Highly Accelerated Life Test of LED Power

Highly  Accelerated  Life  Test  of   LED  Power   Taisuke  Sueda   ASTR  2015,  Sep  9  -­‐  11,  Cambridge,  MA   1   HALT   HALT・・・ It is propo...
0 downloads 2 Views 6MB Size
Highly  Accelerated  Life  Test  of   LED  Power   Taisuke  Sueda  

ASTR  2015,  Sep  9  -­‐  11,  Cambridge,  MA  

1  

HALT   HALT・・・ It is proposed along with the dedicated device in the 1980s as Highly Accelerated Life Test. It is referred to as Limit Test in IEC62506 issue. Combined stress of temperature and vibration [temperature stress] -100℃~+200℃ Thermal change 60℃/min [vibration stress] Six axis broadband vibration

HALT  coverage  

Rate of accident cause ※ Findings of National Institute of Technology and Evaluation in JAPAN (NITE)

Other, 14%

Temperature,   40%

Humidity, 18%

VibraJon,   28%  

HALT coverage Temperature  and  vibraJon  accounts  for  nearly  70%  of  failure  factor.

HALT is combined stress of temperature and vibration.

LED  lighJng  market

Growth  is  expected  at  10%  per  annum

※http://www.ledsmagazine.com/articles/print/volume-9/issue-9/features/led-lighting-market-holds-steady-in-2012magazine.html

LifeJme  of  LED LifeJme  of  LED  fluorescent  lamps  is  5  to  10  Jmes  longer   than  the  lifeJme  of  convenJonal  fluorescent  lamps   ⇒ It  also  requires  the  high  reliability  in  power  supply.   convenJonal   fluorescent  lamps

lifeJme 5  

6000~12000  hours

LED  fluorescent   lamps

40000~50000  hours

Test  sample 354mm 38.5mm

Power supply of LED fluorescent  lamps Product  SpecificaJons PFC E-­‐cap

AC

PFC

6

Output E-cap

Back converter circuit

Circuit  configuraJon

DC

outside   dimension

38.5×26.2 ×354mm

mass

0.25kg

rated  input

AC100~242V, 75VA,50/60Hz

rated  output

DC195V,0.350A

ambient   temperature

-20℃~35℃

InstallaJon  condiJon  of  test  sample

Air duct LED Power supply

Vibration table 7

SchemaJc  diagram  of  a  test  system ・  Only  LED  power  supply  is  installed  in  the  test  chamber HALT LED power supply

Data logger AC  source

LED lamp 8

FuncJonal  Test

To  operate  the  sample  in  a  stated  test  Jme,  we  search  the  Jming  when  the  sample  doesn’t     work  or  the  measurement  value  changes. controlling   Measurement  item   acceleraJon  pickup thermocouple ・ A/F  (AcJve  Filter)  output  voltage,  Microcomputer  output  port  voltage,     control  power  voltage,  and  input  and  output  voltage,  current ・ temperature:8  points,  Key  components   ・  acceleraJon  (only  at  the  Jme  of  the  vibraJon  stress  test)   ・  FuncJonal  test  is  carried  out  by  changing  the  input  voltage        to  check  the  minimum  operaJng  voltage.  (  Since  the  sample  was  started  by  69V,  go  up  the  voltage  from  69V  ) A/F  output  voltage Microcomputer  output  port control  power  voltage input  and  output   voltage,  current

Normal  signal(20℃,69V)

acceleraJon  pickup

Results ・LED  power  supply  has  sufficient  margin  for  the  product  specs  to  high   temperature  stress  and  vibraJon  stress.   ・Sample  was  destroyed  by  -­‐40  ℃  for  low  temperature  step  stress.   → RCA  for  destrucJon  in  low  temperature  stress LOW  TEMPERATURE  STEP  STRESS HIGH  TEMPERATURE  STEP  STRESS RAPID  THERMAL  TRANSITION VIBRATION  STEP  STRESS COMBINED  STRESS  TEST

LOL -­‐30℃ LDL -­‐40℃ UOL 120℃ UDL 160℃ -­‐20℃⇔110℃ 5cycl   correct  operaJon   VOL 60Grms VDL 65Grms OL 65Grms DL 70Grms

Electrical  characterisJcs  at  20℃ and  -­‐30℃

If  the  temperature  is  low,  to  ensure  that  the  ripple  of  the  A  /  F  output  voltage  increases  at   startup. A/F  output  voltage Microcomputer  output  port control  power  voltage input  and  output   voltage,  current Normal  signal  at  20℃

Signal  at  -­‐30℃

Electrical  characterisJcs  at  -­‐40℃ ・Ripple  current  is  further  increased.   ・Large  current  is  generated  at  the  Jme  of  failure.

A/F  output  voltage Microcomputer    output  port control  power  voltage

Ripple  current  is  further  increased.

input  and  output   voltage,  current Expanding

Large  current  is  generated   at  the  Jme  of  failure. input  currrent

Signal  at  -­‐40℃

Temperature  change  at  20℃

20℃ : temperature  of  each  device  increases  with  the  lapse  of  Jme.   40

A/F  transformer A/F  FET Microcomputer

Temperature[℃]  

35

PFC  E-­‐cap Diode  bridge

30

Converter  FET Converter  transformer Thyristor

25

20

15

Power  ON  

Power  OFF  

10 0

100

200

300

400

500

600

Time  [sec]  

700

800

900

1000

Temperature  change  at  -­‐30℃

-­‐30℃ : Temperature  of  the  PEC  E-­‐cap  increases  rapidly.   -­‐10 PEC  E-­‐cap   A/F  transformer A/F  FET

Temperature[℃]  

-­‐15

Microcomputer PFC  E-­‐cap

-­‐20

Diode  bridge Converter  FET

-­‐25

Converter  transformer Thyristor

-­‐30

Power  ON   Power  OFF  

-­‐35

-­‐40 0

100

200

300

400

500

600

Time  [sec]  

700

800

900

1000

Temperature  change  at  -­‐40℃

-­‐40℃ : Temperature  of  the  thyristor  is  irregularly  rise.              Temperature  of  other  devices  hardly  rise.   A/F  transformer

-­‐20

Thyristor  

A/F  FET Microcomputer

Temperature[℃]  

-­‐25

PFC  E-­‐cap Diode  bridge

-­‐30

Converter  FET Converter  transformer Thyristor

-­‐35

-­‐40

Power  ON  

-­‐45

Power  OFF  

-­‐50 0

100

200

300

400

500

600

Time  [sec]  

700

800

900

1000

Temperature  change  at  20℃

Returned  to  20  ℃  :  Temperature  of  the  thyristor  is  irregularly  rise.                                                          Temperature  of  other  devices  hardly  rise.   40

A/F  transformer A/F  FET

Temperature[℃]  

35

Thyristor  

Microcomputer PFC  E-­‐cap Diode  bridge

30

Converter  FET Converter  transformer

25

Thyristor

20

15

Power  ON  

10 0

100

200

300

400

500

600

Time  [sec]  

700

800

900

1000

Summary  of  temperature  change

・-­‐30℃  :  Temperature  of  the  PEC  E-­‐cap  increases  rapidly. ・-­‐40℃  :  Temperature  of  the  thyristor  is  irregularly  rise.  Temperature  of  other  devices  hardly   rise.   40

-­‐10

A/F  transformer

A/F  transformer

PFC  E-­‐cap Diode  bridge

30

Microcomputer PFC  E-­‐cap

-­‐20

Converter  FET Converter  transformer

Diode  bridge Converter  FET

-­‐25

Thyristor

25

A/F  FET

-­‐15

Microcomputer

35

Temperature[℃]  

Temperature[℃]  

A/F  FET

Converter  transformer Thyristor

-­‐30

20

15

電源ON  

Power  ON   Power  OFF  

-­‐35

電源OFF  

-­‐40

10 0

100

200

300

400

500

600

700

Time  [sec]  

800

900

0

1000

100

200

300

400

40

Temperature[℃]  

Temperature[℃]  

Microcomputer PFC  E-­‐cap Diode  bridge

-­‐30

Converter  FET Converter  transformer Thyristor

-­‐35

-­‐40

Power  ON  

-­‐45

Power  OFF  

-­‐50 0

100

200

300

400

500

600

Time  [sec]  

700

800

900

1000

700

800

900

1000

A/F  transformer

A/F  FET -­‐25

600

-­‐30℃

20℃ A/F  transformer

-­‐20

500

Time  [sec]  

-­‐40℃

700

800

900

1000

A/F  FET 35

Microcomputer PFC  E-­‐cap Diode  bridge

30

Converter  FET Converter  transformer

25

Thyristor

20

Power  ON  

15

10 0

100

200

300

Time  [sec]   400

500

600

20℃  

Summary  of  temperature  change

・-­‐30℃  :  Temperature  of  the  PEC  E-­‐cap  increases  rapidly. ・-­‐40℃  :  Temperature  of  the  thyristor  is  irregularly  rise.  Temperature  of  other  devices  hardly   rise.   40

-­‐10

A/F  transformer

A/F  transformer

PFC  E-­‐cap Diode  bridge

30

Microcomputer PFC  E-­‐cap

-­‐20

Converter  FET Converter  transformer

Diode  bridge Converter  FET

-­‐25

Thyristor

25

A/F  FET

-­‐15

Microcomputer

35

Temperature[℃]  

Temperature[℃]  

A/F  FET

Converter  transformer Thyristor

-­‐30

20

15

電源ON  

Power  ON   Power  OFF  

-­‐35

電源OFF  

-­‐40

10 0

100

200

300

400

500

600

700

Time  [sec]  

800

900

0

1000

100

200

300

400

Temperature[℃]  

Temperature[℃]  

Microcomputer PFC  E-­‐cap Diode  bridge

-­‐30

Converter  FET Converter  transformer Thyristor

-­‐35

-­‐40

Power  ON  

-­‐45

-­‐50 0

100

200

300

400

Power  OFF  

LDL 500

600

Time  [sec]  

600

700

800

900

1000

700

800

900

1000

-­‐30℃ 40

A/F  transformer

A/F  FET -­‐25

500

Time  [sec]  

20℃ A/F  transformer

-­‐20

LOL

-­‐40℃

700

800

900

1000

A/F  FET 35

Microcomputer PFC  E-­‐cap Diode  bridge

30

Converter  FET Converter  transformer

25

Thyristor

20

Power  ON  

15

10 0

100

200

300

Time  [sec]   400

500

600

20℃  

EsJmate  of  the  destrucJon  cause  at  low  temperature

As  a  result  of  the  degradaJon  invesJgaJon,  MOS  FET  of  the  PFC  circuit   has  been  destroyed.   EsJmate  of  the  destrucJon  cause      ①  With  decreasing  temperature,  decrease  in  electrostaJc  capacity  of                      the  PFC  E-­‐cap  and  increase  in  ESR.     ⇒  Ripple  voltage  increases.    ②  The  breakdown  voltage  reducJon  of  MOS  FET  that  is  used  for  PFC                    circuit  with  decreasing  temperature.      

MOS  FET  was  destroyed  by  the  peak  voltage  over  the  breakdown  voltage.

PFC  E-­‐cap AC 19  

PFC

Back   converter   circuit

Output  E-­‐cap DC

Comparison  of  capacitor  temperature  properJes

・ There  is  no  data  less  than  -­‐40℃ in  the  E-­‐cap  datasheet.    ⇒I  acquire  the  low  temperature  characterisJc  of  the  capacitor                using  HALT.   ・  E-­‐cap  capacitance  is  reduced  by  half  at  -­‐40℃.   ・  Film  capacitor  capacitance  is  reduced  by  10%  at  -­‐100℃.   20

Rate of change in capacitance [%]

Capacitance Cs[µF]

10

1

0.1 film capacitor

0.01

E-cap

0.001 -120

20  

-100

-80

-60

-40 -20 0 Tempetarute[℃ ]

20

Capacitance  

40

60

80

0 -20 -40

-60

film capacitor E-cap

-80 -100 -120

-100

-80

-60

-40 -20 0 Tempetarute[℃ ]

20

40

60

80

Rate  of  change  in  capacitance  

Comparison  of  capacitor  temperature  properJes ・  ESR  of  E-­‐cap  is  rapidly  increased  by  the  low  temperature.   ・  ESR  of  film  capacitor  at  low  temperatures  is  several  Jmes  of  that   at  20  ℃.   100000

10 film capacitor

film capacitor

E-cap

E-cap

1

1000

tanδ

ESR[Ω]

10000

0.1

100

0.01

10 1 -120

-100

-80

-60

-40 -20 0 Tempetarute[℃ ]

20

40

60

80

ESR(  Equivalent  Series  Resistance  )   21  

0.001 -120

-100

-80

-60

-40 -20 0 Tempetarute[℃ ]

tanδ  

20

40

60

80

DestrucJon  margin  improvement  plan

To  prepare  two  kinds  of  design  improvement  Sample     Hardware  and  Soiware (1)  Hardware  improvement  plan

Film  capacitor  is  placed  in  parallel  with  the  PFC  E-­‐cap  to  prevent  a  decline  in   electrostaJc  capacity  at  low  temperature   PFC  E-­‐cap AC

Film  capacitor

PFC

Output  E-­‐cap Back   converter   circuit

DC

(2)  Soiware  improvement  plan I  add  to  the  program  the  algorithm  to  stop  operaJon  if  the  ripple  voltage  is   detected  to  be  mulJple  Jmes  over  the  set  threshold,  and  prevent  destrucJon   of  the  MOS  FET.  

Result  of  hardware  improvement   Both  LOL  and  LDL  were  greatly  improved.   Before improvement Hardware improvement LOL -30℃ -50℃ LDL -40℃ -100℃ Ripple  is  reduced  by  the  film  capacitor  .  (Ripple  maximum  voltage  582V⇒467V)   582V ⇒ 467V

23  

Before  improvement  at  -­‐40℃

Aier  hardware  improvement  at  -­‐40℃

Result  of  hardware  improvement   ・  Normal  operaJon  at  -­‐50  ℃  although  ripple  was  increased   ・  -­‐60  ℃  in  failure  ⇒ Normal  operaJon  when  return  to  the  -­‐50  ℃   ・From  -­‐70℃ to  -­‐100℃  in  failure ⇒ Normal  operaJon  at  -­‐50  ℃  

Signal  at  -­‐50℃

24  

Signal  at  -­‐60℃

Result  of  soiware  improvement   Before improvement Software improvement LOL -30℃ -30℃ LDL -40℃ -80℃ ・  LDL  was  improved  by  soiware  detecJon   ・  The  breakdown  voltage  of  the  MOS  FET  is  further  reduced  at  -­‐80℃.   OperaJon  stopped   Large  current  

25  

Before  improvement  at  -­‐40℃

Aier  soiware  improvement  at  -­‐40℃

Conclusions 1.  LED  power  supply  has  sufficient  margin  for  the  product  specs  to  high  temperature   stress  and  vibraJon  stress.   2.  Sample  was  destroyed  by  -­‐40  ℃  for  low  temperature  step  stress.  MOS  FET  of  the   PFC  circuit  has  been  destroyed.   3.  MOS  FET  was  destroyed  by  the  peak  voltage  over  the  breakdown  voltage.  It  is   caused  of  increase  of  ripple  voltage  caused  by  the  decrease  in  electrostaJc  capacity   of  the  PFC  E-­‐cap.   4.  As  the  result  of  comparison  of  capacitor  temperature  properJes,  E-­‐cap  rapidly   changed  properJes  at  temperatures  below  -­‐40  degrees,  although  Film  capacitor   characterisJcs  even  at  -­‐100  ℃  was  stable.   5.  As  the  result  of  hardware  improvement,  both  LOL  and  LDL  were  greatly  improved.   6.  As  the  result  of  soiware  improvement,  LDL  was  improved  -­‐80℃ from  -­‐40℃.   26