propagation

Frontends WSRF or EC2 (describe/run/reboot/terminate instances; describe images; add/delete keypair) 67 Donnerstag, 21. Juli 2011

Backend storage system support is growing

Nimbus SW Stack !"#$%&'()(*"+,-./0123"+%45$-6(7558 )49,":69:%46 !"#$%&'()*2,-)#D'()%

+838.8%*7,-)#D'()%

I+JK*HLAG*',M*N8)#O

!HBP

HQ

!"#$%&'()*AG2

+838.8%*AG2

!"#$%&'()*H)#